Vol 31, No 10 (2024)
- Year: 2024
- Articles: 8
- URL: https://rjpbr.com/0929-8673/issue/view/9989
Anti-Infectives and Infectious Diseases
Meet the Editorial Board Member



Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3-dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex-5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.



Berberine: Pharmacological Features in Health, Disease and Aging
Abstract
Background:Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes.
Objective:This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage.
Methods:Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022.
Results:Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models.
Conclusion:Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.



Cardiospecific Troponins as Laboratory Biomarkers of Myocardial Cell Injury in Hypertension: A Mini-Review
Abstract
To date, it is well known that a significant number of diseases of cardiovascular genesis (coronary heart disease, myocardial infarction, cardiomyopathy, Takotsubo syndrome, heart failure, etc.) and extra-cardiac genesis (renal failure, chronic obstructive pulmonary disease, sepsis, diabetes mellitus, etc.) cause injury to contractile cells of the heart muscle (myocardial cells). The most sensitive and specific criteria for proving myocardial cell injury are cardiospecific troponins (CSTns) - CSTnI and CSTnT. According to the current clinical recommendations of the European, American, and Russian Cardiological Communities, CSTnI and CSTnT are the main biomarkers for early diagnosis of myocardial infarction. Hypertension is one of the most dangerous and common risk factors for the development of cardiovascular pathologies and is associated with a high risk of dangerous cardiovascular complications. Therefore, there is an urgent need to search for new biomarkers for the timely assessment of the prognosis of patients with hypertension.
:This mini-review aims to substantiate the possibilities of using the cardiomarkers (CSTnI and CSTnT) to assess the prognosis of patients suffering from hypertension and to discuss potential mechanisms that cause injury to myocardial cells and increase serum levels of CSTnI and CSTnT.
:This is a narrative mini-review, which was prepared using the following databases: Pubmed/Medline, PubMed Central, Embase, Scopus, and Web of Science. The following keywords were used in the literature search: "myocardial cells", "injury", "damage", and "hypertension" in combination with the terms "mechanisms of injury" "predictive significance", "cardiac troponins", or "cardiospecific troponins".



LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease
Abstract
Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.



Percutaneous Coronary Intervention Associated with a Higher Risk of Hypoxemia and COVID-19 Severity
Abstract
Objective:The primary goal of the present study was to measure the implications of hypoxemia in COVID-19 patients with a history of coronary artery disease (CAD).
Methods:A systematic search of the literature published from November 1, 2019 to May 1, 2021, was conducted on PubMed/MEDLINE, Embase, and Web of Science databases. Afterwards, an observational study was designed based on the electronic health records of COVID-19 patients hospitalized in a tertiary referral hospital during the same period. A total of 179 COVID-19 cases were divided into two groups: cases with a history of CAD and percutaneous coronary intervention (CAD/PCI+, n = 89) and controls (n = 90). Clinical data were extracted from the electronic database of the hospital and statistically analyzed.
Results:After the application of inclusion/exclusion criteria, only three studies were deemed eligible, one of which was concerned with the impact of CAD on the all-cause mortality of COVID-19. Results from our observational study indicated that the cases were older (median age: 74 vs. 45) and more likely to develop hypoxemia (25.8% vs. 8.8%) than the controls. CAD/PCI+ was correlated with a more severe COVID-19 (11% vs. 1%). Age was a moderately significant independent predictor of increased COVID-19 severity, while hypoxemia was not.
Conclusion:Considering the negative impact of hypoxemia on the prognosis of COVID-19 and its higher prevalence among COVID-19 patients with underlying CAD, further research is warranted to unravel the negative effects of COVID-19 on the mechanisms of gas exchange and delivery in patients with pre-existing CAD.



Simple Synthesis of [18F] AV-45 and its Clinical Application in the Diagnosis of Alzheimer's Disease
Abstract
Objective:[18F] AV-45 can be produced in a simple, stable, and repeatable manner on the Tracerlab FXF-N platform using a self-editing synthetic procedure and solid-phase extraction purification method. This technique is applied to positron emission tomography (PET) imaging of Alzheimer's disease (AD) to observe its distribution and characteristics in various brain regions and its diagnostic efficiency for the disease.
Methods:The precursor was subjected to nucleophilic radiofluorination at 120 °C in anhydrous dimethyl sulfoxide, followed by acid hydrolysis of the protecting groups. The neutralized reaction mixture was purified by solid phase extraction to obtain a relatively pure [18F] AV-45 product with a high specific activity. A total of 10 participants who were diagnosed with Alzheimer's disease (AD group) and 10 healthy controls (HC group) were included retrospectively. All of them underwent [18F] AV-45 brain PET/CT imaging. The distribution of [18F] AV-45 in the AD group was analyzed visually and semi-quantitatively.
Results:Six consecutive radiochemical syntheses were performed in this experiment. The average production time of [18F] AV-45 was 52 minutes, the radiochemical yield was 14.2 % ± 2.7% (n = 6), and the radiochemical purity was greater than 95%. When used with PET/CT imaging, the results of the visual analysis indicated increased [18F] AV-45 radioactivity uptake in the frontal, temporal, and parietal lobes in AD patients. Semiquantitative analysis showed the highest diagnostic efficacy in the posterior cingulate gyrus compared with other brain regions (p < 0.001).
Conclusion:Intravenous [18F] AV-45 was successfully prepared on the Tracerlab FXF-N platform by solid-phase extraction of crude product and automated radiochemical synthesis. PET/CT imaging can be used to diagnose and evaluate AD patients and provide a more robust basis for clinicians to diagnose AD.



Recent Discovery of Peptidomimetics for the Treatment of Coronavirus (COVID-19), Human Coronavirus, and Enteroviruses
Abstract
This patent describes the synthesis of compounds, methods, and compositions for preventing, treating, and/or curing Covid-19, human coronavirus, and enterovirus infections. Some peptidomimetic compounds are very potent and could be a game changer in new treatment therapy for COVID-19.


