Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry
- 作者: Ratto A.1, Honek J.1
-
隶属关系:
- Department of Chemistry, University of Waterloo
- 期: 卷 31, 编号 10 (2024)
- 页面: 1172-1213
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644137
- DOI: https://doi.org/10.2174/0929867330666230313141452
- ID: 644137
如何引用文章
全文:
详细
The biological and medicinal chemistry of the oxocarbon acids 2,3-dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex-5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
作者简介
Amanda Ratto
Department of Chemistry, University of Waterloo
Email: info@benthamscience.net
John Honek
Department of Chemistry, University of Waterloo
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Ian Storer, R.; Aciro, C.; Jones, L.H. Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev., 2011, 40(5), 2330-2346. doi: 10.1039/c0cs00200c PMID: 21399835
- Lei, S.; Zhang, Y.; Blum, N.T.; Huang, P.; Lin, J. Recent advances in croconaine dyes for bioimaging and theranostics. Bioconjug. Chem., 2020, 31(9), 2072-2084. doi: 10.1021/acs.bioconjchem.0c00356 PMID: 32786372
- Zwicker, V.E.; Yuen, K.K.Y.; Smith, D.G.; Ho, J.; Qin, L.; Turner, P.; Jolliffe, K.A. Deltamides and croconamides: Expanding the range of dual H‐bond donors for selective anion recognition. Chemistry, 2018, 24(5), 1140-1150. doi: 10.1002/chem.201704388 PMID: 29119615
- Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591. doi: 10.1021/jm1013693 PMID: 21413808
- Agnew-Francis, K.A.; Williams, C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev., 2020, 120(20), 11616-11650. doi: 10.1021/acs.chemrev.0c00416 PMID: 32930577
- Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203. doi: 10.1021/acs.jmedchem.5b01963 PMID: 26967507
- Mishiro, K.; Hu, F.; Paley, D.W.; Min, W.; Lambert, T.H. Macrosteres: The deltic guanidinium ion. Eur. J. Org. Chem., 2016, 2016(9), 1655-1659. doi: 10.1002/ejoc.201600137 PMID: 27790071
- Marchetti, L.A.; Kumawat, L.K.; Mao, N.; Stephens, J.C.; Elmes, R.B.P. The versatility of squaramides: From supramolecular chemistry to chemical biology. Chem, 2019, 5(6), 1398-1485. doi: 10.1016/j.chempr.2019.02.027
- Lu, M.; Lu, Q.B.; Honek, J.F. Squarate-based carbocyclic nucleosides: Syntheses, computational analyses and anticancer/antiviral evaluation. Bioorg. Med. Chem. Lett., 2017, 27(2), 282-287. doi: 10.1016/j.bmcl.2016.11.058 PMID: 27913181
- West, R. Chemistry of the oxocarbons. Isr. J. Chem., 1980, 20(3-4), 300-307. doi: 10.1002/ijch.198000088
- Seitz, G.; Imming, P. Oxocarbons and pseudooxocarbons. Chem. Rev., 1992, 92(6), 1227-1260. doi: 10.1021/cr00014a004
- Eggerding, D.; West, R. Synthesis of dihydroxycyclopropenone (deltic acid). J. Am. Chem. Soc., 1975, 97(1), 207-208. doi: 10.1021/ja00834a047
- Eggerding, D.; West, R. Synthesis and properties of deltic acid (dihydroxycyclopropenone) and the deltate ion. J. Am. Chem. Soc., 1976, 98(12), 3641-3644. doi: 10.1021/ja00428a043
- Pericás, M.A.; Serratoso, F. Synthetic applications of di-tert-butoxyethyne: Synthesis of deltic and squaric acid. Tetrahedron Lett., 1977, 18(50), 4437-4438. doi: 10.1016/S0040-4039(01)83530-9
- Serratosa, F. Acetylene diethers: A logical entry to oxocarbons. Acc. Chem. Res., 1983, 16(5), 170-176. doi: 10.1021/ar00089a004
- West, R.; Chickos, J.; Osawa, E. Dichlorocyclopropenone. J. Am. Chem. Soc., 1968, 90(14), 3885-3886. doi: 10.1021/ja01016a064
- Dehmlow, E.V. Diäthoxy-cyclopropenon (Dreiecksäurediäthylester). Tetrahedron Lett., 1972, 13(13), 1271-1274. doi: 10.1016/S0040-4039(01)84565-2
- Farnum, D.G. Thurston, P.E. α-Elimination in 2-phenyltetrachloropropene. Synthesis of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1964, 86(19), 4206-4207. doi: 10.1021/ja01073a067
- Chickos, J.S.; Patton, E.; West, R. Aryltrichlorocyclopropenes and arylhydroxycyclopropenones. J. Org. Chem., 1974, 39(12), 1647-1650. doi: 10.1021/jo00925a009
- Farnum, D.G.; Chickos, J.; Thurston, P.E. The preparation and characterization of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1966, 88(13), 3075-3081. doi: 10.1021/ja00965a033
- Patton, E.; West, R. New aromatic anions. X. Dissociation constants of substituted oxocarbon acids. J. Am. Chem. Soc., 1973, 95(26), 8703-8707. doi: 10.1021/ja00807a033
- Ockey, D.A.; Gadek, T.R. Discovery of novel PTP1b inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 389-391. doi: 10.1016/j.bmcl.2003.10.058 PMID: 14698165
- Weidner, C.H.; Wadsworth, D.H.; Knop, C.S.; Oyefesso, A.I.; Hafer, B.L.; Hartman, R.J.; Mehlenbacher, R.C.; Hogan, S.C. Convenient and general synthesis of 2-alkoxy-3-arylcyclopropenones. J. Org. Chem., 1994, 59(15), 4319-4322. doi: 10.1021/jo00094a055
- Semmingsen, D.; Groth, P. Deltic acid, a novel compound. J. Am. Chem. Soc., 1987, 109(23), 7238-7239. doi: 10.1021/ja00257a081
- Chickos, J.S.; Berndt, A.F.; Claus, A.C. Crystal data on phenylhydroxycyclopropenone. J. Appl. Cryst., 1973, 6(4), 303-304. doi: 10.1107/S0021889873008770
- Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P.M. A theoretical study of aromaticity in squaramide and oxocarbons. Tetrahedron Lett., 2000, 41(12), 2001-2005. doi: 10.1016/S0040-4039(00)00084-8
- Schleyer, P.R.; Najafian, K.; Kiran, B.; Jiao, H. Are oxocarbon dianions aromatic? J. Org. Chem., 2000, 65(2), 426-431. doi: 10.1021/jo991267n PMID: 10813951
- Wang, H.J.; Schleyer, P.R.; Wu, J.I.; Wang, Y.; Wang, H.J. A study of aromatic three membered rings. Int. J. Quantum Chem., 2011, 111(5), 1031-1038. doi: 10.1002/qua.22453
- Tadić J.M.; Xu, L. Ab initio and density functional theory study of keto-enol equilibria of deltic acid in gas and aqueous solution phase: A bimolecular proton transfer mechanism. J. Org. Chem., 2012, 77(19), 8621-8626. doi: 10.1021/jo301575c PMID: 22954314
- Gelb, R.I.; Schwartz, L.M. Aqueous dissociation of dihydroxycyclopropenone (deltic acid). J. Chem. Soc. Perkin T 2, 1976, 1976(8), 930-932.
- Yoshida, Z.; Konishi, H.; Tawara, Y.; Nishikawa, K.; Ogoshi, H. Novel alkaline hydrolysis of triaminocyclopropenium ion. new route to diaminocyclopropenone and diaminocyclopropenethione. Tetrahedron Lett., 1973, 14(28), 2619-2622. doi: 10.1016/S0040-4039(01)96160-X
- Mishiro, K.; Yushima, Y.; Kunishima, M. Phototriggered dehydration condensation using an aminocyclopropenone. Org. Lett., 2017, 19(18), 4912-4915. doi: 10.1021/acs.orglett.7b02383 PMID: 28862452
- Row, R.D.; Shih, H.W.; Alexander, A.T.; Mehl, R.A.; Prescher, J.A. Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling. J. Am. Chem. Soc., 2017, 139(21), 7370-7375. doi: 10.1021/jacs.7b03010 PMID: 28478678
- Gale, P.A.; Pérez-Tomás, R.; Quesada, R. Anion transporters and biological systems. Acc. Chem. Res., 2013, 46(12), 2801-2813. doi: 10.1021/ar400019p PMID: 23551251
- Gale, P.A.; Davis, J.T.; Quesada, R. Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev., 2017, 46(9), 2497-2519. doi: 10.1039/C7CS00159B PMID: 28379234
- Tosolini, M.; Pengo, P.; Tecilla, P. Biological activity of trans-membrane anion carriers. Curr. Med. Chem., 2018, 25(30), 3560-3576. doi: 10.2174/0929867325666180309113222 PMID: 29521206
- Ho, J.; Zwicker, V.E.; Yuen, K.K.Y.; Jolliffe, K.A. Quantum chemical prediction of equilibrium acidities of ureas, deltamides, squaramides, and croconamides. J. Org. Chem., 2017, 82(19), 10732-10736. doi: 10.1021/acs.joc.7b02083 PMID: 28832145
- Weiss, R.; Hertel, M. A nitrogen analogue of deltic acid. J. Chem. Soc. Chem. Commun., 1980, (5), 223-224. doi: 10.1039/c39800000223
- Lambert, T.; Bandar, J. Aminocyclopropenium ions: Synthesis, properties, and applications. Synthesis, 2013, 45(18), 2485-2498. doi: 10.1055/s-0033-1338516
- Bandar, J.S.; Barthelme, A.; Mazori, A.Y.; Lambert, T.H. Structureactivity relationship studies of cyclopropenimines as enantioselective Brønsted base catalysts. Chem. Sci. (Camb.), 2015, 6(2), 1537-1547. doi: 10.1039/C4SC02402H PMID: 26504512
- Walst, K.J.; Yunis, R.; Bayley, P.M.; MacFarlane, D.R.; Ward, C.J.; Wang, R.; Curnow, O.J. Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Advances, 2015, 5(49), 39565-39579. doi: 10.1039/C5RA05254H
- Freyer, J.L.; Brucks, S.D.; Gobieski, G.S.; Russell, S.T.; Yozwiak, C.E.; Sun, M.; Chen, Z.; Jiang, Y.; Bandar, J.S.; Stockwell, B.R.; Lambert, T.H.; Campos, L.M. Clickable poly(ionic liquids): A materials platform for transfection. Angew. Chem. Int. Ed., 2016, 55(40), 12382-12386. doi: 10.1002/anie.201605214 PMID: 27578602
- Brucks, S.D.; Freyer, J.L.; Lambert, T.H.; Campos, L.M. Influence of substituent chain branching on the transfection efficacy of cyclopropenium-based polymers. Polymers, 2017, 9(3), 79. doi: 10.3390/polym9030079
- Lugade, A.G.; Jacobson, J.W. Oxocarbonamide peptide nucleic acids for use as hybridization probes. Patent WO2008070525A1 2008.
- Hausen, B.; Happle, R. Cyclopropenones for the local treatment of alopecia areata. EP62157A1 1982.
- Arndt, G.; Seitz, G.; Kampchen, T. Polycarbonyl compounds. 31. Sulfur and selenium analogs of phenyl substituted deltic acid anions and their derivatives. Chem. Ber., 1981, 114(2), 660-672. doi: 10.1002/cber.19811140225
- Werz, D.B.; Gleiter, R.; Rominger, F. Selenium- and tellurium-substituted cyclopropenones and their facile ring-opening with methanol. Eur. J. Org. Chem., 2003, 2003(1), 151-154. doi: 10.1002/1099-0690(200301)2003:13.0.CO;2-7
- Cohen, S.; Lacher, J.R.; Park, J.D. Diketocyclobutenediol. J. Am. Chem. Soc., 1959, 81(13), 3480. doi: 10.1021/ja01522a083
- Shimizu, I. Squaric acid. J. Synth. Org. Chem. Jpn., 1995, 53(4), 330-331. doi: 10.5059/yukigoseikyokaishi.53.330
- Wurm, F.R.; Klok, H.A. Be squared: Expanding the horizon of squaric acid-mediated conjugations. Chem. Soc. Rev., 2013, 42(21), 8220-8236. doi: 10.1039/c3cs60153f PMID: 23873344
- Chasák, J.; lachtová, V.; Urban, M.; Brulíková, L. Squaric acid analogues in medicinal chemistry. Eur. J. Med. Chem., 2021, 209, 112872. doi: 10.1016/j.ejmech.2020.112872 PMID: 33035923
- Mukkanti, A.; Periasamy, M. Methods of synthesis of cyclobutenediones. Arkivoc, 2005, (xi), 48-77.
- Wurm, F.; Steinbach, T.; Klok, H.A. One-pot squaric acid diester mediated aqueous protein conjugation. Chem. Commun. (Camb.), 2013, 49(71), 7815-7817. doi: 10.1039/c3cc44039g PMID: 23884200
- Maahs, G.; Hegenberg, P. Syntheses and derivatives of squaric acid. Angew. Chem. Int. Ed. Engl., 1966, 5(10), 888-893. doi: 10.1002/anie.196608881
- Liu, H.; Tomooka, C.S.; Moore, H.W. An efficient general synthesis of squarate esters. Synth. Commun., 1997, 27(12), 2177-2180. doi: 10.1080/00397919708006826
- Tietze, L.F.; Arlt, M.; Beller, M. Gl üsenkamp, K.H.; Jähde, E.; Rajewsky, M.F. Anticancer agents, 15. squaric acid diethyl ester: A new coupling reagent for the formation of drug biopolymer conjugates. synthesis of squaric acid ester amides and diamides. Chem. Ber., 1991, 124(5), 1215-1221. doi: 10.1002/cber.19911240539
- Neuse, E.; Green, B. Amidierung von Quadratsäure-estern. Justus Liebigs Ann. Chem., 1973, 1973(4), 619-632. doi: 10.1002/jlac.197319730411
- López, C.; Vega, M.; Sanna, E.; Rotger, C.; Costa, A. Efficient microwave-assisted preparation of squaric acid monoamides in water. RSC Advances, 2013, 3(20), 7249-7253. doi: 10.1039/c3ra41369a
- Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. One-pot synthesis of unsymmetrical squaramides. RSC Advances, 2015, 5(42), 33450-33462. doi: 10.1039/C5RA05383H
- Chickos, J.S. Methylhydroxycyclobutenedione. J. Am. Chem. Soc., 1970, 92(19), 5749-5750. doi: 10.1021/ja00722a044
- Reed, M.W.; Pollart, D.J.; Perri, S.T.; Foland, L.D.; Moore, H.W. Synthesis of 4-substituted-3-alkoxy-3-cyclobutene-1,2-diones. J. Org. Chem., 1988, 53(11), 2477-2482. doi: 10.1021/jo00246a016
- Liebeskind, L.S.; Fengl, R.W.; Wirtz, K.R.; Shawe, T.T. An improved method for the synthesis of substituted cyclobutenediones. J. Org. Chem., 1988, 53(11), 2482-2488. doi: 10.1021/jo00246a017
- Liebeskind, L.S.; Fengl, R.W. 3-Stannylcyclobutenediones as nucleophilic cyclobutenedione equivalents. Synthesis of substituted cyclobutenediones and cyclobutenedione monoacetals and the beneficial effect of catalytic copper iodide on the Stille reaction. J. Org. Chem., 1990, 55(19), 5359-5364. doi: 10.1021/jo00306a012
- Kinney, W.A. Synthesis of alkyl substituted cyclobutenediones by free radical chemistry. Carbon for nitrogen replacement in the α-amino acid bioisostere 34-diamino-3-cyclobutene-1,2-dione. Tetrahedron Lett., 1993, 34(17), 2715-2718. doi: 10.1016/S0040-4039(00)73543-X
- Ehrhardt, H.; Hunig, S.; Putter, H. Amides and thioamides of squaric acid - Syntheses and reactions. Chem. Ber.-. Rec., 1977, 110(7), 2506-2523.
- Deyà, P.M.; Frontera, A.; Suñer, G.A.; Quiñonero, D.; Garau, C.; Costa, A.; Ballester, P. Internal rotation in squaramide and related compounds. A theoretical ab initio study. Theor. Chem. Acc., 2002, 108(3), 157-167. doi: 10.1007/s00214-002-0373-7
- Thorpe, J.E. 1H nuclear magnetic resonance spectra of some squaramides. J. Chem. Soc. B, 1968, 435-436. doi: 10.1039/j29680000435
- Quiñonero, D.; Tomàs, S.; Frontera, A.; Garau, C.; Ballester, P.; Costa, A.; Deyà, P.M. OPLS all-atom force field for squaramides and squaric acid. Chem. Phys. Lett., 2001, 350(3-4), 331-338. doi: 10.1016/S0009-2614(01)01229-5
- Kang, Y.K.; Park, H.S. Internal rotation about the CN bond of amides. J. Mol. Struct. THEOCHEM, 2004, 676(1-3), 171-176. doi: 10.1016/j.theochem.2004.01.024
- Gilli, G.; Bertolasi, V.; Gilli, P.; Ferretti, V. Associations of squaric acid and its anions as multiform building blocks of hydrogen-bonded molecular crystals. Acta Crystallogr. B, 2001, 57(6), 859-865. doi: 10.1107/S0108768101014963 PMID: 11717486
- Liu, Y.; Lam, A.H.W.; Fowler, F.W.; Lauher, J.W. The squaramides. A new family of host molecules for crystal engineering. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2002, 389(1), 39-46. doi: 10.1080/713738914
- Mani, C.M.; Berthold, T.; Fechler, N. "Cubism" on the nanoscale: From squaric acid to porous carbon cubes. Small, 2016, 12(21), 2906-2912. doi: 10.1002/smll.201600284 PMID: 27062376
- Ding, N.; Zhou, T.; Weng, W.; Lin, Z.; Liu, S.; Maitarad, P.; Wang, C.; Guo, J. Multivariate synthetic strategy for improving crystallinity of zwitterionic squaraine‐linked covalent organic frameworks with enhanced photothermal performance. Small, 2022, 18(24), 2201275. doi: 10.1002/smll.202201275 PMID: 35585681
- Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. Optimizing the accuracy and computational cost in theoretical squaramide catalysis: The henry reaction. Chemistry, 2017, 23(61), 15336-15347. doi: 10.1002/chem.201702841 PMID: 28768048
- Zhao, B.L.; Li, J.H.; Du, D.M. Squaramide‐catalyzed asymmetric reactions. Chem. Rec., 2017, 17(10), 994-1018. doi: 10.1002/tcr.201600140 PMID: 28266131
- Matador, E.; de Gracia Retamosa, M.; Monge, D.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J.M. Bifunctional squaramide organocatalysts for the asymmetric addition of formaldehyde tert- butylhydrazone to simple aldehydes. Chemistry, 2018, 24(26), 6854-6860. doi: 10.1002/chem.201801052 PMID: 29570872
- Modrocká, V.; Veverková, E. Mečiarová, M.; ebesta, R. Bifunctional amine-squaramides as organocatalysts in michael/hemiketalization reactions of βγ-unsaturated α-ketoesters and αβ-unsaturated ketones with 4-hydroxycou-marins. J. Org. Chem., 2018, 83(21), 13111-13120. doi: 10.1021/acs.joc.8b01847 PMID: 30277392
- Shukla, K. Khushboo; Mahto, P.; Singh, V.K. Enantioselective synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction using a bifunctional squaramide catalyst. Org. Biomol. Chem., 2022, 20(20), 4155-4160. doi: 10.1039/D2OB00633B PMID: 35521781
- Tong, C.; Liu, T.; Saez Talens, V.; Noteborn, W.E.M.; Sharp, T.H.; Hendrix, M.M.R.M.; Voets, I.K.; Mummery, C.L.; Orlova, V.V.; Kieltyka, R.E. Squaramide-based supramolecular materials for three-dimensional cell culture of human induced pluripotent stem cells and their derivatives. Biomacromolecules, 2018, 19(4), 1091-1099. doi: 10.1021/acs.biomac.7b01614 PMID: 29528623
- Tong, C.; Wondergem, J.A.J.; van den Brink, M.; Kwakernaak, M.C.; Chen, Y.; Hendrix, M.M.R.M.; Voets, I.K.; Danen, E.H.J.; Le Dévédec, S.; Heinrich, D.; Kieltyka, R.E. Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial. ACS Appl. Mater. Interfaces, 2022, 14(15), 17042-17054. doi: 10.1021/acsami.1c24114 PMID: 35403421
- Stucchi, S.; Colombo, D.; Guizzardi, R.; DAloia, A.; Collini, M.; Bouzin, M.; Costa, B.; Ceriani, M.; Natalello, A.; Pallavicini, P.; Cipolla, L. Squarate cross-linked gelatin hydrogels as three-dimensional scaffolds for biomedical applications. Langmuir, 2021, 37(48), 14050-14058. doi: 10.1021/acs.langmuir.1c02080 PMID: 34806889
- Olewnik-Kruszkowska, E.; Gierszewska, M. Grabska-Zielińska, S.; Skopińska-Wiśniewska, J.; Jakubowska, E. Examining the impact of squaric acid as a crosslinking agent on the properties of chitosan-based films. Int. J. Mol. Sci., 2021, 22(7), 3329. doi: 10.3390/ijms22073329 PMID: 33805101
- Huppertsberg, A.; Leps, C.; Alberg, I.; Rosenauer, C.; Morsbach, S.; Landfester, K.; Tenzer, S.; Zentel, R.; Nuhn, L. Squaric ester‐based nanogels induce no distinct protein corona but entrap plasma proteins into their porous hydrogel network. Macromol. Rapid Commun., 2022, 43(19), 2200318. doi: 10.1002/marc.202200318 PMID: 35687083
- Pósa, S.P.; Dargó, G.; Nagy, S.; Kisszékelyi, P.; Garádi, Z.; Hámori, L.; Szakács, G.; Kupai, J.; Tóth, S. Cytotoxicity of cinchona alkaloid organocatalysts against MES-SA and MES-SA/Dx5 multidrug-resistant uterine sarcoma cell lines. Bioorg. Med. Chem., 2022, 67, 116855. doi: 10.1016/j.bmc.2022.116855 PMID: 35640378
- Sleiman, M.H.; Ladame, S. Synthesis of squaraine dyes under mild conditions: applications for labelling and sensing of biomolecules. Chem. Commun. (Camb.), 2014, 50(40), 5288-5290. doi: 10.1039/c3cc47894g PMID: 24402188
- Lynch, D.E.; Hamilton, D.G. Croconaine dyes - the lesser known siblings of squaraines. Eur. J. Org. Chem., 2017, 2017(27), 3897-3911. doi: 10.1002/ejoc.201700218
- Yadav, Y.; Owens, E.; Nomura, S.; Fukuda, T.; Baek, Y.; Kashiwagi, S.; Choi, H.S.; Henary, M. Ultrabright and serum-stable squaraine dyes. J. Med. Chem., 2020, 63(17), 9436-9445. doi: 10.1021/acs.jmedchem.0c00617 PMID: 32787096
- Fukuda, T.; Yokomizo, S.; Casa, S.; Monaco, H.; Manganiello, S.; Wang, H.; Lv, X.; Ulumben, A.D.; Yang, C.; Kang, M.W.; Inoue, K.; Fukushi, M.; Sumi, T.; Wang, C.; Kang, H.; Bao, K.; Henary, M.; Kashiwagi, S.; Soo Choi, H. Fast and durable intraoperative near‐infrared imaging of ovarian cancer using ultrabright squaraine fluorophores. Angew. Chem. Int. Ed., 2022, 61(17), e202117330. doi: 10.1002/anie.202117330 PMID: 35150468
- Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. Squaraine dyes: A mine of molecular materials. J. Mater. Chem., 2008, 18(3), 264-274. doi: 10.1039/B707734C
- Avirah, R.R.; Jyothish, K.; Ramaiah, D. Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett., 2007, 9(1), 121-124. doi: 10.1021/ol062691v PMID: 17192100
- Radaram, B.; Mako, T.; Levine, M. Sensitive and selective detection of cesium via fluorescence quenching. Dalton Trans., 2013, 42(46), 16276-16278. doi: 10.1039/c3dt52215f PMID: 24113779
- Gao, F.P.; Lin, Y.X.; Li, L.L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J.G.; Li, J.Y.; Würthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials, 2014, 35(3), 1004-1014. doi: 10.1016/j.biomaterials.2013.10.039 PMID: 24169004
- Ramaiah, D.; Eckert, I.; Arun, K.T.; Weidenfeller, L.; Epe, B. Squaraine dyes for photodynamic therapy: Study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem. Photobiol., 2002, 76(6), 672-677. doi: 10.1562/0031-8655(2002)0762.0.CO;2 PMID: 12511049
- Pairault, N.; Barat, R.; Tranoy-Opalinski, I.; Renoux, B.; Thomas, M.; Papot, S. Rotaxane-based architectures for biological applications. C. R. Chim., 2016, 19(1-2), 103-112. doi: 10.1016/j.crci.2015.05.012
- Gassensmith, J.J.; Baumes, J.M.; Smith, B.D. Discovery and early development of squaraine rotaxanes. Chem. Commun. (Camb.), 2009, (42), 6329-6338. doi: 10.1039/b911064j PMID: 19841772
- Smith, B.D. Smart molecules for imaging, sensing and health (SMITH). Beilstein J. Org. Chem., 2015, 11, 2540-2548. doi: 10.3762/bjoc.11.274 PMID: 26734100
- Arunkumar, E.; Forbes, C.C.; Noll, B.C.; Smith, B.D. Squaraine-derived rotaxanes: Sterically protected fluorescent near-IR dyes. J. Am. Chem. Soc., 2005, 127(10), 3288-3289. doi: 10.1021/ja042404n PMID: 15755140
- Das, R.S.; Saha, P.C.; Sepay, N.; Mukherjee, A.; Chatterjee, S.; Guha, S. Design and synthesis of near-infrared mechanically interlocked molecules for specific targeting of mitochondria. Org. Lett., 2020, 22(15), 5839-5843. doi: 10.1021/acs.orglett.0c01922 PMID: 32663029
- Barclay, M.S.; Roy, S.K.; Huff, J.S.; Mass, O.A.; Turner, D.B.; Wilson, C.K.; Kellis, D.L.; Terpetschnig, E.A.; Lee, J.; Davis, P.H.; Yurke, B.; Knowlton, W.B.; Pensack, R.D. Rotaxane rings promote oblique packing and extended lifetimes in DNA-templated molecular dye aggregates. Commun. Chem., 2021, 4(1), 19. doi: 10.1038/s42004-021-00456-8 PMID: 35474961
- Adablah, J.E.; Wang, Y.; Donohue, M.; Roper, M.G. Profiling glucose-stimulated and M3 receptor-activated insulin secretion dynamics from islets of langerhans using an extended-lifetime fluorescence dye. Anal. Chem., 2020, 92(12), 8464-8471. doi: 10.1021/acs.analchem.0c01226 PMID: 32429660
- Prohens, R.; Portell, A.; Font-Bardia, M.; Bauzá, A.; Frontera, A. H-Bonded anionanion complex trapped in a squaramido-based receptor. Chem. Commun. (Camb.), 2018, 54(15), 1841-1844. doi: 10.1039/C7CC09241E PMID: 29250617
- Rostami, A.; Colin, A.; Li, X.Y.; Chudzinski, M.G.; Lough, A.J.; Taylor, M.S.N. N′-diarylsquaramides: General, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem., 2010, 75(12), 3983-3992. doi: 10.1021/jo100104g PMID: 20486682
- Marques, I.; Costa, P.M.R.; Q Miranda, M. Busschaert, N.; Howe, E.N.W.; Clarke, H.J.; Haynes, C.J.E.; Kirby, I.L.; Rodilla, A.M.; Pérez-Tomás, R.; Gale, P.A.; Félix, V. Full elucidation of the transmembrane anion transport mechanism of squaramides using in silico investigations. Phys. Chem. Chem. Phys., 2018, 20(32), 20796-20811. doi: 10.1039/C8CP02576B PMID: 29978159
- Bao, X.; Wu, X.; Berry, S.N.; Howe, E.N.W.; Chang, Y.T.; Gale, P.A. Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chem. Commun. (Camb.), 2018, 54(11), 1363-1366. doi: 10.1039/C7CC08706C PMID: 29354832
- Kumawat, L.K.; Wynne, C.; Cappello, E.; Fisher, P.; Brennan, L.E.; Strofaldi, A.; McManus, J.J.; Hawes, C.S.; Jolliffe, K.A.; Gunnlaugsson, T.; Elmes, R.B.P. Squaramide‐based self‐associating amphiphiles for anion recognition. ChemPlusChem, 2021, 86(8), 1058-1068. doi: 10.1002/cplu.202100275 PMID: 34351081
- Picci, G.; Kubicki, M.; Garau, A.; Lippolis, V.; Mocci, R.; Porcheddu, A.; Quesada, R.; Ricci, P.C.; Scorciapino, M.A.; Caltagirone, C. Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chem. Commun. (Camb.), 2020, 56(75), 11066-11069. doi: 10.1039/D0CC04090H PMID: 32812561
- Zaleskaya, M.; Jagleniec, D. Romański, J. Macrocyclic squaramides as ion pair receptors and fluorescent sensors selective towards sulfates. Dalton Trans., 2021, 50(11), 3904-3915. doi: 10.1039/D0DT04273K PMID: 33635308
- Fernández-Moreira, V.; Alegre-Requena, J.V.; Herrera, R.P.; Marzo, I.; Gimeno, M.C. Synthesis of luminescent squaramide monoesters: Cytotoxicity and cell imaging studies in HeLa cells. RSC Advances, 2016, 6(17), 14171-14177. doi: 10.1039/C5RA24521D
- Yu, X.H.; Cai, X.J.; Hong, X.Q.; Tam, K.Y.; Zhang, K.; Chen, W.H. Synthesis and biological evaluation of aza-crown ethersquaramide conjugates as anion/cation symporters. Future Med. Chem., 2019, 11(10), 1091-1106. doi: 10.4155/fmc-2018-0595 PMID: 31280669
- Tietze, L.F.; Schroeter, C.; Gabius, S.; Brinck, U.; Goerlach-Graw, A.; Gabius, H.J. Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjug. Chem., 1991, 2(3), 148-153. doi: 10.1021/bc00009a003 PMID: 1932213
- Xu, P.; Kelly, M.; Vann, W.F.; Qadri, F.; Ryan, E.T. Kováč P. Conjugate vaccines from bacterial antigens by squaric acid chemistry: A closer look. ChemBioChem, 2017, 18(8), 799-815. doi: 10.1002/cbic.201600699 PMID: 28182850
- Xu, P.; Trinh, M.N. Kováč P. Conjugation of carbohydrates to proteins using di(triethylene glycol monomethyl ether) squaric acid ester revisited. Carbohydr. Res., 2018, 456, 24-29. doi: 10.1016/j.carres.2017.10.012 PMID: 29247910
- Pozsgay, V.; Dubois, E.P.; Pannell, L. Synthesis of kojidextrins and their protein conjugates. incidence of steric mismatch in oligosaccharide synthesis. J. Org. Chem., 1997, 62(9), 2832-2846. doi: 10.1021/jo962300y PMID: 11671646
- Ivancová, I.; Pohl, R.; Hubálek, M.; Hocek, M. Squaramate‐modified nucleotides and DNA for specific cross‐linking with lysine‐containing peptides and proteins. Angew. Chem. Int. Ed., 2019, 58(38), 13345-13348. doi: 10.1002/anie.201906737 PMID: 31328344
- Meng, X.; Ji, C.; Su, C.; Shen, D.; Li, Y.; Dong, P.; Yuan, D.; Yang, M.; Bai, S.; Meng, D.; Fan, Z.; Yang, Y.; Yu, P.; Zhu, T. Synthesis and immunogenicity of PG-tb1 monovalent glycoconjugate. Eur. J. Med. Chem., 2017, 134, 140-146. doi: 10.1016/j.ejmech.2017.03.058 PMID: 28411454
- Anraku, K.; Sato, S.; Jacob, N.T.; Eubanks, L.M.; Ellis, B.A.; Janda, K.D. The design and synthesis of an α-Gal trisaccharide epitope that provides a highly specific anti-Gal immune response. Org. Biomol. Chem., 2017, 15(14), 2979-2992. doi: 10.1039/C7OB00448F PMID: 28294277
- Rudd, S.E.; Roselt, P.; Cullinane, C.; Hicks, R.J.; Donnelly, P.S. A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chem. Commun. (Camb.), 2016, 52(80), 11889-11892. doi: 10.1039/C6CC05961A PMID: 27711378
- Sayeed, M.A.; Bufano, M.K.; Xu, P.; Eckhoff, G.; Charles, R.C.; Alam, M.M.; Sultana, T.; Rashu, M.R.; Berger, A.; Gonzalez-Escobedo, G.; Mandlik, A.; Bhuiyan, T.R.; Leung, D.T.; LaRocque, R.C.; Harris, J.B.; Calderwood, S.B.; Qadri, F.; Vann, W.F. Kováč P.; Ryan, E.T. A cholera conjugate vaccine containing o-specific polysaccharide (OSP) of V. cholerae O1 inaba and recombinant fragment of tetanus toxin heavy chain (OSP:rTTHc) induces serum, memory and lamina proprial responses against OSP and is protective in mice. PLoS Negl. Trop. Dis., 2015, 9(7), e0003881. doi: 10.1371/journal.pntd.0003881 PMID: 26154421
- Böcker, S.; Laaf, D.; Elling, L. Galectin binding to neo-glycoproteins: LacDiNAc conjugated BSA as ligand for human galectin-3. Biomolecules, 2015, 5(3), 1671-1696. doi: 10.3390/biom5031671 PMID: 26213980
- Palitzsch, B.; Hartmann, S.; Stergiou, N.; Glaffig, M.; Schmitt, E.; Kunz, H. A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. Angew. Chem. Int. Ed., 2014, 53(51), 14245-14249. doi: 10.1002/anie.201406843 PMID: 25318465
- Wurm, F.; Dingels, C.; Frey, H.; Klok, H.A. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates. Biomacromolecules, 2012, 13(4), 1161-1171. doi: 10.1021/bm300103u PMID: 22376203
- Dingels, C.; Wurm, F.; Klok, H.A.; Frey, H. Squaric acid ester amido mPEGs: New reagents for the PEGylation of proteins. Abstr. Pap. Am. Chem. Soc. 2011 241st National Meeting, March 28-31, 2011
- Dingels, C.; Wurm, F.; Wagner, M.; Klok, H.A.; Frey, H. Squaric acid mediated chemoselective PEGylation of proteins: Reactivity of single-step-activated α-amino poly(ethylene glycol)s. Chemistry, 2012, 18(52), 16828-16835. doi: 10.1002/chem.201200182 PMID: 23135990
- Tian, H.; Huang, Y.; He, J.; Zhang, M.; Ni, P. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells. ACS Appl. Bio Mater., 2021, 4(5), 4422-4431. doi: 10.1021/acsabm.1c00177 PMID: 35006854
- Tevyashova, A.; Sztaricskai, F.; Batta, G.; Herczegh, P.; Jeney, A. Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties. Bioorg. Med. Chem. Lett., 2004, 14(18), 4783-4789. doi: 10.1016/j.bmcl.2004.06.072 PMID: 15324908
- Greifenstein, L.; Engelbogen, N.; Lahnif, H.; Sinnes, J.P.; Bergmann, R.; Bachmann, M.; Rösch, F. Synthesis, labeling and preclinical evaluation of a squaric acid containing PSMA inhibitor labeled with 68 Ga: A comparison with PSMA‐11 and PSMA‐617. ChemMedChem, 2020, 15(8), 695-704. doi: 10.1002/cmdc.201900559 PMID: 32057189
- Moon, E.S.; Ballal, S.; Yadav, M.P.; Bal, C.; Van Rymenant, Y.; Stephan, S.; Bracke, A.; Van der Veken, P.; De Meester, I.; Roesch, F. Fibroblast Activation Protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: A step to improve tumor uptake and retention time. Am. J. Nucl. Med. Mol. Imaging, 2021, 11(6), 476-491. PMID: 35003886
- World Health Organization (WHO). World Malaria Report 2020: 20 Years of Global Progress and Challenges; Geneva, Switzerland. , 2020.
- Abd-Rahman, A.N.; Zaloumis, S.; McCarthy, J.S.; Simpson, J.A.; Commons, R.J. Scoping review of antimalarial drug candidates in Phase I and II drug development. Antimicrob. Agents Chemother., 2022, 66(2), e01659-e21. doi: 10.1128/aac.01659-21 PMID: 34843390
- Tchekounou, C.; Zida, A.; Zongo, C.; Soulama, I.; Sawadogo, P.M.; Guiguemde, K.T.; Sangaré, I.; Guiguemde, R.T.; Traore, Y. Antimalarial drugs resistance genes of Plasmodium falciparum: A review. Ann. Parasitol., 2022, 68(2), 215-225. PMID: 35809349
- Glória, P.M.C.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Aza vinyl sulfones: Synthesis and evaluation as antiplasmodial agents. Bioorg. Med. Chem., 2011, 19(24), 7635-7642. doi: 10.1016/j.bmc.2011.10.018 PMID: 22071522
- Guiguemde, W.A.; Shelat, A.A.; Bouck, D.; Duffy, S.; Crowther, G.J.; Davis, P.H.; Smithson, D.C.; Connelly, M.; Clark, J.; Zhu, F.; Jiménez-Díaz, M.B.; Martinez, M.S.; Wilson, E.B.; Tripathi, A.K.; Gut, J.; Sharlow, E.R.; Bathurst, I.; Mazouni, F.E.; Fowble, J.W.; Forquer, I.; McGinley, P.L.; Castro, S.; Angulo-Barturen, I.; Ferrer, S.; Rosenthal, P.J.; DeRisi, J.L.; Sullivan, D.J.; Lazo, J.S.; Roos, D.S.; Riscoe, M.K.; Phillips, M.A.; Rathod, P.K.; Van Voorhis, W.C.; Avery, V.M.; Guy, R.K. Chemical genetics of Plasmodium falciparum. Nature, 2010, 465(7296), 311-315. doi: 10.1038/nature09099 PMID: 20485428
- Kumar, S.P.; Glória, P.M.C.; Gonçalves, L.M.; Gut, J.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid: A valuable scaffold for developing antimalarials? MedChemComm, 2012, 3(4), 489-493. doi: 10.1039/c2md20011b
- Ribeiro, C.J.A.; Kumar, S.P.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. Eur. J. Med. Chem., 2013, 69, 365-372. doi: 10.1016/j.ejmech.2013.08.037 PMID: 24077527
- Ribeiro, C.J.A.; Espadinha, M.; Machado, M.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Prudêncio, M.; Moreira, R.; Santos, M.M.M. Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorg. Med. Chem., 2016, 24(8), 1786-1792. doi: 10.1016/j.bmc.2016.03.005 PMID: 26968650
- Lande, D.H.; Nasereddin, A.; Alder, A.; Gilberger, T.W.; Dzikowski, R.; Grünefeld, J.; Kunick, C. Synthesis and antiplasmodial activity of bisindolylcyclobutenediones. Molecules, 2021, 26(16), 4739. doi: 10.3390/molecules26164739 PMID: 34443327
- Marín, C.; Ximenis, M.; Ramirez-Macías, I.; Rotger, C.; Urbanova, K.; Olmo, F.; Martín-Escolano, R.; Rosales, M.J.; Cañas, R.; Gutierrez-Sánchez, R.; Costa, A.; Sánchez-Moreno, M. Effective anti-leishmanial activity of minimalist squaramide-based compounds. Exp. Parasitol., 2016, 170, 36-49. doi: 10.1016/j.exppara.2016.07.013 PMID: 27480054
- Olmo, F.; Rotger, C.; Ramírez-Macías, I.; Martínez, L.; Marín, C.; Carreras, L.; Urbanová, K.; Vega, M.; Chaves-Lemaur, G.; Sampedro, A.; Rosales, M.J.; Sánchez-Moreno, M.; Costa, A. Synthesis and biological evaluation of N,N′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. J. Med. Chem., 2014, 57(3), 987-999. doi: 10.1021/jm4017015 PMID: 24410674
- Quijia, C.R.; Bonatto, C.C.; Silva, L.P.; Andrade, M.A.; Azevedo, C.S.; Lasse Silva, C.; Vega, M.; de Santana, J.M.; Bastos, I.M.D.; Carneiro, M.L.B. Liposomes composed by membrane lipid extracts from macrophage cell line as a delivery of the trypanocidal N,N′-squaramide 17 towards Trypanosoma cruzi. Materials (Basel), 2020, 13(23), 5505. doi: 10.3390/ma13235505 PMID: 33276688
- Niewiadomski, S.; Beebeejaun, Z.; Denton, H.; Smith, T.K.; Morris, R.J.; Wagner, G.K. Rationally designed squaryldiamides a novel class of sugar-nucleotide mimics? Org. Biomol. Chem., 2010, 8(15), 3488-3499. doi: 10.1039/c004165c PMID: 20532300
- Golkowski, M.; Perera, G.K.; Vidadala, V.N.; Ojo, K.K.; Van Voorhis, W.C.; Maly, D.J.; Ong, S.E. Kinome chemoproteomics characterization of pyrrolo3,4- cpyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Mol. Omics, 2018, 14(1), 26-36. doi: 10.1039/C7MO00006E PMID: 29725679
- Martín-Escolano, R.; Marín, C.; Vega, M.; Martin-Montes, Á.; Medina-Carmona, E.; López, C.; Rotger, C.; Costa, A.; Sánchez-Moreno, M. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg. Med. Chem., 2019, 27(5), 865-879. doi: 10.1016/j.bmc.2019.01.033 PMID: 30728107
- Sato, K.; Seio, K.; Sekine, M. Synthesis and properties of a new oligonucleotide analogue containing an internucleotide squaryl amide linkage. Nucleic Acids Symp. Ser., 2001, 1(1), 121-122. doi: 10.1093/nass/1.1.121 PMID: 12836294
- Sato, K.; Seio, K.; Sekine, M. Squaryl group as a new mimic of phosphate group in modified oligodeoxynucleotides: synthesis and properties of new oligodeoxynucleotide analogues containing an internucleotidic squaryldiamide linkage. J. Am. Chem. Soc., 2002, 124(43), 12715-12724. doi: 10.1021/ja027131f PMID: 12392419
- Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem., 2016, 124, 200-217. doi: 10.1016/j.ejmech.2016.08.047 PMID: 27592390
- Sato, K.; Tawarada, R.; Seio, K.; Sekine, M. Synthesis and structural properties of new oligodeoxynucleotide analogues containing a 2 ',5 '-internucleotidic squaryldiamide linkage capable of formation of a Watson-Crick base pair with adenine and a wobble base pair with guanine at the 3 '-downstream junction site. Eur. J. Org. Chem., 2004, 2004(10), 2142-2150. doi: 10.1002/ejoc.200300682
- Seio, K.; Miyashita, T.; Sato, K.; Sekine, M. Synthesis and properties of new nucleotide analogues possessing squaramide moieties as new phosphate isosters. Eur. J. Org. Chem., 2005, 2005(24), 5163-5170. doi: 10.1002/ejoc.200500520
- Berney, M.; Doherty, W.; Jauslin, W.T.T.; Manoj, M.; Dürr, E.M.; McGouran, J.F. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg. Med. Chem., 2021, 46, 116369. doi: 10.1016/j.bmc.2021.116369 PMID: 34482229
- Saha, A.; Panda, S.; Paul, S.; Manna, D. Phosphate bioisostere containing amphiphiles: a novel class of squaramide-based lipids. Chem. Commun. (Camb.), 2016, 52(60), 9438-9441. doi: 10.1039/C6CC04089F PMID: 27377058
- Ishida, T.; Shinada, T.; Ohfune, Y. Synthesis of novel amino squaric acids via addition of dianion enolates derived from N-Boc amino acid esters. Tetrahedron Lett., 2005, 46(2), 311-314. doi: 10.1016/j.tetlet.2004.11.044
- Shinada, T.; Ohfune, Y.; Ishida, T. Syntheses of alpha-amino squaric acids using an aminomalonate equivalent bearing a squaryl group. Synthesis, 2005, 2005(16), 2723-2729. doi: 10.1055/s-2005-872109
- Campbell, E.F.; Park, A.K.; Kinney, W.A.; Fengl, R.W.; Liebeskind, L.S. Synthesis of 3-hydroxy-3-cyclobutene-1,2-dione based amino acids. J. Org. Chem., 1995, 60(5), 1470-1472. doi: 10.1021/jo00110a060
- Martínez, L.; Martorell, G.; Sampedro, Á.; Ballester, P.; Costa, A.; Rotger, C. Hydrogen bonded squaramide-based foldable module induces both β- and α-turns in hairpin structures of α-peptides in water. Org. Lett., 2015, 17(12), 2980-2983. doi: 10.1021/acs.orglett.5b01268 PMID: 26035233
- Martínez-Crespo, L.; Escudero-Adán, E.C.; Costa, A.; Rotger, C. The role of N-methyl squaramides in a hydrogen-bonding strategy to fold peptidomimetic compounds. Chemistry, 2018, 24(67), 17802-17813. doi: 10.1002/chem.201803930 PMID: 30242922
- Narasimhan, S.K.; Sejwal, P.; Zhu, S.; Luk, Y.Y. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces. Bioorg. Med. Chem., 2013, 21(8), 2210-2216. doi: 10.1016/j.bmc.2013.02.032 PMID: 23490157
- Shinada, T.; Ishida, T.; Hayashi, K.; Yoshida, Y.; Shigeri, Y.; Ohfune, Y. Synthesis of leucine-enkephalin analogs containing α-amino squaric acid. Tetrahedron Lett., 2007, 48(43), 7614-7617. doi: 10.1016/j.tetlet.2007.08.103
- Rotger, C.; Piña, M.N.; Vega, M.; Ballester, P.; Deyà, P.M.; Costa, A. Efficient macrocyclization of preorganized palindromic oligosquaramides. Angew. Chem. Int. Ed., 2006, 45(41), 6844-6848. doi: 10.1002/anie.200602790 PMID: 17001726
- Villalonga, P.; Fernández de Mattos, S.; Ramis, G.; Obrador-Hevia, A.; Sampedro, A.; Rotger, C.; Costa, A. Cyclosquaramides as kinase inhibitors with anticancer activity. ChemMedChem, 2012, 7(8), 1472-1480. doi: 10.1002/cmdc.201200157 PMID: 22777958
- Zhang, Q.; Xia, Z.; Mitten, M.J.; Lasko, L.M.; Klinghofer, V.; Bouska, J.; Johnson, E.F.; Penning, T.D.; Luo, Y.; Giranda, V.L.; Shoemaker, A.R.; Stewart, K.D.; Djuric, S.W.; Vasudevan, A. Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7615-7622. doi: 10.1016/j.bmcl.2012.10.009 PMID: 23103095
- Yen-Pon, E.; Li, B.; Acebrón-Garcia-de-Eulate, M.; Tomkiewicz-Raulet, C.; Dawson, J.; Lietha, D.; Frame, M.C.; Coumoul, X.; Garbay, C.; Etheve-Quelquejeu, M.; Chen, H. Structure-based design, synthesis, and characterization of the first irreversible inhibitor of focal adhesion kinase. ACS Chem. Biol., 2018, 13(8), 2067-2073. doi: 10.1021/acschembio.8b00250 PMID: 29897729
- Koromilas, A.E. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. Biochim. Biophys. Acta. Gene Regul. Mech., 2015, 1849(7), 871-880. doi: 10.1016/j.bbagrm.2014.12.007 PMID: 25497381
- Chen, T.; Takrouri, K.; Hee-Hwang, S.; Rana, S.; Yefidoff-Freedman, R.; Halperin, J.; Natarajan, A.; Morisseau, C.; Hammock, B.; Chorev, M.; Aktas, B.H. Explorations of substituted urea functionality for the discovery of new activators of the heme-regulated inhibitor kinase. J. Med. Chem., 2013, 56(23), 9457-9470. doi: 10.1021/jm400793v PMID: 24261904
- Kwak, J.; Kim, M.J.; Kim, S.; Park, G.B.; Jo, J.; Jeong, M.; Kang, S.; Moon, S.; Bang, S.; An, H.; Hwang, S.; Kim, M.S.; Yoo, J.W.; Moon, H.R.; Chang, W.; Chung, K.W.; Jeong, J.Y.; Yun, H. A bioisosteric approach to the discovery of novel N-aryl-N′-4-(aryloxy)cyclohexylsquaramide-based activators of eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation. Eur. J. Med. Chem., 2022, 239, 114501. doi: 10.1016/j.ejmech.2022.114501 PMID: 35716517
- Patberg, M.; Isaak, A.; Füsser, F.; Ortiz Zacarías, N.V.; Vinnenberg, L.; Schulte, J.; Michetti, L.; Grey, L.; van der Horst, C.; Hundehege, P.; Koch, O.; Heitman, L.H.; Budde, T.; Junker, A. Piperazine squaric acid diamides, a novel class of allosteric P2X7 receptor antagonists. Eur. J. Med. Chem., 2021, 226, 113838. doi: 10.1016/j.ejmech.2021.113838 PMID: 34571173
- Liu, Z.; Wang, Y.; Han, Y.; Liu, L.; Jin, J.; Yi, H.; Li, Z.; Jiang, J.; Boykin, D.W. Synthesis and antitumor activity of novel 3,4-diaryl squaric acid analogs. Eur. J. Med. Chem., 2013, 65, 187-194. doi: 10.1016/j.ejmech.2013.04.046 PMID: 23708012
- Quintana, M.; Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P.; Triola, G. Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MedChemComm, 2016, 7(3), 550-561. doi: 10.1039/C5MD00515A
- Ajith, C.; Gupta, S.; Kanwar, A.J. Efficacy and safety of the topical sensitizer squaric acid dibutyl ester in Alopecia areata and factors influencing the outcome. J. Drugs Dermatol., 2006, 5(3), 262-266. PMID: 16573260
- Hill, N.D.; Bunata, K.; Hebert, A.A. Treatment of alopecia areata with squaric acid dibutylester. Clin. Dermatol., 2015, 33(3), 300-304. doi: 10.1016/j.clindermatol.2014.12.001 PMID: 25889130
- Choi, Y.S.; Erlich, T.H.; von Franque, M.; Rachmin, I.; Flesher, J.L.; Schiferle, E.B.; Zhang, Y.; Pereira da Silva, M.; Jiang, A.; Dobry, A.S.; Su, M.; Germana, S.; Lacher, S.; Freund, O.; Feder, E.; Cortez, J.L.; Ryu, S.; Babila Propp, T.; Samuels, Y.L.; Zakka, L.R.; Azin, M.; Burd, C.E.; Sharpless, N.E.; Liu, X.S.; Meyer, C.; Austen, W.G., Jr; Bojovic, B.; Cetrulo, C.L., Jr; Mihm, M.C.; Hoon, D.S.; Demehri, S.; Hawryluk, E.B.; Fisher, D.E. Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell, 2022, 158(12), 2071-2085. doi: 10.1016/j.cell.2022.04.025
- Cole, R.J.; Kirksey, J.W.; Cutler, H.G.; Doupnik, B.L.; Peckham, J.C. Toxin from Fusarium moniliforme: Effects on plants and animals. Science, 1973, 179(4080), 1324-1326. doi: 10.1126/science.179.4080.1324 PMID: 17835939
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit. Rev. Food Sci. Nutr., 2008, 48(1), 21-49. doi: 10.1080/10408390601062021 PMID: 18274964
- Burka, L.T.; Doran, J.; Wilson, B.J. Enzyme inhibition and the toxic action of moniliformin and other vinylogous α-ketoacids. Biochem. Pharmacol., 1982, 31(1), 79-84. doi: 10.1016/0006-2952(82)90240-4 PMID: 7059356
- Gathercole, P.S.; Thiel, P.G.; Hofmeyr, J.H.S. Inhibition of pyruvate dehydrogenase complex by moniliformin. Biochem. J., 1986, 233(3), 719-723. doi: 10.1042/bj2330719 PMID: 3707519
- Pirrung, M.C.; Nauhaus, S.K.; Singh, B. Cofactor-directed, time-dependent inhibition of thiamine enzymes by the fungal toxin moniliformin. J. Org. Chem., 1996, 61(8), 2592-2593. doi: 10.1021/jo950451f PMID: 11667082
- Zhang, X.; Zuo, Z.; Tang, J.; Wang, K.; Wang, C.; Chen, W.; Li, C.; Xu, W.; Xiong, X.; Yuntai, K.; Huang, J.; Lan, X.; Zhou, H.B. Design, synthesis and biological evaluation of novel estrogen-derived steroid metal complexes. Bioorg. Med. Chem. Lett., 2013, 23(13), 3793-3797. doi: 10.1016/j.bmcl.2013.04.088 PMID: 23726343
- Zhang, Z.F.; Chen, J.; Han, X.; Zhang, Y.; Liao, H.B.; Lei, R.X.; Zhuang, Y.; Wang, Z.F.; Li, Z.; Chen, J.C.; Liao, W.J.; Zhou, H.B.; Liu, F.; Wan, Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br. J. Pharmacol., 2017, 174(8), 641-656. doi: 10.1111/bph.13727 PMID: 28127755
- Kinney, W.A.; Lee, N.E.; Garrison, D.T.; Podlesny, E.J., Jr; Simmonds, J.T.; Bramlett, D.; Notvest, R.R.; Kowal, D.M.; Tasse, R.P. Bioisosteric replacement of the. alpha.-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists. J. Med. Chem., 1992, 35(25), 4720-4726. doi: 10.1021/jm00103a010 PMID: 1361582
- Kinney, W.A.; Abou-Gharbia, M.; Garrison, D.T.; Schmid, J.; Kowal, D.M.; Bramlett, D.R.; Miller, T.L.; Tasse, R.P.; Zaleska, M.M.; Moyer, J.A. Design and synthesis of 2-(8,9-dioxo-2,6-diazabicyclo5.2.0non-1(7)-en-2-yl)- ethylphosphonic acid (EAA-090), a potent N-methyl-D-aspartate antagonist, via the use of 3-cyclobutene-1,2-dione as an achiral α-amino acid bioisostere. J. Med. Chem., 1998, 41(2), 236-246. doi: 10.1021/jm970504g PMID: 9457246
- Childers, W.E.J.; Abou-Gharbia, M.A.; Moyer, J.A.; Zaleska, M.M. EAA-090 - Neuroprotectant, Competitive NMDA antagonist. Drugs Future, 2002, 27(7), 633-638. doi: 10.1358/dof.2002.027.07.685790
- Chan, P.C.M.; Roon, R.J.; Koerner, J.F.; Taylor, N.J.; Honek, J.F. A 3-amino-4-hydroxy-3-cyclobutene-1,2-dione-containing glutamate analogue exhibiting high affinity to excitatory amino acid receptors. J. Med. Chem., 1995, 38(22), 4433-4438. doi: 10.1021/jm00022a007 PMID: 7473569
- Urbahns, K.; Härter, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.; Brüggemeier, U.; Vaupel, A.; Keldenich, J.; Lustig, K.; Tsujishita, H.; Gerdes, C. Biphenyls as potent vitronectin receptor antagonists. Part 3: Squaric acid amides. Bioorg. Med. Chem. Lett., 2007, 17(22), 6151-6154. doi: 10.1016/j.bmcl.2007.09.039 PMID: 17910915
- Corzo, G.; Nakajima, T.; Ohfune, Y.; Shinada, T.; Nakagawa, Y.; Hayashi, K. Synthesis and paralytic activities of squaryl amino acid-containing polyamine toxins. Amino Acids, 2003, 24(3), 293-301. doi: 10.1007/s00726-002-0402-9 PMID: 12707812
- Raval, S.; Raval, P.; Bandyopadhyay, D.; Soni, K.; Yevale, D.; Jogiya, D.; Modi, H.; Joharapurkar, A.; Gandhi, N.; Jain, M.R.; Patel, P.R. Design and synthesis of novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives as thyroid hormone receptor β (TR-β) selective ligands. Bioorg. Med. Chem. Lett., 2008, 18(14), 3919-3924. doi: 10.1016/j.bmcl.2008.06.038 PMID: 18585912
- Porter, J.R.; Archibald, S.C.; Childs, K.; Critchley, D.; Head, J.C.; Linsley, J.M.; Parton, T.A.H.; Robinson, M.K.; Shock, A.; Taylor, R.J.; Warrellow, G.J.; Alexander, R.P.; Langham, B. Squaric acid derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett., 2002, 12(7), 1051-1054. doi: 10.1016/S0960-894X(02)00075-6 PMID: 11909715
- Ganellin, C.R.; Young, R.C. Pharmacologically active cyclo butenediones. U.S. Patent 4062863 1977 1977.
- Algieri, A.A.; Crenshaw, R.R. 1,2-diaminocyclobutene-3,4-diones and a pharmaceutical composition containing them. Patent FR 2505835A1 1982.
- Young, R.C.; Durant, G.J.; Emmett, J.C.; Ganellin, C.R.; Graham, M.J.; Mitchell, R.C.; Prain, H.D.; Roantree, M.L. Dipole moment in relation to hydrogen receptor histamine antagonist activity for cimetidine analogs. J. Med. Chem., 1986, 29(1), 44-49. doi: 10.1021/jm00151a007 PMID: 3941412
- Cavanagh, R.L.; Buyniski, J.P. Effect of BMY-25368, a potent and long-acting histamine H2-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. Aliment. Pharmacol. Ther., 1989, 3(3), 299-313. doi: 10.1111/j.1365-2036.1989.tb00217.x PMID: 2577694
- Gavey, C.J.; Smith, J.T.L.; Nwokolo, C.U.; Pounder, R.E. The effect of SK&F 94482 (BMY-25368) on 24-hour intragastric acidity and plasma gastrin concentration in healthy subjects. Aliment. Pharmacol. Ther., 1989, 3(6), 557-564. doi: 10.1111/j.1365-2036.1989.tb00248.x PMID: 2577500
- Isobe, Y.; Nagai, H.; Muramatsu, M.; Aihara, H.; Otomo, S. Antisecretory and antilesional effect of a new histamine H2-receptor antagonist, IT-066, in rats. J. Pharmacol. Exp. Ther., 1990, 255(3), 1078-1082. PMID: 1979811
- Ito, A.; Kakizaki, M.; Nagase, H.; Murakami, S.; Yamada, H.; Mori, Y. Effects of H2-receptor antagonists on matrix metalloproteinases in rat gastric tissues with acetic acid-induced ulcer. J. Pharmacobiodyn., 1991, 14(6), 285-291. doi: 10.1248/bpb1978.14.285 PMID: 1686058
- Muramatsu, M.; Hirose-Kijima, H.; Aihara, H.; Otomo, S. Time-dependent interaction of a new H2-receptor antagonist, IT-066, with the receptor in the atria of guinea pig. Jpn. J. Pharmacol., 1991, 57(1), 13-24. doi: 10.1254/jjp.57.13 PMID: 1686920
- Naito, Y.; Yoshikawa, T.; Matsuyama, K.; Yagi, N.; Arai, M.; Nakamura, Y.; Kaneko, T.; Yoshida, N.; Kondo, M. Effect of a novel histamine H2 receptor antagonist, IT-066, on acute gastric injury induced by ischemia-reperfusion in rats, and its antioxidative properties. Eur. J. Pharmacol., 1995, 294(1), 47-54. doi: 10.1016/0014-2999(95)00512-9 PMID: 8788415
- Kojima, K.; Nakajima, K.; Kurata, H.; Tabata, K.; Utsui, Y. Synthesis of a piperidinomethylthiophene derivative as H2-antagonist with inhibitory activity against Helicobacter pylori. Bioorg. Med. Chem. Lett., 1996, 6(15), 1795-1798. doi: 10.1016/0960-894X(96)00313-7
- Kijima, H.; Isobe, Y.; Muramatsu, M.; Yokomori, S.; Suzuki, M.; Higuchi, S. Structure-activity characterization of an H2-receptor antagonist, 3-amino-4-4-4-(1-piperidinomethyl)-2-pyridyloxy-cis-2-+++butenylamino-3-cyclobutene-1,2-dione hydrochloride (T-066), involved in the insurmountable antagonism against histamine-induced positive chronotropic action in guinea pig atria. Biochem. Pharmacol., 1998, 55(2), 151-157. doi: 10.1016/S0006-2952(97)00416-4 PMID: 9448737
- Zhang, X.; Guo, R.; Kambara, H.; Ma, F.; Luo, H.R. The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr. Opin. Hematol., 2019, 26(1), 28-33. doi: 10.1097/MOH.0000000000000476 PMID: 30407218
- Stadtmann, A.; Zarbock, A. CXCR2: From Bench to Bedside. Front. Immunol., 2012, 3, 263. doi: 10.3389/fimmu.2012.00263 PMID: 22936934
- Jaffer, T.; Ma, D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl. Cancer Res., 2016, 5(S4), S616-S628. doi: 10.21037/tcr.2016.10.06
- Merritt, J.R.; Rokosz, L.L.; Nelson, K.H., Jr; Kaiser, B.; Wang, W.; Stauffer, T.M.; Ozgur, L.E.; Schilling, A.; Li, G.; Baldwin, J.J.; Taveras, A.G.; Dwyer, M.P.; Chao, J. Synthesis and structureactivity relationships of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists. Bioorg. Med. Chem. Lett., 2006, 16(15), 4107-4110. doi: 10.1016/j.bmcl.2006.04.082 PMID: 16697193
- Gonsiorek, W.; Fan, X.; Hesk, D.; Fossetta, J.; Qiu, H.; Jakway, J.; Billah, M.; Dwyer, M.; Chao, J.; Deno, G.; Taveras, A.; Lundell, D.J.; Hipkin, R.W. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J. Pharmacol. Exp. Ther., 2007, 322(2), 477-485. doi: 10.1124/jpet.106.118927 PMID: 17496166
- Biju, P.; Taveras, A.G.; Dwyer, M.P.; Yu, Y.; Chao, J.; Hipkin, R.W.; Fan, X.; Rindgen, D.; Fine, J.; Lundell, D. Fluoroalkyl α side chain containing 3,4-diamino-cyclobutenediones as potent and orally bioavailable CXCR2CXCR1 dual antagonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1431-1433. doi: 10.1016/j.bmcl.2009.01.033 PMID: 19196511
- Che, J.X.; Wang, Z.L.; Dong, X.W.; Hu, Y.H.; Xie, X.; Hu, Y.Z. Bicyclo2.2.1heptane containing N, N ′-diarylsquaramide CXCR2 selective antagonists as anti-cancer metastasis agents. RSC Advances, 2018, 8(20), 11061-11069. doi: 10.1039/C8RA01806E PMID: 35541503
- McCleland, B.W.; Davis, R.S.; Palovich, M.R.; Widdowson, K.L.; Werner, M.L.; Burman, M.; Foley, J.J.; Schmidt, D.B.; Sarau, H.M.; Rogers, M.; Salyers, K.L.; Gorycki, P.D.; Roethke, T.J.; Stelman, G.J.; Azzarano, L.M.; Ward, K.W.; Busch-Petersen, J. Comparison of N,N′-diarylsquaramides and N,N′-diarylureas as antagonists of the CXCR2 chemokine receptor. Bioorg. Med. Chem. Lett., 2007, 17(6), 1713-1717. doi: 10.1016/j.bmcl.2006.12.067 PMID: 17236763
- Dwyer, M.P.; Biju, P. Discovery of 3,4-diaminocyclobut-3-ene-1,2-dione-based CXCR2 receptor antagonists for the treatment of inflammatory disorders. Curr. Top. Med. Chem., 2010, 10(13), 1339-1350. doi: 10.2174/156802610791561246 PMID: 20536426
- Martin, B.; Lai, X.; Baettig, U.; Neumann, E.; Kuhnle, T.; Porter, D.; Robinson, R.; Hatto, J.; DSouza, A.M.; Steward, O.; Watson, S.; Press, N.J. Early process development of a squaramide-based CXCR2 receptor antagonist. Org. Process Res. Dev., 2015, 19(8), 1038-1043. doi: 10.1021/acs.oprd.5b00072
- Liu, S.; Liu, Y.; Wang, H.; Ding, Y.; Wu, H.; Dong, J.; Wong, A.; Chen, S.H.; Li, G.; Chan, M.; Sawyer, N.; Gervais, F.G.; Henault, M.; Kargman, S.; Bedard, L.L.; Han, Y.; Friesen, R.; Lobell, R.B.; Stout, D.M. Design, synthesis, and evaluation of novel 3-amino-4-hydrazine-cyclobut-3-ene-1,2-diones as potent and selective CXCR2 chemokine receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5741-5745. doi: 10.1016/j.bmcl.2009.08.014 PMID: 19713110
- Dohme, M.S. Long-Term study of the effects of navarixin (SCH 527123, MK-7123) in participants with moderate to severe COPD (MK-7123-019). ClinicalTrials.gov Identifier: NCT01006616, Available from: https://www. clinicaltrials.gov/ct2/show/results/NCT01006616
- Dohme, M.S. Efficacy and safety study of navarixin (MK-7123) in combination with pembrolizumab (MK-3475) in adults with selected advanced/metastatic solid tumors (MK-7123-034). ClinicalTrials.gov Identifier: NCT03473925, Available from: https://clinicaltrials.gov/ct2/show/results/NCT03473925#evnt
- Lee, C.W.; Cao, H.; Ichiyama, K.; Rana, T.M. Design and synthesis of a novel peptidomimetic inhibitor of HIV-1 TatTAR interactions: Squaryldiamide as a new potential bioisostere of unsubstituted guanidine. Bioorg. Med. Chem. Lett., 2005, 15(19), 4243-4246. doi: 10.1016/j.bmcl.2005.06.077 PMID: 16054360
- Ghosh, A.K.; Williams, J.N.; Kovela, S.; Takayama, J.; Simpson, H.M.; Walters, D.E.; Hattori, S.; Aoki, M.; Mitsuya, H. Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2565-2570. doi: 10.1016/j.bmcl.2019.08.006 PMID: 31416666
- Palli, M.A.; McTavish, H.; Kimball, A.; Horn, T.D. Immunotherapy of recurrent herpes labialis with squaric acid. JAMA Dermatol., 2017, 153(8), 828-829. doi: 10.1001/jamadermatol.2017.0725 PMID: 28538997
- McTavish, H.; Zerebiec, K.W.; Zeller, J.C.; Shekels, L.L.; Matson, M.A.; Kren, B.T. Immune characteristics correlating with HSV‐1 immune control and effect of squaric acid dibutyl ester on immune characteristics of subjects with frequent herpes labialis episodes. Immun. Inflamm. Dis., 2019, 7(1), 22-40. doi: 10.1002/iid3.241 PMID: 30756512
- Chang, A.L.S.; Honari, G.; Guan, L.; Zhao, L.; Palli, M.A.; Horn, T.D.; Dudek, A.Z.; McTavish, H. A phase 2, multicenter, placebo-controlled study of single-dose squaric acid dibutyl ester to reduce frequency of outbreaks in patients with recurrent herpes labialis. J. Am. Acad. Dermatol., 2020, 83(6), 1807-1809. doi: 10.1016/j.jaad.2020.04.021 PMID: 32289388
- Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 2006, 368(9534), 489-504. doi: 10.1016/S0140-6736(06)69157-5 PMID: 16890836
- Fajardo-Ortiz, D.; Lopez-Cervantes, M.; Duran, L.; Dumontier, M.; Lara, M.; Ochoa, H.; Castano, V.M. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One, 2017, 12(5), e0178293. doi: 10.1371/journal.pone.0178293 PMID: 28542584
- Schwetz, T.A.; Fauci, A.S. The extended impact of human immunodeficiency virus/AIDS research. J. Infect. Dis., 2019, 219(1), 6-9. PMID: 30165415
- World Health Organization (WHO). HIV Drug Resistance Report 2021; World Health Organization: Geneva, Switzerland. 2020. Available from: http://www.who.int/hiv
- Mitsuya, Y.; Liu, T.F.; Rhee, S.Y.; Fessel, W.J.; Shafer, R.W. Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment. J. Infect. Dis., 2007, 196(8), 1177-1179. doi: 10.1086/521624 PMID: 17955436
- Tang, M.W.; Shafer, R.W. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs, 2012, 72(9), e1-e25. doi: 10.2165/11633630-000000000-00000 PMID: 22686620
- Pandey, S.; Wilmer, E.N.; Morrell, D.S. Examining the efficacy and safety of squaric acid therapy for treatment of recalcitrant warts in children. Pediatr. Dermatol., 2015, 32(1), 85-90. doi: 10.1111/pde.12387 PMID: 25040421
- Losol, E. Şentürk, N. Squaric acid dibutyl ester for the treatment of alopecia areata: A retrospective evaluation. Dermatol. Ther., 2021, 34(1), e14726. doi: 10.1111/dth.14726 PMID: 33377267
- World Health Organization. Global Tuberculosis Report. , 2020. Geneva, Switzerland
- World Health Organization. Global Tuberculosis Report. , 2021. Geneva, Switzerland
- Fernandes, G.F.S.; Thompson, A.M.; Castagnolo, D.; Denny, W.A.; Dos Santos, J.L. Tuberculosis drug discovery: challenges and new horizons. J. Med. Chem., 2022, 65(11), 7489-7531. doi: 10.1021/acs.jmedchem.2c00227 PMID: 35612311
- Li, H.; Salinger, D.H.; Everitt, D.; Li, M.; Del Parigi, A.; Mendel, C.; Nedelman, J.R. Long-term effects on QT prolongation of pretomanid alone and in combinations in patients with tuberculosis. Antimicrob. Agents Chemother., 2019, 63(10), e00445-e19. doi: 10.1128/AAC.00445-19 PMID: 31358590
- Dooley, K.E.; Rosenkranz, S.L.; Conradie, F.; Moran, L.; Hafner, R.; von Groote-Bidlingmaier, F.; Lama, J.R.; Shenje, J.; De Los Rios, J.; Comins, K.; Morganroth, J.; Diacon, A.H.; Cramer, Y.S.; Donahue, K.; Maartens, G.; Alli, O.; Gottesman, J.; Guevara, M.; Hikuam, C.; Hovind, L.; Karlsson, M.; McClaren, J.; McIlleron, H.; Murtaugh, W.; Rolls, B.; Shahkolahi, A.; Stone, L.; Tegha, G.; Tenai, J.; Upton, C.; Wimbish, C. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infect. Dis., 2021, 21(7), 975-983. doi: 10.1016/S1473-3099(20)30770-2 PMID: 33587897
- Szumowski, J.D.; Lynch, J.B. Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des. Devel. Ther., 2015, 9, 677-682. PMID: 25678771
- Khoshnood, S.; Goudarzi, M.; Taki, E.; Darbandi, A.; Kouhsari, E.; Heidary, M.; Motahar, M.; Moradi, M.; Bazyar, H. Bedaquiline: Current status and future perspectives. J. Glob. Antimicrob. Resist., 2021, 25, 48-59. doi: 10.1016/j.jgar.2021.02.017 PMID: 33684606
- Divita, K.M.; Khatik, G.L. Current perspective of ATP synthase inhibitors in the management of the tuberculosis. Curr. Top. Med. Chem., 2021, 21(18), 1623-1643. doi: 10.2174/1568026621666210913122346 PMID: 34517802
- Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of imidazo1,2- apyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399. doi: 10.1021/acs.jmedchem.6b01358 PMID: 28075132
- Li, P.; Wang, B.; Li, G.; Fu, L.; Zhang, D.; Lin, Z.; Huang, H.; Lu, Y. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur. J. Med. Chem., 2020, 206, 112538. doi: 10.1016/j.ejmech.2020.112538 PMID: 32927218
- Sperling, O.; Fuchs, A.; Lindhorst, T.K. Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org. Biomol. Chem., 2006, 4(21), 3913-3922. doi: 10.1039/b610745a PMID: 17047870
- Lindhorst, T.K.; Bruegge, K.; Fuchs, A.; Sperling, O. A bivalent glycopeptide to target two putative carbohydrate binding sites on FimH. Beilstein J. Org. Chem., 2010, 6, 801-809. doi: 10.3762/bjoc.6.90 PMID: 20978621
- Grabosch, C.; Hartmann, M.; Schmidt-Lassen, J.; Lindhorst, T.K. Squaric acid monoamide mannosides as ligands for the bacterial lectin FimH: covalent inhibition or not? ChemBioChem, 2011, 12(7), 1066-1074. doi: 10.1002/cbic.201000774 PMID: 21472956
- Buurman, E.T.; Foulk, M.A.; Gao, N.; Laganas, V.A.; McKinney, D.C.; Moustakas, D.T.; Rose, J.A.; Shapiro, A.B.; Fleming, P.R. Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae. J. Bacteriol., 2012, 194(20), 5504-5512. doi: 10.1128/JB.01103-12 PMID: 22843845
- Molodtsov, V.; Fleming, P.R.; Eyermann, C.J.; Ferguson, A.D.; Foulk, M.A.; McKinney, D.C.; Masse, C.E.; Buurman, E.T.; Murakami, K.S. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J. Med. Chem., 2015, 58(7), 3156-3171. doi: 10.1021/acs.jmedchem.5b00050 PMID: 25798859
- Li, G.; Tian, Y.; Zhu, W.G. The roles of histone deacetylases and their inhibitors in cancer Therapy. Front. Cell Dev. Biol., 2020, 8, 576946. doi: 10.3389/fcell.2020.576946 PMID: 33117804
- Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432. doi: 10.1038/sj.onc.1210610 PMID: 17694083
- Hanessian, S.; Vinci, V.; Auzzas, L.; Marzi, M.; Giannini, G. Exploring alternative Zn-binding groups in the design of HDAC inhibitors: Squaric acid, N-hydroxyurea, and oxazoline analogues of SAHA. Bioorg. Med. Chem. Lett., 2006, 16(18), 4784-4787. doi: 10.1016/j.bmcl.2006.06.090 PMID: 16870438
- Fournier, J.F.; Bhurruth-Alcor, Y.; Musicki, B.; Aubert, J.; Aurelly, M.; Bouix-Peter, C.; Bouquet, K.; Chantalat, L.; Delorme, M.; Drean, B.; Duvert, G.; Fleury-Bregeot, N.; Gauthier, B.; Grisendi, K.; Harris, C.S.; Hennequin, L.F.; Isabet, T.; Joly, F.; Lafitte, G.; Millois, C.; Morgentin, R.; Pascau, J.; Piwnica, D.; Rival, Y.; Soulet, C.; Thoreau, É.; Tomas, L. Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorg. Med. Chem. Lett., 2018, 28(17), 2985-2992. doi: 10.1016/j.bmcl.2018.06.029 PMID: 30122227
- Lauffer, B.E.L.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943. doi: 10.1074/jbc.M113.490706 PMID: 23897821
- Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121. doi: 10.1021/acs.jmedchem.7b01457 PMID: 29251920
- Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631. doi: 10.1124/dmd.113.056176 PMID: 24492893
- Lu, X.; Yan, G.; Dawood, M.; Klauck, S.M.; Sugimoto, Y.; Klinger, A.; Fleischer, E.; Shan, L.; Efferth, T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem. Pharmacol., 2021, 194, 114677. doi: 10.1016/j.bcp.2021.114677 PMID: 34265280
- Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol., 2000, 18(5), 1135-1149. doi: 10.1200/JCO.2000.18.5.1135 PMID: 10694567
- Onaran, M.B.; Comeau, A.B.; Seto, C.T. Squaric acid-based peptidic inhibitors of matrix metalloprotease-1. J. Org. Chem., 2005, 70(26), 10792-10802. doi: 10.1021/jo0517848 PMID: 16356002
- Santamaria, S. ADAMTS‐5: A difficult teenager turning 20. Int. J. Exp. Pathol., 2020, 101(1-2), 4-20. doi: 10.1111/iep.12344 PMID: 32219922
- Sandy, J.D.; Flannery, C.R.; Neame, P.J.; Lohmander, L.S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Invest., 1992, 89(5), 1512-1516. doi: 10.1172/JCI115742 PMID: 1569188
- Apte, S.S. Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem. J., 2016, 473(1), e1-e4. doi: 10.1042/BJ20151072 PMID: 26657033
- Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging therapeutic agents in osteoarthritis. Biochem. Pharmacol., 2019, 165, 4-16. doi: 10.1016/j.bcp.2019.02.034 PMID: 30826327
- Charton, J.; Leroux, F.; Delaroche, S.; Landry, V.; Deprez, B.P.; Deprez-Poulain, R.F. Synthesis of a 200-member library of squaric acid N-hydroxylamide amides (vol 18, pg 4968, 2008). Bioorg. Med. Chem. Lett., 2009, 19(1), 283-283. doi: 10.1016/j.bmcl.2008.08.116 PMID: 19932024
- Noll, D.M.; Mason, T.M.; Miller, P.S. Formation and repair of interstrand cross-links in DNA. Chem. Rev., 2006, 106(2), 277-301. doi: 10.1021/cr040478b PMID: 16464006
- Hashimoto, S.; Anai, H.; Hanada, K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ., 2016, 38(1), 9. doi: 10.1186/s41021-016-0037-9 PMID: 27350828
- Sengerová, B.; Allerston, C.K.; Abu, M.; Lee, S.Y.; Hartley, J.; Kiakos, K.; Schofield, C.J.; Hartley, J.A.; Gileadi, O.; McHugh, P.J. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J. Biol. Chem., 2012, 287(31), 26254-26267. doi: 10.1074/jbc.M112.367243 PMID: 22692201
- Baddock, H.T.; Yosaatmadja, Y.; Newman, J.A.; Schofield, C.J.; Gileadi, O.; McHugh, P.J. The SNM1A DNA repair nuclease. DNA Repair (Amst.), 2020, 95, 102941. doi: 10.1016/j.dnarep.2020.102941 PMID: 32866775
- Allerston, C.K.; Lee, S.Y.; Newman, J.A.; Schofield, C.J.; McHugh, P.J.; Gileadi, O. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res., 2015, 43(22), 11047-11060. doi: 10.1093/nar/gkv1256 PMID: 26582912
- Dürr, E.M.; Doherty, W.; Lee, S.Y.; El-Sagheer, A.H.; Shivalingam, A.; McHugh, P.J.; Brown, T.; McGouran, J.F. Squaramide-based 5′-phosphate replacements bind to the DNA repair exonuclease SNM1A. ChemistrySelect, 2018, 3(45), 12824-12829. doi: 10.1002/slct.201803375 PMID: 31414040
- Zamanova, S.; Shabana, A.M.; Mondal, U.K.; Ilies, M.A. Carbonic anhydrases as disease markers. Expert Opin. Ther. Pat., 2019, 29(7), 509-533. doi: 10.1080/13543776.2019.1629419 PMID: 31172829
- Mboge, M.; Mahon, B.; McKenna, R.; Frost, S. Carbonic anhydrases: Role in pH control and cancer. Metabolites, 2018, 8(1), 19. doi: 10.3390/metabo8010019 PMID: 29495652
- Supuran, C.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(6), 671-686. doi: 10.1080/17460441.2020.1743676 PMID: 32208982
- Arrighi, G.; Puerta, A.; Petrini, A.; Hicke, F.J.; Nocentini, A.; Fernandes, M.X.; Padrón, J.M.; Supuran, C.T.; Fernández-Bolaños, J.G.; López, Ó. Squaramide-tethered sulfonamides and coumarins: synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations. Int. J. Mol. Sci., 2022, 23(14), 7685. doi: 10.3390/ijms23147685 PMID: 35887037
- Lovering, F.; Kirincich, S.; Wang, W.; Combs, K.; Resnick, L.; Sabalski, J.E.; Butera, J.; Liu, J.; Parris, K.; Telliez, J.B. Identification and SAR of squarate inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med. Chem., 2009, 17(9), 3342-3351. doi: 10.1016/j.bmc.2009.03.041 PMID: 19364658
- Meng, W.; Swenson, L.L.; Fitzgibbon, M.J.; Hayakawa, K.; ter Haar, E.; Behrens, A.E.; Fulghum, J.R.; Lippke, J.A. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J. Biol. Chem., 2002, 277(40), 37401-37405. doi: 10.1074/jbc.C200418200 PMID: 12171911
- Fiege, B.; Rabbani, S.; Preston, R.C.; Jakob, R.P.; Zihlmann, P.; Schwardt, O.; Jiang, X.; Maier, T.; Ernst, B. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. ChemBioChem, 2015, 16(8), 1235-1246. doi: 10.1002/cbic.201402714 PMID: 25940742
- Scharenberg, M.; Schwardt, O.; Rabbani, S.; Ernst, B. Target selectivity of FimH antagonists. J. Med. Chem., 2012, 55(22), 9810-9816. doi: 10.1021/jm3010338 PMID: 23088608
- Tomàs, S.; Prohens, R.; Vega, M.; Rotger, M.C.; Deyà, P.M.; Ballester, P.; Costa, A. Squaramido-based receptors: design, synthesis, and application to the recognition of tetraalkylammonium compounds. J. Org. Chem., 1996, 61(26), 9394-9401. doi: 10.1021/jo9614147
- Rotger, M.C.; Piña, M.N.; Frontera, A.; Martorell, G.; Ballester, P.; Deyà, P.M.; Costa, A. Conformational preferences and self-template macrocyclization of squaramide-based foldable modules. J. Org. Chem., 2004, 69(7), 2302-2308. doi: 10.1021/jo035546t PMID: 15049622
- Bauer, H. Gmelins Krokonsure. Naturwissenschaften, 1978, 65(9), 487-488. doi: 10.1007/BF00702841
- Hettegger, H.; Hosoya, T.; Rosenau, T. Chemistry of the redox series from hexahydroxybenzene to cyclohexanehexaone. Curr. Org. Synth., 2015, 13(1), 86-100. doi: 10.2174/1570179412666150710182456
- Bou, A.; Pericàs, M.A.; Serratosa, F. Synthetic applications of di-tert-butoxyethyne, II: New syntheses of squaric, semisquaric and croconic acids. Tetrahedron Lett., 1982, 23(3), 361-364. doi: 10.1016/S0040-4039(00)86831-8
- Braga, D.; Maini, L.; Grepioni, F. Croconic acid and alkali metal croconate salts: some new insights into an old story. Chemistry, 2002, 8(8), 1804-1812. doi: 10.1002/1521-3765(20020415)8:83.0.CO;2-C PMID: 11933108
- Dunitz, J.D.; Seiler, P.; Czechtizky, W. Crystal structure of potassium croconate dihydrate, after 175 years. Angew. Chem. Int. Ed., 2001, 40(9), 1779-1780. doi: 10.1002/1521-3773(20010504)40:93.0.CO;2-6 PMID: 11353510
- Gonçalves, N.S.; Santos, P.S.; Vencato, I. Lithium croconate dihydrate. Acta Crystallogr. C, 1996, 52(3), 622-624. doi: 10.1107/S0108270195011887
- Braga, D.; Maini, L.; Grepioni, F. Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network. CrystEngComm, 2001, 3(6), 27-29. doi: 10.1039/b100020i
- Lam, C.K.; Cheng, M.F.; Li, C.L.; Zhang, J.P.; Chen, X.M.; Li, W.K.; Mak, T.C.W. Stabilization of D 5h and C 2v valence tautomers of the croconate dianion. Chem. Commun. (Camb.), 2004, (4), 448-449. doi: 10.1039/B312545A PMID: 14765252
- Ramachandran, C.N.; Ruckenstein, E. Density functional theoretical studies of the isomers of croconic acid and their dimers. Comput. Theor. Chem., 2011, 973(1-3), 28-32. doi: 10.1016/j.comptc.2011.06.024
- Gelb, R.I.; Schwartz, L.M.; Laufer, D.A.; Yardley, J.O. The structure of aqueous croconic acid. J. Phys. Chem., 1977, 81(13), 1268-1274. doi: 10.1021/j100528a010
- Schwartz, L.M.; Gelb, R.I.; Yardley, J.O. Aqueous dissociation of croconic acid. J. Phys. Chem., 1975, 79(21), 2246-2251. doi: 10.1021/j100588a009
- Kravchenko, M.S.; Fumarova, M.S. Group detection and semiquantitative determination of alkali metals with croconic acid. J. Anal. Chem., 1995, 50(12), 1179-1182.
- Jia, Y.Q.; Feng, S.S.; Shen, M.L.; Lu, L.P. Construction of multifunctional materials based on Tb 3+ and croconic acid, directed by K + cations: synthesis, structures, fluorescence, magnetic and ferroelectric behaviors. CrystEngComm, 2016, 18(28), 5344-5352. doi: 10.1039/C6CE00308G
- Lam, C.K.; Mak, T.C.W. Rhodizonate and croconate dianions as divergent hydrogen-bond acceptors in the self-assembly of supramolecular structures. Chem. Commun. (Camb.), 2001, (17), 1568-1569. doi: 10.1039/b104386m PMID: 12240385
- Salidu, M.; Artizzu, F.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Marchiò, L.; Concas, G.; Congiu, F. Self-assembly supramolecular architectures of chromium(III) complexes using croconate as building block. Dalton Trans., 2009, (3), 557-563. doi: 10.1039/B810216N PMID: 19122914
- Gómez-García, C.J.; Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Faulmann, C.; Canadell, E. A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate)ferrate(III) hybrid molecular system. Chem. Commun. (Camb.), 2006, (47), 4931-4933. doi: 10.1039/B610408H PMID: 17136251
- Cai, Y.; Luo, S.; Zhu, Z.; Gu, H. Ferroelectric mechanism of croconic acid: A first-principles and Monte Carlo study. J. Chem. Phys., 2013, 139(4), 044702. doi: 10.1063/1.4813500 PMID: 23901998
- Sui, Y.; Luo, Q.Y.; Zhao, G.; Hong, X.K.; Liu, Y.J.; Mi, J. Preparation and properties of PVDF composite films modified with organic ferroelectric croconic acid. Ferroelectrics, 2017, 506(1), 165-173. doi: 10.1080/00150193.2017.1282758
- Hu, L.; Feng, R.; Wang, J.; Bai, Z.; Jin, W.; Zhang, L.; Nie, Q.M.; Qiu, Z.J.; Tian, P.; Cong, C.; Zheng, L.; Liu, R. Space-charge-stabilized ferroelectric polarization in self-oriented croconic acid films. Adv. Funct. Mater., 2018, 28(11), 1705463. doi: 10.1002/adfm.201705463
- Luo, C.; Huang, R.; Kevorkyants, R.; Pavanello, M.; He, H.; Wang, C. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett., 2014, 14(3), 1596-1602. doi: 10.1021/nl500026j PMID: 24548267
- Luo, C.; Zhu, Y.; Xu, Y.; Liu, Y.; Gao, T.; Wang, J.; Wang, C. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power Sources, 2014, 250, 372-378. doi: 10.1016/j.jpowsour.2013.10.131
- Deruiter, J.; Jacyno, J.M.; Cutler, H.G.; Davis, R.A. Studies on aldose reductase inhibitors from fungi. 2. Moniliformin and small ring analogs. J. Enzyme Inhib., 1993, 7(4), 249-256. doi: 10.3109/14756369309040767
- Williams, R.F.X. Transition-metal complexes with organo-chalcogen ligands. 1. Synthesis of dithiocroconate dianion. Phosphorus Sulfur Related Elements, 1976, 2(1-3), 141-146. doi: 10.1080/03086647608078939
- Jeppesen, A.; Nielsen, B.E.; Larsen, D.; Akselsen, O.M.; Sølling, T.I.; Brock-Nannestad, T.; Pittelkow, M. Croconamides: a new dual hydrogen bond donating motif for anion recognition and organocatalysis. Org. Biomol. Chem., 2017, 15(13), 2784-2790. doi: 10.1039/C7OB00441A PMID: 28272644
- Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. (Camb.), 2014, 5(9), 3617-3626. doi: 10.1039/C4SC01629G PMID: 26146535
- Busschaert, N.; Gale, P.A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed., 2013, 52(5), 1374-1382. doi: 10.1002/anie.201207535 PMID: 23283851
- Davis, J.T.; Okunola, O.; Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev., 2010, 39(10), 3843-3862. doi: 10.1039/b926164h PMID: 20820462
- Akhtar, N.; Saha, A.; Kumar, V.; Pradhan, N.; Panda, S.; Morla, S.; Kumar, S.; Manna, D. Diphenylethylenediamine-based potent anionophores: Transmembrane chloride ion transport and apoptosis inducing activities. ACS Appl. Mater. Interfaces, 2018, 10(40), 33803-33813. doi: 10.1021/acsami.8b06664 PMID: 30221925
- Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation productsI. Tetrahedron, 1969, 25(17), 3935-3945. doi: 10.1016/S0040-4020(01)82926-4
- Eistert, B.; Fink, H.; Werner, H.K. Phenazin-Derivate aus Rhodizonsäure. Justus Liebigs Ann. Chem., 1962, 657(1), 131-141. doi: 10.1002/jlac.19626570118
- Rillaers, G.A.; Depoorter, H. Spektrale Sensibilisierung. German Patent DE1930224A1, January 15, 1970.
- Song, X.; Foley, J.W. A new water-soluble near-infrared croconium dye. Dyes Pigments, 2008, 78(1), 60-64. doi: 10.1016/j.dyepig.2007.10.006
- Hamilton, A.L.; West, R.M.; Briggs, M.S.J.; Cummins, W.J.; Bruce, I.E. European Patent EP0898596B1, April 21, 1997.
- Harmatys, K.M.; Battles, P.M.; Peck, E.M.; Spence, G.T.; Roland, F.M.; Smith, B.D. Selective photothermal inactivation of cells labeled with near-infrared croconaine dye. Chem. Commun. (Camb.), 2017, 53(71), 9906-9909. doi: 10.1039/C7CC05196D PMID: 28828431
- Chen, Q.; Liu, X.; Zeng, J.; Cheng, Z.; Liu, Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30. doi: 10.1016/j.biomaterials.2016.04.041 PMID: 27177219
- Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268. doi: 10.1093/annonc/mdl104 PMID: 16740598
- Tang, L.; Zhang, F.; Yu, F.; Sun, W.; Song, M.; Chen, X.; Zhang, X.; Sun, X. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials, 2017, 129, 28-36. doi: 10.1016/j.biomaterials.2017.03.009 PMID: 28324863
- Tang, L.; Sun, X.; Liu, N.; Zhou, Z.; Yu, F.; Zhang, X.; Sun, X.; Chen, X. Radiolabeled angiogenesis-targeting croconaine nanoparticles for trimodality imaging guided photothermal therapy of glioma. ACS Appl. Nano Mater., 2018, 1(4), 1741-1749. doi: 10.1021/acsanm.8b00195 PMID: 30506043
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed; John Wiley & Sons, Ltd., 2009.
- Guha, S.; Shaw, G.K.; Mitcham, T.M.; Bouchard, R.R.; Smith, B.D. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH. Chem. Commun. (Camb.), 2016, 52(1), 120-123. doi: 10.1039/C5CC08317F PMID: 26502996
- Zhao, B.; Back, M.H. The photochemistry of the rhodizonate dianion in aqueous solution. Can. J. Chem., 1991, 69(3), 528-532. doi: 10.1139/v91-079
- Zhao, B.; Back, M.H. The flash photolysis of aqueous solutions of rhodizonic and croconic acids. Int. J. Chem. Kinet., 1994, 26(1), 25-36. doi: 10.1002/kin.550260105
- Murakami, K.; Haneda, M.; Naruse, M.; Yoshino, M. Prooxidant action of rhodizonic acid: Transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2′-deoxyguanosine formation in DNA. Toxicol. In Vitro, 2006, 20(6), 910-914. doi: 10.1016/j.tiv.2006.01.009 PMID: 16504460
- Wu, M.; Burton, J.D.; Tsymbal, E.Y.; Zeng, X.C.; Jena, P. Multiferroic materials based on organic transition-metal molecular nanowires. J. Am. Chem. Soc., 2012, 134(35), 14423-14429. doi: 10.1021/ja304199x PMID: 22881120
- Chen, S.; Enders, A.; Zeng, X.C. Influence of structural fluctuations, proton transfer, and electric field on polarization switching of supported two-dimensional hydrogen-bonded oxocarbon monolayers. Chem. Mater., 2015, 27(13), 4839-4847. doi: 10.1021/acs.chemmater.5b01717
- Misiołek, A.W.; Jackson, J.E. Building blocks for molecule-based magnets: a theoretical study of triplet-singlet gaps in the dianion of rhodizonic acid 1,4-dimethide and its derivatives. J. Am. Chem. Soc., 2001, 123(20), 4774-4780. doi: 10.1021/ja0021417 PMID: 11457287
- McCaffrey, V.P.; Gentner, R.; Misiolek, A.W.; Jackson, J.E. Rhodizonic acid derivatives as molecular magnets: synthetic, spectroscopic and theoretical studies. Abstr. Pap. Amer. Chem. Soc., 2002, 224, U204-U204.
- Wu, D.; Li, H.; Li, R.; Hu, Y.; Hu, X. In situ growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chem. Commun. (Camb.), 2018, 54(81), 11415-11418. doi: 10.1039/C8CC06317F PMID: 30246824
- Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano, 2018, 12(4), 3424-3435. doi: 10.1021/acsnano.7b09177 PMID: 29617114
- Saxena, O.C. Titrimetric microdetermination of yttrium and scandium: Disodium salt of rhodizonic acid as complexing agent. Microchem. J., 1972, 17(1), 68-71. doi: 10.1016/0026-265X(72)90038-0
- Uhl, W.; Prott, M. Insertion of rhodizonic acid into the gallium-gallium and indium-indium bonds of digallane(4) and diindane(4) compounds. Z. Anorg. Allg. Chem., 2002, 628(11), 2259-2263. doi: 10.1002/1521-3749(200211)628:113.0.CO;2-C
- Wang, C.C.; Kuo, C.T.; Chou, P.T.; Lee, G.H. Rhodizonate metal complexes with a 2D chairlike M6 metal-organic framework: M(C6O6)(bpym)(H2O).n H2O. Angew. Chem. Int. Ed., 2004, 43(34), 4507-4510. doi: 10.1002/anie.200460278 PMID: 15340955
- Dooronbekov, Zh.; Kasatkin, IuN.; Fedorov, N.A. The effect of the sodium salt of rhodizonic acid on the excretion of radioactive strontium from the organism. Med. Radiol. (Mosk.), 1960, 5, 76-79. PMID: 13723839
- Seris, J.L. On some biochemical properties of rhodizonic acid. Glutathione and homocysteine. C. R. Hebd. Seances Acad. Sci., 1961, 252, 3672-3674. PMID: 13750246
- Bru, A.; Seris, J.L.; Regis, H.; Soubiran, J.; Lucot, H. Protective effect of rhodizonic acid and certain of its derivatives on the radiosensitivity of yeasts in culture. J. Radiol. Electrol. Med. Nucl., 1967, 48(10), 555-558. PMID: 5585302
- Takeuchi, S.; Inoue, Y. Hypoglycemic actions of tetrahydroxyquinone, rhodizonic acid and trichinoyl in mice and rabbits. Jpn. J. Pharmacol., 1968, 18(3), 312-320. doi: 10.1254/jjp.18.312 PMID: 5304400
- Moiroux, J.; Escourrou, D.; Fleury, M.B. 324 - Electrochemical behavior of carbonyl compounds and aci-reductones in relation to electron transport in biological processes: Rhodizonic acid and its reduction product in aqueous acid media. Bioelectrochem. Bioenerg., 1980, 7(2), 333-344. doi: 10.1016/0302-4598(80)87009-7
- Naish, S.; Riley, P.A. Effect of rhodizonic acid on the lag period of tyrosinase. Yale J. Biol. Med., 1984, 57(3), 400.
- De Souza-Pinto, N.C.; Vercesi, A.E.; Hoffmann, M.E. Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: Involvement of Ca22+ and H2O2 in the impairment of DNA replication and mitochondrial function. Free Radic. Biol. Med., 1996, 20(5), 657-666. doi: 10.1016/0891-5849(95)02179-5 PMID: 8721612
- Kuniyoshi, A. Experimental and clinical studies of the antidiabetic action of dipotassium rhodizonate (CPK-2). Nippon Ika Daigaku Zasshi, 1970, 37(4), 310-323. doi: 10.1272/jnms1923.37.310 PMID: 5478470
- Douglas, K.T.; Nadvi, I.N. Inhibition of glyoxalase I: a possible transition-state analogue inhibitor approach to potential antineoplastic agents? FEBS Lett., 1979, 106(2), 393-396. doi: 10.1016/0014-5793(79)80539-6 PMID: 499526
- Godin, J. Therapeutic antioxidant formulation comprising catechol, quinone, rhodizonic acid salts and sulfite. Patent US20070149623A1, 2007.
- Braga, D.; Cojazzi, G.; Maini, L.; Grepioni, F. Reversible solid-state interconversion of rhodizonic acid H2C6O6 into H6C6O8 and the solid-state structure of the rhodizonate dianion C6O62− (aromatic or non-aromatic?). New J. Chem., 2001, 25(10), 1221-1223. doi: 10.1039/B107317F
- Fleury, M.B.; Molle, G. Spectrophotometric study on ionization and hydration equilibrium given by rhodizonic acid in aqueous solution. CR. Acad. Sci. C. Chim., 1971, 273(10), 605-608.
- Gelb, R.I.; Schwartz, L.M.; Laufer, D.A. The structure of aqueous rhodizonic acid. J. Phys. Chem., 1978, 82(18), 1985-1988. doi: 10.1021/j100507a006
- Wong, Z.X.; Abdallah, H.H. Gas-phase acidity and liquid phase pK(a) calculations of some cyclic oxocarbon acids (CnOnH2 (n=3, 4, 5, 6)): A theoretical investigation. Acta Chim. Slov., 2012, 59(2), 273-280. PMID: 24061240
- Lu, F.; Rheingold, A.L.; Miller, J.S. Characterization of the elusive rhodizonate ring-contraction decarbonylation C5O4(OH)CO2Me2- intermediate to croconate. Chemistry, 2013, 19(44), 14795-14797. doi: 10.1002/chem.201303190 PMID: 24123324
- Bettermann, H.; Dasting, I.; Wolff, U. Kinetic investigations of the laser-induced photolysis of sodium rhodizonate in aqueous solutions. Spectrochim. Acta A, 1997, 53(2), 233-245.
- Quiñonero, D.; Garau, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P.M. Quantification of aromaticity in oxocarbons: the problem of the fictitious "nonaromatic" reference system. Chemistry, 2002, 8(2), 433-438. doi: 10.1002/1521-3765(20020118)8:23.0.CO;2-T PMID: 11843155
- Cowan, J.A.; Howard, J.A.K. Dipotassium rhodizonate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2004, 60(4), m511-m513. doi: 10.1107/S160053680400529X
- Odani, T.; Kubota, T. Nonaqueous electrolyte and nonaqueous electrolyte battery using the same. Patent US20080226983A1, 2008.
- Morley, J.O. Theoretical studies on the electronic structure and nonlinear properties of dicyanomethylene substituted squaramides, croconamides and rhodizonamides. J. Mol. Struct. Theochem, 1995, 357(1-2), 49-57. doi: 10.1016/0166-1280(95)04279-F
- Farminer, A.R.; Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation products. J. Mol. Struct., 1971, 10(1), 111-119. doi: 10.1016/0022-2860(71)87065-5
- Aoyama, M.; Kawamura, H.; Matsunami, S.; Onishima, Y. Preparation of dipyrazino2,3-a:2',3'-cphenazine derivatives as organic electroluminescence materials. Patent JP2007230974A, 2007.
- Yeh, M.C.; Liao, S.C.; Chao, S.H.; Ong, C.W. Synthesis of polyphilic hexaazatrinaphthylenes and mesomorphic properties. Tetrahedron, 2010, 66(46), 8888-8892. doi: 10.1016/j.tet.2010.09.064
- Ito, M.; Chihara, K.; Nakamoto, K.; Kano, Y.; Okada, S.; Nagashima, H. Electrode active material containing pyrazine derivative and aqueous electrolyte sodium or magnesium ion secondary battery using same. Patent WO2015147326A1, 2015.
- Martin, R. Electrodes for energy storage devices. WO2015097197A1, 2015.
- Wend, G.R.; Ledig, K.W. Phenazinone compositions for treating amebiasis. Patent US3495006A, 1970.
- Wendt, G.R.; Ledig, K.W. Amebicidal 11,12-dihydroxydibenzoa,cphenazine-10,13-dione and 4,5-dihydro-9,10-dihydroxyindeno4,3a,3-a,bphenazine-8,11-dione. Patent US3501476A, 1970.
- Pushkareva, Z.V.; Alekseeva, L.V. Synthesis of substances containing fragments of folic acid. III. The synthesis of some pteridine derivatives. Zh. Obshch. Khim., 1962, 32, 1058-1062.
- Endo, H.; Tada, M.; Katagiri, K. Antitumor activity of phenazine derivatives against sarcoma 180 in mice. VII. Phenazinequinone derivatives. Sci. Rep. Res. Inst. Tohoku Univ. Ser. C, 1967, 14(3-4), 175-176. PMID: 5616568
- Schieven, G.L. Phosphotyrosine phosphatase inhibitors or tyrosine kinase activators for controlling cellular proliferation. Patent US5877210A, 1999.
- Zhao, Y.; Bai, H.; Jiang, X.; Li, S. Method for preparation of 6-acyl-3-substituted methylene pyrone compounds and their medicinal application. Patent CN1990478A, 2007.
补充文件
