Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry


如何引用文章

全文:

详细

The biological and medicinal chemistry of the oxocarbon acids 2,3-dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex-5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.

作者简介

Amanda Ratto

Department of Chemistry, University of Waterloo

Email: info@benthamscience.net

John Honek

Department of Chemistry, University of Waterloo

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Ian Storer, R.; Aciro, C.; Jones, L.H. Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev., 2011, 40(5), 2330-2346. doi: 10.1039/c0cs00200c PMID: 21399835
  2. Lei, S.; Zhang, Y.; Blum, N.T.; Huang, P.; Lin, J. Recent advances in croconaine dyes for bioimaging and theranostics. Bioconjug. Chem., 2020, 31(9), 2072-2084. doi: 10.1021/acs.bioconjchem.0c00356 PMID: 32786372
  3. Zwicker, V.E.; Yuen, K.K.Y.; Smith, D.G.; Ho, J.; Qin, L.; Turner, P.; Jolliffe, K.A. Deltamides and croconamides: Expanding the range of dual H‐bond donors for selective anion recognition. Chemistry, 2018, 24(5), 1140-1150. doi: 10.1002/chem.201704388 PMID: 29119615
  4. Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591. doi: 10.1021/jm1013693 PMID: 21413808
  5. Agnew-Francis, K.A.; Williams, C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev., 2020, 120(20), 11616-11650. doi: 10.1021/acs.chemrev.0c00416 PMID: 32930577
  6. Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203. doi: 10.1021/acs.jmedchem.5b01963 PMID: 26967507
  7. Mishiro, K.; Hu, F.; Paley, D.W.; Min, W.; Lambert, T.H. Macrosteres: The deltic guanidinium ion. Eur. J. Org. Chem., 2016, 2016(9), 1655-1659. doi: 10.1002/ejoc.201600137 PMID: 27790071
  8. Marchetti, L.A.; Kumawat, L.K.; Mao, N.; Stephens, J.C.; Elmes, R.B.P. The versatility of squaramides: From supramolecular chemistry to chemical biology. Chem, 2019, 5(6), 1398-1485. doi: 10.1016/j.chempr.2019.02.027
  9. Lu, M.; Lu, Q.B.; Honek, J.F. Squarate-based carbocyclic nucleosides: Syntheses, computational analyses and anticancer/antiviral evaluation. Bioorg. Med. Chem. Lett., 2017, 27(2), 282-287. doi: 10.1016/j.bmcl.2016.11.058 PMID: 27913181
  10. West, R. Chemistry of the oxocarbons. Isr. J. Chem., 1980, 20(3-4), 300-307. doi: 10.1002/ijch.198000088
  11. Seitz, G.; Imming, P. Oxocarbons and pseudooxocarbons. Chem. Rev., 1992, 92(6), 1227-1260. doi: 10.1021/cr00014a004
  12. Eggerding, D.; West, R. Synthesis of dihydroxycyclopropenone (deltic acid). J. Am. Chem. Soc., 1975, 97(1), 207-208. doi: 10.1021/ja00834a047
  13. Eggerding, D.; West, R. Synthesis and properties of deltic acid (dihydroxycyclopropenone) and the deltate ion. J. Am. Chem. Soc., 1976, 98(12), 3641-3644. doi: 10.1021/ja00428a043
  14. Pericás, M.A.; Serratoso, F. Synthetic applications of di-tert-butoxyethyne: Synthesis of deltic and squaric acid. Tetrahedron Lett., 1977, 18(50), 4437-4438. doi: 10.1016/S0040-4039(01)83530-9
  15. Serratosa, F. Acetylene diethers: A logical entry to oxocarbons. Acc. Chem. Res., 1983, 16(5), 170-176. doi: 10.1021/ar00089a004
  16. West, R.; Chickos, J.; Osawa, E. Dichlorocyclopropenone. J. Am. Chem. Soc., 1968, 90(14), 3885-3886. doi: 10.1021/ja01016a064
  17. Dehmlow, E.V. Diäthoxy-cyclopropenon (Dreiecksäurediäthylester). Tetrahedron Lett., 1972, 13(13), 1271-1274. doi: 10.1016/S0040-4039(01)84565-2
  18. Farnum, D.G. Thurston, P.E. α-Elimination in 2-phenyltetrachloropropene. Synthesis of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1964, 86(19), 4206-4207. doi: 10.1021/ja01073a067
  19. Chickos, J.S.; Patton, E.; West, R. Aryltrichlorocyclopropenes and arylhydroxycyclopropenones. J. Org. Chem., 1974, 39(12), 1647-1650. doi: 10.1021/jo00925a009
  20. Farnum, D.G.; Chickos, J.; Thurston, P.E. The preparation and characterization of phenylhydroxycyclopropenone. J. Am. Chem. Soc., 1966, 88(13), 3075-3081. doi: 10.1021/ja00965a033
  21. Patton, E.; West, R. New aromatic anions. X. Dissociation constants of substituted oxocarbon acids. J. Am. Chem. Soc., 1973, 95(26), 8703-8707. doi: 10.1021/ja00807a033
  22. Ockey, D.A.; Gadek, T.R. Discovery of novel PTP1b inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 389-391. doi: 10.1016/j.bmcl.2003.10.058 PMID: 14698165
  23. Weidner, C.H.; Wadsworth, D.H.; Knop, C.S.; Oyefesso, A.I.; Hafer, B.L.; Hartman, R.J.; Mehlenbacher, R.C.; Hogan, S.C. Convenient and general synthesis of 2-alkoxy-3-arylcyclopropenones. J. Org. Chem., 1994, 59(15), 4319-4322. doi: 10.1021/jo00094a055
  24. Semmingsen, D.; Groth, P. Deltic acid, a novel compound. J. Am. Chem. Soc., 1987, 109(23), 7238-7239. doi: 10.1021/ja00257a081
  25. Chickos, J.S.; Berndt, A.F.; Claus, A.C. Crystal data on phenylhydroxycyclopropenone. J. Appl. Cryst., 1973, 6(4), 303-304. doi: 10.1107/S0021889873008770
  26. Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P.M. A theoretical study of aromaticity in squaramide and oxocarbons. Tetrahedron Lett., 2000, 41(12), 2001-2005. doi: 10.1016/S0040-4039(00)00084-8
  27. Schleyer, P.R.; Najafian, K.; Kiran, B.; Jiao, H. Are oxocarbon dianions aromatic? J. Org. Chem., 2000, 65(2), 426-431. doi: 10.1021/jo991267n PMID: 10813951
  28. Wang, H.J.; Schleyer, P.R.; Wu, J.I.; Wang, Y.; Wang, H.J. A study of aromatic three membered rings. Int. J. Quantum Chem., 2011, 111(5), 1031-1038. doi: 10.1002/qua.22453
  29. Tadić J.M.; Xu, L. Ab initio and density functional theory study of keto-enol equilibria of deltic acid in gas and aqueous solution phase: A bimolecular proton transfer mechanism. J. Org. Chem., 2012, 77(19), 8621-8626. doi: 10.1021/jo301575c PMID: 22954314
  30. Gelb, R.I.; Schwartz, L.M. Aqueous dissociation of dihydroxycyclopropenone (deltic acid). J. Chem. Soc. Perkin T 2, 1976, 1976(8), 930-932.
  31. Yoshida, Z.; Konishi, H.; Tawara, Y.; Nishikawa, K.; Ogoshi, H. Novel alkaline hydrolysis of triaminocyclopropenium ion. new route to diaminocyclopropenone and diaminocyclopropenethione. Tetrahedron Lett., 1973, 14(28), 2619-2622. doi: 10.1016/S0040-4039(01)96160-X
  32. Mishiro, K.; Yushima, Y.; Kunishima, M. Phototriggered dehydration condensation using an aminocyclopropenone. Org. Lett., 2017, 19(18), 4912-4915. doi: 10.1021/acs.orglett.7b02383 PMID: 28862452
  33. Row, R.D.; Shih, H.W.; Alexander, A.T.; Mehl, R.A.; Prescher, J.A. Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling. J. Am. Chem. Soc., 2017, 139(21), 7370-7375. doi: 10.1021/jacs.7b03010 PMID: 28478678
  34. Gale, P.A.; Pérez-Tomás, R.; Quesada, R. Anion transporters and biological systems. Acc. Chem. Res., 2013, 46(12), 2801-2813. doi: 10.1021/ar400019p PMID: 23551251
  35. Gale, P.A.; Davis, J.T.; Quesada, R. Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev., 2017, 46(9), 2497-2519. doi: 10.1039/C7CS00159B PMID: 28379234
  36. Tosolini, M.; Pengo, P.; Tecilla, P. Biological activity of trans-membrane anion carriers. Curr. Med. Chem., 2018, 25(30), 3560-3576. doi: 10.2174/0929867325666180309113222 PMID: 29521206
  37. Ho, J.; Zwicker, V.E.; Yuen, K.K.Y.; Jolliffe, K.A. Quantum chemical prediction of equilibrium acidities of ureas, deltamides, squaramides, and croconamides. J. Org. Chem., 2017, 82(19), 10732-10736. doi: 10.1021/acs.joc.7b02083 PMID: 28832145
  38. Weiss, R.; Hertel, M. A nitrogen analogue of deltic acid. J. Chem. Soc. Chem. Commun., 1980, (5), 223-224. doi: 10.1039/c39800000223
  39. Lambert, T.; Bandar, J. Aminocyclopropenium ions: Synthesis, properties, and applications. Synthesis, 2013, 45(18), 2485-2498. doi: 10.1055/s-0033-1338516
  40. Bandar, J.S.; Barthelme, A.; Mazori, A.Y.; Lambert, T.H. Structure–activity relationship studies of cyclopropenimines as enantioselective Brønsted base catalysts. Chem. Sci. (Camb.), 2015, 6(2), 1537-1547. doi: 10.1039/C4SC02402H PMID: 26504512
  41. Walst, K.J.; Yunis, R.; Bayley, P.M.; MacFarlane, D.R.; Ward, C.J.; Wang, R.; Curnow, O.J. Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Advances, 2015, 5(49), 39565-39579. doi: 10.1039/C5RA05254H
  42. Freyer, J.L.; Brucks, S.D.; Gobieski, G.S.; Russell, S.T.; Yozwiak, C.E.; Sun, M.; Chen, Z.; Jiang, Y.; Bandar, J.S.; Stockwell, B.R.; Lambert, T.H.; Campos, L.M. Clickable poly(ionic liquids): A materials platform for transfection. Angew. Chem. Int. Ed., 2016, 55(40), 12382-12386. doi: 10.1002/anie.201605214 PMID: 27578602
  43. Brucks, S.D.; Freyer, J.L.; Lambert, T.H.; Campos, L.M. Influence of substituent chain branching on the transfection efficacy of cyclopropenium-based polymers. Polymers, 2017, 9(3), 79. doi: 10.3390/polym9030079
  44. Lugade, A.G.; Jacobson, J.W. Oxocarbonamide peptide nucleic acids for use as hybridization probes. Patent WO2008070525A1 2008.
  45. Hausen, B.; Happle, R. Cyclopropenones for the local treatment of alopecia areata. EP62157A1 1982.
  46. Arndt, G.; Seitz, G.; Kampchen, T. Polycarbonyl compounds. 31. Sulfur and selenium analogs of phenyl substituted deltic acid anions and their derivatives. Chem. Ber., 1981, 114(2), 660-672. doi: 10.1002/cber.19811140225
  47. Werz, D.B.; Gleiter, R.; Rominger, F. Selenium- and tellurium-substituted cyclopropenones and their facile ring-opening with methanol. Eur. J. Org. Chem., 2003, 2003(1), 151-154. doi: 10.1002/1099-0690(200301)2003:13.0.CO;2-7
  48. Cohen, S.; Lacher, J.R.; Park, J.D. Diketocyclobutenediol. J. Am. Chem. Soc., 1959, 81(13), 3480. doi: 10.1021/ja01522a083
  49. Shimizu, I. Squaric acid. J. Synth. Org. Chem. Jpn., 1995, 53(4), 330-331. doi: 10.5059/yukigoseikyokaishi.53.330
  50. Wurm, F.R.; Klok, H.A. Be squared: Expanding the horizon of squaric acid-mediated conjugations. Chem. Soc. Rev., 2013, 42(21), 8220-8236. doi: 10.1039/c3cs60153f PMID: 23873344
  51. Chasák, J.; Šlachtová, V.; Urban, M.; Brulíková, L. Squaric acid analogues in medicinal chemistry. Eur. J. Med. Chem., 2021, 209, 112872. doi: 10.1016/j.ejmech.2020.112872 PMID: 33035923
  52. Mukkanti, A.; Periasamy, M. Methods of synthesis of cyclobutenediones. Arkivoc, 2005, (xi), 48-77.
  53. Wurm, F.; Steinbach, T.; Klok, H.A. One-pot squaric acid diester mediated aqueous protein conjugation. Chem. Commun. (Camb.), 2013, 49(71), 7815-7817. doi: 10.1039/c3cc44039g PMID: 23884200
  54. Maahs, G.; Hegenberg, P. Syntheses and derivatives of squaric acid. Angew. Chem. Int. Ed. Engl., 1966, 5(10), 888-893. doi: 10.1002/anie.196608881
  55. Liu, H.; Tomooka, C.S.; Moore, H.W. An efficient general synthesis of squarate esters. Synth. Commun., 1997, 27(12), 2177-2180. doi: 10.1080/00397919708006826
  56. Tietze, L.F.; Arlt, M.; Beller, M. Gl üsenkamp, K.H.; Jähde, E.; Rajewsky, M.F. Anticancer agents, 15. squaric acid diethyl ester: A new coupling reagent for the formation of drug biopolymer conjugates. synthesis of squaric acid ester amides and diamides. Chem. Ber., 1991, 124(5), 1215-1221. doi: 10.1002/cber.19911240539
  57. Neuse, E.; Green, B. Amidierung von Quadratsäure-estern. Justus Liebigs Ann. Chem., 1973, 1973(4), 619-632. doi: 10.1002/jlac.197319730411
  58. López, C.; Vega, M.; Sanna, E.; Rotger, C.; Costa, A. Efficient microwave-assisted preparation of squaric acid monoamides in water. RSC Advances, 2013, 3(20), 7249-7253. doi: 10.1039/c3ra41369a
  59. Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. One-pot synthesis of unsymmetrical squaramides. RSC Advances, 2015, 5(42), 33450-33462. doi: 10.1039/C5RA05383H
  60. Chickos, J.S. Methylhydroxycyclobutenedione. J. Am. Chem. Soc., 1970, 92(19), 5749-5750. doi: 10.1021/ja00722a044
  61. Reed, M.W.; Pollart, D.J.; Perri, S.T.; Foland, L.D.; Moore, H.W. Synthesis of 4-substituted-3-alkoxy-3-cyclobutene-1,2-diones. J. Org. Chem., 1988, 53(11), 2477-2482. doi: 10.1021/jo00246a016
  62. Liebeskind, L.S.; Fengl, R.W.; Wirtz, K.R.; Shawe, T.T. An improved method for the synthesis of substituted cyclobutenediones. J. Org. Chem., 1988, 53(11), 2482-2488. doi: 10.1021/jo00246a017
  63. Liebeskind, L.S.; Fengl, R.W. 3-Stannylcyclobutenediones as nucleophilic cyclobutenedione equivalents. Synthesis of substituted cyclobutenediones and cyclobutenedione monoacetals and the beneficial effect of catalytic copper iodide on the Stille reaction. J. Org. Chem., 1990, 55(19), 5359-5364. doi: 10.1021/jo00306a012
  64. Kinney, W.A. Synthesis of alkyl substituted cyclobutenediones by free radical chemistry. Carbon for nitrogen replacement in the α-amino acid bioisostere 34-diamino-3-cyclobutene-1,2-dione. Tetrahedron Lett., 1993, 34(17), 2715-2718. doi: 10.1016/S0040-4039(00)73543-X
  65. Ehrhardt, H.; Hunig, S.; Putter, H. Amides and thioamides of squaric acid - Syntheses and reactions. Chem. Ber.-. Rec., 1977, 110(7), 2506-2523.
  66. Deyà, P.M.; Frontera, A.; Suñer, G.A.; Quiñonero, D.; Garau, C.; Costa, A.; Ballester, P. Internal rotation in squaramide and related compounds. A theoretical ab initio study. Theor. Chem. Acc., 2002, 108(3), 157-167. doi: 10.1007/s00214-002-0373-7
  67. Thorpe, J.E. 1H nuclear magnetic resonance spectra of some squaramides. J. Chem. Soc. B, 1968, 435-436. doi: 10.1039/j29680000435
  68. Quiñonero, D.; Tomàs, S.; Frontera, A.; Garau, C.; Ballester, P.; Costa, A.; Deyà, P.M. OPLS all-atom force field for squaramides and squaric acid. Chem. Phys. Lett., 2001, 350(3-4), 331-338. doi: 10.1016/S0009-2614(01)01229-5
  69. Kang, Y.K.; Park, H.S. Internal rotation about the C–N bond of amides. J. Mol. Struct. THEOCHEM, 2004, 676(1-3), 171-176. doi: 10.1016/j.theochem.2004.01.024
  70. Gilli, G.; Bertolasi, V.; Gilli, P.; Ferretti, V. Associations of squaric acid and its anions as multiform building blocks of hydrogen-bonded molecular crystals. Acta Crystallogr. B, 2001, 57(6), 859-865. doi: 10.1107/S0108768101014963 PMID: 11717486
  71. Liu, Y.; Lam, A.H.W.; Fowler, F.W.; Lauher, J.W. The squaramides. A new family of host molecules for crystal engineering. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2002, 389(1), 39-46. doi: 10.1080/713738914
  72. Mani, C.M.; Berthold, T.; Fechler, N. "Cubism" on the nanoscale: From squaric acid to porous carbon cubes. Small, 2016, 12(21), 2906-2912. doi: 10.1002/smll.201600284 PMID: 27062376
  73. Ding, N.; Zhou, T.; Weng, W.; Lin, Z.; Liu, S.; Maitarad, P.; Wang, C.; Guo, J. Multivariate synthetic strategy for improving crystallinity of zwitterionic squaraine‐linked covalent organic frameworks with enhanced photothermal performance. Small, 2022, 18(24), 2201275. doi: 10.1002/smll.202201275 PMID: 35585681
  74. Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. Optimizing the accuracy and computational cost in theoretical squaramide catalysis: The henry reaction. Chemistry, 2017, 23(61), 15336-15347. doi: 10.1002/chem.201702841 PMID: 28768048
  75. Zhao, B.L.; Li, J.H.; Du, D.M. Squaramide‐catalyzed asymmetric reactions. Chem. Rec., 2017, 17(10), 994-1018. doi: 10.1002/tcr.201600140 PMID: 28266131
  76. Matador, E.; de Gracia Retamosa, M.; Monge, D.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J.M. Bifunctional squaramide organocatalysts for the asymmetric addition of formaldehyde tert- butylhydrazone to simple aldehydes. Chemistry, 2018, 24(26), 6854-6860. doi: 10.1002/chem.201801052 PMID: 29570872
  77. Modrocká, V.; Veverková, E. Mečiarová, M.; Šebesta, R. Bifunctional amine-squaramides as organocatalysts in michael/hemiketalization reactions of βγ-unsaturated α-ketoesters and αβ-unsaturated ketones with 4-hydroxycou-marins. J. Org. Chem., 2018, 83(21), 13111-13120. doi: 10.1021/acs.joc.8b01847 PMID: 30277392
  78. Shukla, K. Khushboo; Mahto, P.; Singh, V.K. Enantioselective synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction using a bifunctional squaramide catalyst. Org. Biomol. Chem., 2022, 20(20), 4155-4160. doi: 10.1039/D2OB00633B PMID: 35521781
  79. Tong, C.; Liu, T.; Saez Talens, V.; Noteborn, W.E.M.; Sharp, T.H.; Hendrix, M.M.R.M.; Voets, I.K.; Mummery, C.L.; Orlova, V.V.; Kieltyka, R.E. Squaramide-based supramolecular materials for three-dimensional cell culture of human induced pluripotent stem cells and their derivatives. Biomacromolecules, 2018, 19(4), 1091-1099. doi: 10.1021/acs.biomac.7b01614 PMID: 29528623
  80. Tong, C.; Wondergem, J.A.J.; van den Brink, M.; Kwakernaak, M.C.; Chen, Y.; Hendrix, M.M.R.M.; Voets, I.K.; Danen, E.H.J.; Le Dévédec, S.; Heinrich, D.; Kieltyka, R.E. Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial. ACS Appl. Mater. Interfaces, 2022, 14(15), 17042-17054. doi: 10.1021/acsami.1c24114 PMID: 35403421
  81. Stucchi, S.; Colombo, D.; Guizzardi, R.; D’Aloia, A.; Collini, M.; Bouzin, M.; Costa, B.; Ceriani, M.; Natalello, A.; Pallavicini, P.; Cipolla, L. Squarate cross-linked gelatin hydrogels as three-dimensional scaffolds for biomedical applications. Langmuir, 2021, 37(48), 14050-14058. doi: 10.1021/acs.langmuir.1c02080 PMID: 34806889
  82. Olewnik-Kruszkowska, E.; Gierszewska, M. Grabska-Zielińska, S.; Skopińska-Wiśniewska, J.; Jakubowska, E. Examining the impact of squaric acid as a crosslinking agent on the properties of chitosan-based films. Int. J. Mol. Sci., 2021, 22(7), 3329. doi: 10.3390/ijms22073329 PMID: 33805101
  83. Huppertsberg, A.; Leps, C.; Alberg, I.; Rosenauer, C.; Morsbach, S.; Landfester, K.; Tenzer, S.; Zentel, R.; Nuhn, L. Squaric ester‐based nanogels induce no distinct protein corona but entrap plasma proteins into their porous hydrogel network. Macromol. Rapid Commun., 2022, 43(19), 2200318. doi: 10.1002/marc.202200318 PMID: 35687083
  84. Pósa, S.P.; Dargó, G.; Nagy, S.; Kisszékelyi, P.; Garádi, Z.; Hámori, L.; Szakács, G.; Kupai, J.; Tóth, S. Cytotoxicity of cinchona alkaloid organocatalysts against MES-SA and MES-SA/Dx5 multidrug-resistant uterine sarcoma cell lines. Bioorg. Med. Chem., 2022, 67, 116855. doi: 10.1016/j.bmc.2022.116855 PMID: 35640378
  85. Sleiman, M.H.; Ladame, S. Synthesis of squaraine dyes under mild conditions: applications for labelling and sensing of biomolecules. Chem. Commun. (Camb.), 2014, 50(40), 5288-5290. doi: 10.1039/c3cc47894g PMID: 24402188
  86. Lynch, D.E.; Hamilton, D.G. Croconaine dyes - the lesser known siblings of squaraines. Eur. J. Org. Chem., 2017, 2017(27), 3897-3911. doi: 10.1002/ejoc.201700218
  87. Yadav, Y.; Owens, E.; Nomura, S.; Fukuda, T.; Baek, Y.; Kashiwagi, S.; Choi, H.S.; Henary, M. Ultrabright and serum-stable squaraine dyes. J. Med. Chem., 2020, 63(17), 9436-9445. doi: 10.1021/acs.jmedchem.0c00617 PMID: 32787096
  88. Fukuda, T.; Yokomizo, S.; Casa, S.; Monaco, H.; Manganiello, S.; Wang, H.; Lv, X.; Ulumben, A.D.; Yang, C.; Kang, M.W.; Inoue, K.; Fukushi, M.; Sumi, T.; Wang, C.; Kang, H.; Bao, K.; Henary, M.; Kashiwagi, S.; Soo Choi, H. Fast and durable intraoperative near‐infrared imaging of ovarian cancer using ultrabright squaraine fluorophores. Angew. Chem. Int. Ed., 2022, 61(17), e202117330. doi: 10.1002/anie.202117330 PMID: 35150468
  89. Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. Squaraine dyes: A mine of molecular materials. J. Mater. Chem., 2008, 18(3), 264-274. doi: 10.1039/B707734C
  90. Avirah, R.R.; Jyothish, K.; Ramaiah, D. Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett., 2007, 9(1), 121-124. doi: 10.1021/ol062691v PMID: 17192100
  91. Radaram, B.; Mako, T.; Levine, M. Sensitive and selective detection of cesium via fluorescence quenching. Dalton Trans., 2013, 42(46), 16276-16278. doi: 10.1039/c3dt52215f PMID: 24113779
  92. Gao, F.P.; Lin, Y.X.; Li, L.L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J.G.; Li, J.Y.; Würthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials, 2014, 35(3), 1004-1014. doi: 10.1016/j.biomaterials.2013.10.039 PMID: 24169004
  93. Ramaiah, D.; Eckert, I.; Arun, K.T.; Weidenfeller, L.; Epe, B. Squaraine dyes for photodynamic therapy: Study of their cytotoxicity and genotoxicity in bacteria and mammalian cells. Photochem. Photobiol., 2002, 76(6), 672-677. doi: 10.1562/0031-8655(2002)0762.0.CO;2 PMID: 12511049
  94. Pairault, N.; Barat, R.; Tranoy-Opalinski, I.; Renoux, B.; Thomas, M.; Papot, S. Rotaxane-based architectures for biological applications. C. R. Chim., 2016, 19(1-2), 103-112. doi: 10.1016/j.crci.2015.05.012
  95. Gassensmith, J.J.; Baumes, J.M.; Smith, B.D. Discovery and early development of squaraine rotaxanes. Chem. Commun. (Camb.), 2009, (42), 6329-6338. doi: 10.1039/b911064j PMID: 19841772
  96. Smith, B.D. Smart molecules for imaging, sensing and health (SMITH). Beilstein J. Org. Chem., 2015, 11, 2540-2548. doi: 10.3762/bjoc.11.274 PMID: 26734100
  97. Arunkumar, E.; Forbes, C.C.; Noll, B.C.; Smith, B.D. Squaraine-derived rotaxanes: Sterically protected fluorescent near-IR dyes. J. Am. Chem. Soc., 2005, 127(10), 3288-3289. doi: 10.1021/ja042404n PMID: 15755140
  98. Das, R.S.; Saha, P.C.; Sepay, N.; Mukherjee, A.; Chatterjee, S.; Guha, S. Design and synthesis of near-infrared mechanically interlocked molecules for specific targeting of mitochondria. Org. Lett., 2020, 22(15), 5839-5843. doi: 10.1021/acs.orglett.0c01922 PMID: 32663029
  99. Barclay, M.S.; Roy, S.K.; Huff, J.S.; Mass, O.A.; Turner, D.B.; Wilson, C.K.; Kellis, D.L.; Terpetschnig, E.A.; Lee, J.; Davis, P.H.; Yurke, B.; Knowlton, W.B.; Pensack, R.D. Rotaxane rings promote oblique packing and extended lifetimes in DNA-templated molecular dye aggregates. Commun. Chem., 2021, 4(1), 19. doi: 10.1038/s42004-021-00456-8 PMID: 35474961
  100. Adablah, J.E.; Wang, Y.; Donohue, M.; Roper, M.G. Profiling glucose-stimulated and M3 receptor-activated insulin secretion dynamics from islets of langerhans using an extended-lifetime fluorescence dye. Anal. Chem., 2020, 92(12), 8464-8471. doi: 10.1021/acs.analchem.0c01226 PMID: 32429660
  101. Prohens, R.; Portell, A.; Font-Bardia, M.; Bauzá, A.; Frontera, A. H-Bonded anion–anion complex trapped in a squaramido-based receptor. Chem. Commun. (Camb.), 2018, 54(15), 1841-1844. doi: 10.1039/C7CC09241E PMID: 29250617
  102. Rostami, A.; Colin, A.; Li, X.Y.; Chudzinski, M.G.; Lough, A.J.; Taylor, M.S.N. N′-diarylsquaramides: General, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem., 2010, 75(12), 3983-3992. doi: 10.1021/jo100104g PMID: 20486682
  103. Marques, I.; Costa, P.M.R.; Q Miranda, M. Busschaert, N.; Howe, E.N.W.; Clarke, H.J.; Haynes, C.J.E.; Kirby, I.L.; Rodilla, A.M.; Pérez-Tomás, R.; Gale, P.A.; Félix, V. Full elucidation of the transmembrane anion transport mechanism of squaramides using in silico investigations. Phys. Chem. Chem. Phys., 2018, 20(32), 20796-20811. doi: 10.1039/C8CP02576B PMID: 29978159
  104. Bao, X.; Wu, X.; Berry, S.N.; Howe, E.N.W.; Chang, Y.T.; Gale, P.A. Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chem. Commun. (Camb.), 2018, 54(11), 1363-1366. doi: 10.1039/C7CC08706C PMID: 29354832
  105. Kumawat, L.K.; Wynne, C.; Cappello, E.; Fisher, P.; Brennan, L.E.; Strofaldi, A.; McManus, J.J.; Hawes, C.S.; Jolliffe, K.A.; Gunnlaugsson, T.; Elmes, R.B.P. Squaramide‐based self‐associating amphiphiles for anion recognition. ChemPlusChem, 2021, 86(8), 1058-1068. doi: 10.1002/cplu.202100275 PMID: 34351081
  106. Picci, G.; Kubicki, M.; Garau, A.; Lippolis, V.; Mocci, R.; Porcheddu, A.; Quesada, R.; Ricci, P.C.; Scorciapino, M.A.; Caltagirone, C. Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chem. Commun. (Camb.), 2020, 56(75), 11066-11069. doi: 10.1039/D0CC04090H PMID: 32812561
  107. Zaleskaya, M.; Jagleniec, D. Romański, J. Macrocyclic squaramides as ion pair receptors and fluorescent sensors selective towards sulfates. Dalton Trans., 2021, 50(11), 3904-3915. doi: 10.1039/D0DT04273K PMID: 33635308
  108. Fernández-Moreira, V.; Alegre-Requena, J.V.; Herrera, R.P.; Marzo, I.; Gimeno, M.C. Synthesis of luminescent squaramide monoesters: Cytotoxicity and cell imaging studies in HeLa cells. RSC Advances, 2016, 6(17), 14171-14177. doi: 10.1039/C5RA24521D
  109. Yu, X.H.; Cai, X.J.; Hong, X.Q.; Tam, K.Y.; Zhang, K.; Chen, W.H. Synthesis and biological evaluation of aza-crown ether–squaramide conjugates as anion/cation symporters. Future Med. Chem., 2019, 11(10), 1091-1106. doi: 10.4155/fmc-2018-0595 PMID: 31280669
  110. Tietze, L.F.; Schroeter, C.; Gabius, S.; Brinck, U.; Goerlach-Graw, A.; Gabius, H.J. Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjug. Chem., 1991, 2(3), 148-153. doi: 10.1021/bc00009a003 PMID: 1932213
  111. Xu, P.; Kelly, M.; Vann, W.F.; Qadri, F.; Ryan, E.T. Kováč P. Conjugate vaccines from bacterial antigens by squaric acid chemistry: A closer look. ChemBioChem, 2017, 18(8), 799-815. doi: 10.1002/cbic.201600699 PMID: 28182850
  112. Xu, P.; Trinh, M.N. Kováč P. Conjugation of carbohydrates to proteins using di(triethylene glycol monomethyl ether) squaric acid ester revisited. Carbohydr. Res., 2018, 456, 24-29. doi: 10.1016/j.carres.2017.10.012 PMID: 29247910
  113. Pozsgay, V.; Dubois, E.P.; Pannell, L. Synthesis of kojidextrins and their protein conjugates. incidence of steric mismatch in oligosaccharide synthesis. J. Org. Chem., 1997, 62(9), 2832-2846. doi: 10.1021/jo962300y PMID: 11671646
  114. Ivancová, I.; Pohl, R.; Hubálek, M.; Hocek, M. Squaramate‐modified nucleotides and DNA for specific cross‐linking with lysine‐containing peptides and proteins. Angew. Chem. Int. Ed., 2019, 58(38), 13345-13348. doi: 10.1002/anie.201906737 PMID: 31328344
  115. Meng, X.; Ji, C.; Su, C.; Shen, D.; Li, Y.; Dong, P.; Yuan, D.; Yang, M.; Bai, S.; Meng, D.; Fan, Z.; Yang, Y.; Yu, P.; Zhu, T. Synthesis and immunogenicity of PG-tb1 monovalent glycoconjugate. Eur. J. Med. Chem., 2017, 134, 140-146. doi: 10.1016/j.ejmech.2017.03.058 PMID: 28411454
  116. Anraku, K.; Sato, S.; Jacob, N.T.; Eubanks, L.M.; Ellis, B.A.; Janda, K.D. The design and synthesis of an α-Gal trisaccharide epitope that provides a highly specific anti-Gal immune response. Org. Biomol. Chem., 2017, 15(14), 2979-2992. doi: 10.1039/C7OB00448F PMID: 28294277
  117. Rudd, S.E.; Roselt, P.; Cullinane, C.; Hicks, R.J.; Donnelly, P.S. A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chem. Commun. (Camb.), 2016, 52(80), 11889-11892. doi: 10.1039/C6CC05961A PMID: 27711378
  118. Sayeed, M.A.; Bufano, M.K.; Xu, P.; Eckhoff, G.; Charles, R.C.; Alam, M.M.; Sultana, T.; Rashu, M.R.; Berger, A.; Gonzalez-Escobedo, G.; Mandlik, A.; Bhuiyan, T.R.; Leung, D.T.; LaRocque, R.C.; Harris, J.B.; Calderwood, S.B.; Qadri, F.; Vann, W.F. Kováč P.; Ryan, E.T. A cholera conjugate vaccine containing o-specific polysaccharide (OSP) of V. cholerae O1 inaba and recombinant fragment of tetanus toxin heavy chain (OSP:rTTHc) induces serum, memory and lamina proprial responses against OSP and is protective in mice. PLoS Negl. Trop. Dis., 2015, 9(7), e0003881. doi: 10.1371/journal.pntd.0003881 PMID: 26154421
  119. Böcker, S.; Laaf, D.; Elling, L. Galectin binding to neo-glycoproteins: LacDiNAc conjugated BSA as ligand for human galectin-3. Biomolecules, 2015, 5(3), 1671-1696. doi: 10.3390/biom5031671 PMID: 26213980
  120. Palitzsch, B.; Hartmann, S.; Stergiou, N.; Glaffig, M.; Schmitt, E.; Kunz, H. A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. Angew. Chem. Int. Ed., 2014, 53(51), 14245-14249. doi: 10.1002/anie.201406843 PMID: 25318465
  121. Wurm, F.; Dingels, C.; Frey, H.; Klok, H.A. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates. Biomacromolecules, 2012, 13(4), 1161-1171. doi: 10.1021/bm300103u PMID: 22376203
  122. Dingels, C.; Wurm, F.; Klok, H.A.; Frey, H. Squaric acid ester amido mPEGs: New reagents for the PEGylation of proteins. Abstr. Pap. Am. Chem. Soc. 2011 241st National Meeting, March 28-31, 2011
  123. Dingels, C.; Wurm, F.; Wagner, M.; Klok, H.A.; Frey, H. Squaric acid mediated chemoselective PEGylation of proteins: Reactivity of single-step-activated α-amino poly(ethylene glycol)s. Chemistry, 2012, 18(52), 16828-16835. doi: 10.1002/chem.201200182 PMID: 23135990
  124. Tian, H.; Huang, Y.; He, J.; Zhang, M.; Ni, P. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells. ACS Appl. Bio Mater., 2021, 4(5), 4422-4431. doi: 10.1021/acsabm.1c00177 PMID: 35006854
  125. Tevyashova, A.; Sztaricskai, F.; Batta, G.; Herczegh, P.; Jeney, A. Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties. Bioorg. Med. Chem. Lett., 2004, 14(18), 4783-4789. doi: 10.1016/j.bmcl.2004.06.072 PMID: 15324908
  126. Greifenstein, L.; Engelbogen, N.; Lahnif, H.; Sinnes, J.P.; Bergmann, R.; Bachmann, M.; Rösch, F. Synthesis, labeling and preclinical evaluation of a squaric acid containing PSMA inhibitor labeled with 68 Ga: A comparison with PSMA‐11 and PSMA‐617. ChemMedChem, 2020, 15(8), 695-704. doi: 10.1002/cmdc.201900559 PMID: 32057189
  127. Moon, E.S.; Ballal, S.; Yadav, M.P.; Bal, C.; Van Rymenant, Y.; Stephan, S.; Bracke, A.; Van der Veken, P.; De Meester, I.; Roesch, F. Fibroblast Activation Protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: A step to improve tumor uptake and retention time. Am. J. Nucl. Med. Mol. Imaging, 2021, 11(6), 476-491. PMID: 35003886
  128. World Health Organization (WHO). World Malaria Report 2020: 20 Years of Global Progress and Challenges; Geneva, Switzerland. , 2020.
  129. Abd-Rahman, A.N.; Zaloumis, S.; McCarthy, J.S.; Simpson, J.A.; Commons, R.J. Scoping review of antimalarial drug candidates in Phase I and II drug development. Antimicrob. Agents Chemother., 2022, 66(2), e01659-e21. doi: 10.1128/aac.01659-21 PMID: 34843390
  130. Tchekounou, C.; Zida, A.; Zongo, C.; Soulama, I.; Sawadogo, P.M.; Guiguemde, K.T.; Sangaré, I.; Guiguemde, R.T.; Traore, Y. Antimalarial drugs resistance genes of Plasmodium falciparum: A review. Ann. Parasitol., 2022, 68(2), 215-225. PMID: 35809349
  131. Glória, P.M.C.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Aza vinyl sulfones: Synthesis and evaluation as antiplasmodial agents. Bioorg. Med. Chem., 2011, 19(24), 7635-7642. doi: 10.1016/j.bmc.2011.10.018 PMID: 22071522
  132. Guiguemde, W.A.; Shelat, A.A.; Bouck, D.; Duffy, S.; Crowther, G.J.; Davis, P.H.; Smithson, D.C.; Connelly, M.; Clark, J.; Zhu, F.; Jiménez-Díaz, M.B.; Martinez, M.S.; Wilson, E.B.; Tripathi, A.K.; Gut, J.; Sharlow, E.R.; Bathurst, I.; Mazouni, F.E.; Fowble, J.W.; Forquer, I.; McGinley, P.L.; Castro, S.; Angulo-Barturen, I.; Ferrer, S.; Rosenthal, P.J.; DeRisi, J.L.; Sullivan, D.J.; Lazo, J.S.; Roos, D.S.; Riscoe, M.K.; Phillips, M.A.; Rathod, P.K.; Van Voorhis, W.C.; Avery, V.M.; Guy, R.K. Chemical genetics of Plasmodium falciparum. Nature, 2010, 465(7296), 311-315. doi: 10.1038/nature09099 PMID: 20485428
  133. Kumar, S.P.; Glória, P.M.C.; Gonçalves, L.M.; Gut, J.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid: A valuable scaffold for developing antimalarials? MedChemComm, 2012, 3(4), 489-493. doi: 10.1039/c2md20011b
  134. Ribeiro, C.J.A.; Kumar, S.P.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Moreira, R.; Santos, M.M.M. Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. Eur. J. Med. Chem., 2013, 69, 365-372. doi: 10.1016/j.ejmech.2013.08.037 PMID: 24077527
  135. Ribeiro, C.J.A.; Espadinha, M.; Machado, M.; Gut, J.; Gonçalves, L.M.; Rosenthal, P.J.; Prudêncio, M.; Moreira, R.; Santos, M.M.M. Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorg. Med. Chem., 2016, 24(8), 1786-1792. doi: 10.1016/j.bmc.2016.03.005 PMID: 26968650
  136. Lande, D.H.; Nasereddin, A.; Alder, A.; Gilberger, T.W.; Dzikowski, R.; Grünefeld, J.; Kunick, C. Synthesis and antiplasmodial activity of bisindolylcyclobutenediones. Molecules, 2021, 26(16), 4739. doi: 10.3390/molecules26164739 PMID: 34443327
  137. Marín, C.; Ximenis, M.; Ramirez-Macías, I.; Rotger, C.; Urbanova, K.; Olmo, F.; Martín-Escolano, R.; Rosales, M.J.; Cañas, R.; Gutierrez-Sánchez, R.; Costa, A.; Sánchez-Moreno, M. Effective anti-leishmanial activity of minimalist squaramide-based compounds. Exp. Parasitol., 2016, 170, 36-49. doi: 10.1016/j.exppara.2016.07.013 PMID: 27480054
  138. Olmo, F.; Rotger, C.; Ramírez-Macías, I.; Martínez, L.; Marín, C.; Carreras, L.; Urbanová, K.; Vega, M.; Chaves-Lemaur, G.; Sampedro, A.; Rosales, M.J.; Sánchez-Moreno, M.; Costa, A. Synthesis and biological evaluation of N,N′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. J. Med. Chem., 2014, 57(3), 987-999. doi: 10.1021/jm4017015 PMID: 24410674
  139. Quijia, C.R.; Bonatto, C.C.; Silva, L.P.; Andrade, M.A.; Azevedo, C.S.; Lasse Silva, C.; Vega, M.; de Santana, J.M.; Bastos, I.M.D.; Carneiro, M.L.B. Liposomes composed by membrane lipid extracts from macrophage cell line as a delivery of the trypanocidal N,N′-squaramide 17 towards Trypanosoma cruzi. Materials (Basel), 2020, 13(23), 5505. doi: 10.3390/ma13235505 PMID: 33276688
  140. Niewiadomski, S.; Beebeejaun, Z.; Denton, H.; Smith, T.K.; Morris, R.J.; Wagner, G.K. Rationally designed squaryldiamides – a novel class of sugar-nucleotide mimics? Org. Biomol. Chem., 2010, 8(15), 3488-3499. doi: 10.1039/c004165c PMID: 20532300
  141. Golkowski, M.; Perera, G.K.; Vidadala, V.N.; Ojo, K.K.; Van Voorhis, W.C.; Maly, D.J.; Ong, S.E. Kinome chemoproteomics characterization of pyrrolo3,4- cpyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Mol. Omics, 2018, 14(1), 26-36. doi: 10.1039/C7MO00006E PMID: 29725679
  142. Martín-Escolano, R.; Marín, C.; Vega, M.; Martin-Montes, Á.; Medina-Carmona, E.; López, C.; Rotger, C.; Costa, A.; Sánchez-Moreno, M. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg. Med. Chem., 2019, 27(5), 865-879. doi: 10.1016/j.bmc.2019.01.033 PMID: 30728107
  143. Sato, K.; Seio, K.; Sekine, M. Synthesis and properties of a new oligonucleotide analogue containing an internucleotide squaryl amide linkage. Nucleic Acids Symp. Ser., 2001, 1(1), 121-122. doi: 10.1093/nass/1.1.121 PMID: 12836294
  144. Sato, K.; Seio, K.; Sekine, M. Squaryl group as a new mimic of phosphate group in modified oligodeoxynucleotides: synthesis and properties of new oligodeoxynucleotide analogues containing an internucleotidic squaryldiamide linkage. J. Am. Chem. Soc., 2002, 124(43), 12715-12724. doi: 10.1021/ja027131f PMID: 12392419
  145. Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem., 2016, 124, 200-217. doi: 10.1016/j.ejmech.2016.08.047 PMID: 27592390
  146. Sato, K.; Tawarada, R.; Seio, K.; Sekine, M. Synthesis and structural properties of new oligodeoxynucleotide analogues containing a 2 ',5 '-internucleotidic squaryldiamide linkage capable of formation of a Watson-Crick base pair with adenine and a wobble base pair with guanine at the 3 '-downstream junction site. Eur. J. Org. Chem., 2004, 2004(10), 2142-2150. doi: 10.1002/ejoc.200300682
  147. Seio, K.; Miyashita, T.; Sato, K.; Sekine, M. Synthesis and properties of new nucleotide analogues possessing squaramide moieties as new phosphate isosters. Eur. J. Org. Chem., 2005, 2005(24), 5163-5170. doi: 10.1002/ejoc.200500520
  148. Berney, M.; Doherty, W.; Jauslin, W.T.T.; Manoj, M.; Dürr, E.M.; McGouran, J.F. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg. Med. Chem., 2021, 46, 116369. doi: 10.1016/j.bmc.2021.116369 PMID: 34482229
  149. Saha, A.; Panda, S.; Paul, S.; Manna, D. Phosphate bioisostere containing amphiphiles: a novel class of squaramide-based lipids. Chem. Commun. (Camb.), 2016, 52(60), 9438-9441. doi: 10.1039/C6CC04089F PMID: 27377058
  150. Ishida, T.; Shinada, T.; Ohfune, Y. Synthesis of novel amino squaric acids via addition of dianion enolates derived from N-Boc amino acid esters. Tetrahedron Lett., 2005, 46(2), 311-314. doi: 10.1016/j.tetlet.2004.11.044
  151. Shinada, T.; Ohfune, Y.; Ishida, T. Syntheses of alpha-amino squaric acids using an aminomalonate equivalent bearing a squaryl group. Synthesis, 2005, 2005(16), 2723-2729. doi: 10.1055/s-2005-872109
  152. Campbell, E.F.; Park, A.K.; Kinney, W.A.; Fengl, R.W.; Liebeskind, L.S. Synthesis of 3-hydroxy-3-cyclobutene-1,2-dione based amino acids. J. Org. Chem., 1995, 60(5), 1470-1472. doi: 10.1021/jo00110a060
  153. Martínez, L.; Martorell, G.; Sampedro, Á.; Ballester, P.; Costa, A.; Rotger, C. Hydrogen bonded squaramide-based foldable module induces both β- and α-turns in hairpin structures of α-peptides in water. Org. Lett., 2015, 17(12), 2980-2983. doi: 10.1021/acs.orglett.5b01268 PMID: 26035233
  154. Martínez-Crespo, L.; Escudero-Adán, E.C.; Costa, A.; Rotger, C. The role of N-methyl squaramides in a hydrogen-bonding strategy to fold peptidomimetic compounds. Chemistry, 2018, 24(67), 17802-17813. doi: 10.1002/chem.201803930 PMID: 30242922
  155. Narasimhan, S.K.; Sejwal, P.; Zhu, S.; Luk, Y.Y. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces. Bioorg. Med. Chem., 2013, 21(8), 2210-2216. doi: 10.1016/j.bmc.2013.02.032 PMID: 23490157
  156. Shinada, T.; Ishida, T.; Hayashi, K.; Yoshida, Y.; Shigeri, Y.; Ohfune, Y. Synthesis of leucine-enkephalin analogs containing α-amino squaric acid. Tetrahedron Lett., 2007, 48(43), 7614-7617. doi: 10.1016/j.tetlet.2007.08.103
  157. Rotger, C.; Piña, M.N.; Vega, M.; Ballester, P.; Deyà, P.M.; Costa, A. Efficient macrocyclization of preorganized palindromic oligosquaramides. Angew. Chem. Int. Ed., 2006, 45(41), 6844-6848. doi: 10.1002/anie.200602790 PMID: 17001726
  158. Villalonga, P.; Fernández de Mattos, S.; Ramis, G.; Obrador-Hevia, A.; Sampedro, A.; Rotger, C.; Costa, A. Cyclosquaramides as kinase inhibitors with anticancer activity. ChemMedChem, 2012, 7(8), 1472-1480. doi: 10.1002/cmdc.201200157 PMID: 22777958
  159. Zhang, Q.; Xia, Z.; Mitten, M.J.; Lasko, L.M.; Klinghofer, V.; Bouska, J.; Johnson, E.F.; Penning, T.D.; Luo, Y.; Giranda, V.L.; Shoemaker, A.R.; Stewart, K.D.; Djuric, S.W.; Vasudevan, A. Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7615-7622. doi: 10.1016/j.bmcl.2012.10.009 PMID: 23103095
  160. Yen-Pon, E.; Li, B.; Acebrón-Garcia-de-Eulate, M.; Tomkiewicz-Raulet, C.; Dawson, J.; Lietha, D.; Frame, M.C.; Coumoul, X.; Garbay, C.; Etheve-Quelquejeu, M.; Chen, H. Structure-based design, synthesis, and characterization of the first irreversible inhibitor of focal adhesion kinase. ACS Chem. Biol., 2018, 13(8), 2067-2073. doi: 10.1021/acschembio.8b00250 PMID: 29897729
  161. Koromilas, A.E. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. Biochim. Biophys. Acta. Gene Regul. Mech., 2015, 1849(7), 871-880. doi: 10.1016/j.bbagrm.2014.12.007 PMID: 25497381
  162. Chen, T.; Takrouri, K.; Hee-Hwang, S.; Rana, S.; Yefidoff-Freedman, R.; Halperin, J.; Natarajan, A.; Morisseau, C.; Hammock, B.; Chorev, M.; Aktas, B.H. Explorations of substituted urea functionality for the discovery of new activators of the heme-regulated inhibitor kinase. J. Med. Chem., 2013, 56(23), 9457-9470. doi: 10.1021/jm400793v PMID: 24261904
  163. Kwak, J.; Kim, M.J.; Kim, S.; Park, G.B.; Jo, J.; Jeong, M.; Kang, S.; Moon, S.; Bang, S.; An, H.; Hwang, S.; Kim, M.S.; Yoo, J.W.; Moon, H.R.; Chang, W.; Chung, K.W.; Jeong, J.Y.; Yun, H. A bioisosteric approach to the discovery of novel N-aryl-N′-4-(aryloxy)cyclohexylsquaramide-based activators of eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation. Eur. J. Med. Chem., 2022, 239, 114501. doi: 10.1016/j.ejmech.2022.114501 PMID: 35716517
  164. Patberg, M.; Isaak, A.; Füsser, F.; Ortiz Zacarías, N.V.; Vinnenberg, L.; Schulte, J.; Michetti, L.; Grey, L.; van der Horst, C.; Hundehege, P.; Koch, O.; Heitman, L.H.; Budde, T.; Junker, A. Piperazine squaric acid diamides, a novel class of allosteric P2X7 receptor antagonists. Eur. J. Med. Chem., 2021, 226, 113838. doi: 10.1016/j.ejmech.2021.113838 PMID: 34571173
  165. Liu, Z.; Wang, Y.; Han, Y.; Liu, L.; Jin, J.; Yi, H.; Li, Z.; Jiang, J.; Boykin, D.W. Synthesis and antitumor activity of novel 3,4-diaryl squaric acid analogs. Eur. J. Med. Chem., 2013, 65, 187-194. doi: 10.1016/j.ejmech.2013.04.046 PMID: 23708012
  166. Quintana, M.; Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P.; Triola, G. Squaramides with cytotoxic activity against human gastric carcinoma cells HGC-27: synthesis and mechanism of action. MedChemComm, 2016, 7(3), 550-561. doi: 10.1039/C5MD00515A
  167. Ajith, C.; Gupta, S.; Kanwar, A.J. Efficacy and safety of the topical sensitizer squaric acid dibutyl ester in Alopecia areata and factors influencing the outcome. J. Drugs Dermatol., 2006, 5(3), 262-266. PMID: 16573260
  168. Hill, N.D.; Bunata, K.; Hebert, A.A. Treatment of alopecia areata with squaric acid dibutylester. Clin. Dermatol., 2015, 33(3), 300-304. doi: 10.1016/j.clindermatol.2014.12.001 PMID: 25889130
  169. Choi, Y.S.; Erlich, T.H.; von Franque, M.; Rachmin, I.; Flesher, J.L.; Schiferle, E.B.; Zhang, Y.; Pereira da Silva, M.; Jiang, A.; Dobry, A.S.; Su, M.; Germana, S.; Lacher, S.; Freund, O.; Feder, E.; Cortez, J.L.; Ryu, S.; Babila Propp, T.; Samuels, Y.L.; Zakka, L.R.; Azin, M.; Burd, C.E.; Sharpless, N.E.; Liu, X.S.; Meyer, C.; Austen, W.G., Jr; Bojovic, B.; Cetrulo, C.L., Jr; Mihm, M.C.; Hoon, D.S.; Demehri, S.; Hawryluk, E.B.; Fisher, D.E. Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell, 2022, 158(12), 2071-2085. doi: 10.1016/j.cell.2022.04.025
  170. Cole, R.J.; Kirksey, J.W.; Cutler, H.G.; Doupnik, B.L.; Peckham, J.C. Toxin from Fusarium moniliforme: Effects on plants and animals. Science, 1973, 179(4080), 1324-1326. doi: 10.1126/science.179.4080.1324 PMID: 17835939
  171. Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit. Rev. Food Sci. Nutr., 2008, 48(1), 21-49. doi: 10.1080/10408390601062021 PMID: 18274964
  172. Burka, L.T.; Doran, J.; Wilson, B.J. Enzyme inhibition and the toxic action of moniliformin and other vinylogous α-ketoacids. Biochem. Pharmacol., 1982, 31(1), 79-84. doi: 10.1016/0006-2952(82)90240-4 PMID: 7059356
  173. Gathercole, P.S.; Thiel, P.G.; Hofmeyr, J.H.S. Inhibition of pyruvate dehydrogenase complex by moniliformin. Biochem. J., 1986, 233(3), 719-723. doi: 10.1042/bj2330719 PMID: 3707519
  174. Pirrung, M.C.; Nauhaus, S.K.; Singh, B. Cofactor-directed, time-dependent inhibition of thiamine enzymes by the fungal toxin moniliformin. J. Org. Chem., 1996, 61(8), 2592-2593. doi: 10.1021/jo950451f PMID: 11667082
  175. Zhang, X.; Zuo, Z.; Tang, J.; Wang, K.; Wang, C.; Chen, W.; Li, C.; Xu, W.; Xiong, X.; Yuntai, K.; Huang, J.; Lan, X.; Zhou, H.B. Design, synthesis and biological evaluation of novel estrogen-derived steroid metal complexes. Bioorg. Med. Chem. Lett., 2013, 23(13), 3793-3797. doi: 10.1016/j.bmcl.2013.04.088 PMID: 23726343
  176. Zhang, Z.F.; Chen, J.; Han, X.; Zhang, Y.; Liao, H.B.; Lei, R.X.; Zhuang, Y.; Wang, Z.F.; Li, Z.; Chen, J.C.; Liao, W.J.; Zhou, H.B.; Liu, F.; Wan, Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br. J. Pharmacol., 2017, 174(8), 641-656. doi: 10.1111/bph.13727 PMID: 28127755
  177. Kinney, W.A.; Lee, N.E.; Garrison, D.T.; Podlesny, E.J., Jr; Simmonds, J.T.; Bramlett, D.; Notvest, R.R.; Kowal, D.M.; Tasse, R.P. Bioisosteric replacement of the. alpha.-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists. J. Med. Chem., 1992, 35(25), 4720-4726. doi: 10.1021/jm00103a010 PMID: 1361582
  178. Kinney, W.A.; Abou-Gharbia, M.; Garrison, D.T.; Schmid, J.; Kowal, D.M.; Bramlett, D.R.; Miller, T.L.; Tasse, R.P.; Zaleska, M.M.; Moyer, J.A. Design and synthesis of 2-(8,9-dioxo-2,6-diazabicyclo5.2.0non-1(7)-en-2-yl)- ethylphosphonic acid (EAA-090), a potent N-methyl-D-aspartate antagonist, via the use of 3-cyclobutene-1,2-dione as an achiral α-amino acid bioisostere. J. Med. Chem., 1998, 41(2), 236-246. doi: 10.1021/jm970504g PMID: 9457246
  179. Childers, W.E.J.; Abou-Gharbia, M.A.; Moyer, J.A.; Zaleska, M.M. EAA-090 - Neuroprotectant, Competitive NMDA antagonist. Drugs Future, 2002, 27(7), 633-638. doi: 10.1358/dof.2002.027.07.685790
  180. Chan, P.C.M.; Roon, R.J.; Koerner, J.F.; Taylor, N.J.; Honek, J.F. A 3-amino-4-hydroxy-3-cyclobutene-1,2-dione-containing glutamate analogue exhibiting high affinity to excitatory amino acid receptors. J. Med. Chem., 1995, 38(22), 4433-4438. doi: 10.1021/jm00022a007 PMID: 7473569
  181. Urbahns, K.; Härter, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.; Brüggemeier, U.; Vaupel, A.; Keldenich, J.; Lustig, K.; Tsujishita, H.; Gerdes, C. Biphenyls as potent vitronectin receptor antagonists. Part 3: Squaric acid amides. Bioorg. Med. Chem. Lett., 2007, 17(22), 6151-6154. doi: 10.1016/j.bmcl.2007.09.039 PMID: 17910915
  182. Corzo, G.; Nakajima, T.; Ohfune, Y.; Shinada, T.; Nakagawa, Y.; Hayashi, K. Synthesis and paralytic activities of squaryl amino acid-containing polyamine toxins. Amino Acids, 2003, 24(3), 293-301. doi: 10.1007/s00726-002-0402-9 PMID: 12707812
  183. Raval, S.; Raval, P.; Bandyopadhyay, D.; Soni, K.; Yevale, D.; Jogiya, D.; Modi, H.; Joharapurkar, A.; Gandhi, N.; Jain, M.R.; Patel, P.R. Design and synthesis of novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives as thyroid hormone receptor β (TR-β) selective ligands. Bioorg. Med. Chem. Lett., 2008, 18(14), 3919-3924. doi: 10.1016/j.bmcl.2008.06.038 PMID: 18585912
  184. Porter, J.R.; Archibald, S.C.; Childs, K.; Critchley, D.; Head, J.C.; Linsley, J.M.; Parton, T.A.H.; Robinson, M.K.; Shock, A.; Taylor, R.J.; Warrellow, G.J.; Alexander, R.P.; Langham, B. Squaric acid derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett., 2002, 12(7), 1051-1054. doi: 10.1016/S0960-894X(02)00075-6 PMID: 11909715
  185. Ganellin, C.R.; Young, R.C. Pharmacologically active cyclo butenediones. U.S. Patent 4062863 1977 1977.
  186. Algieri, A.A.; Crenshaw, R.R. 1,2-diaminocyclobutene-3,4-diones and a pharmaceutical composition containing them. Patent FR 2505835A1 1982.
  187. Young, R.C.; Durant, G.J.; Emmett, J.C.; Ganellin, C.R.; Graham, M.J.; Mitchell, R.C.; Prain, H.D.; Roantree, M.L. Dipole moment in relation to hydrogen receptor histamine antagonist activity for cimetidine analogs. J. Med. Chem., 1986, 29(1), 44-49. doi: 10.1021/jm00151a007 PMID: 3941412
  188. Cavanagh, R.L.; Buyniski, J.P. Effect of BMY-25368, a potent and long-acting histamine H2-receptor antagonist, on gastric secretion and aspirin-induced gastric lesions in the dog. Aliment. Pharmacol. Ther., 1989, 3(3), 299-313. doi: 10.1111/j.1365-2036.1989.tb00217.x PMID: 2577694
  189. Gavey, C.J.; Smith, J.T.L.; Nwokolo, C.U.; Pounder, R.E. The effect of SK&F 94482 (BMY-25368) on 24-hour intragastric acidity and plasma gastrin concentration in healthy subjects. Aliment. Pharmacol. Ther., 1989, 3(6), 557-564. doi: 10.1111/j.1365-2036.1989.tb00248.x PMID: 2577500
  190. Isobe, Y.; Nagai, H.; Muramatsu, M.; Aihara, H.; Otomo, S. Antisecretory and antilesional effect of a new histamine H2-receptor antagonist, IT-066, in rats. J. Pharmacol. Exp. Ther., 1990, 255(3), 1078-1082. PMID: 1979811
  191. Ito, A.; Kakizaki, M.; Nagase, H.; Murakami, S.; Yamada, H.; Mori, Y. Effects of H2-receptor antagonists on matrix metalloproteinases in rat gastric tissues with acetic acid-induced ulcer. J. Pharmacobiodyn., 1991, 14(6), 285-291. doi: 10.1248/bpb1978.14.285 PMID: 1686058
  192. Muramatsu, M.; Hirose-Kijima, H.; Aihara, H.; Otomo, S. Time-dependent interaction of a new H2-receptor antagonist, IT-066, with the receptor in the atria of guinea pig. Jpn. J. Pharmacol., 1991, 57(1), 13-24. doi: 10.1254/jjp.57.13 PMID: 1686920
  193. Naito, Y.; Yoshikawa, T.; Matsuyama, K.; Yagi, N.; Arai, M.; Nakamura, Y.; Kaneko, T.; Yoshida, N.; Kondo, M. Effect of a novel histamine H2 receptor antagonist, IT-066, on acute gastric injury induced by ischemia-reperfusion in rats, and its antioxidative properties. Eur. J. Pharmacol., 1995, 294(1), 47-54. doi: 10.1016/0014-2999(95)00512-9 PMID: 8788415
  194. Kojima, K.; Nakajima, K.; Kurata, H.; Tabata, K.; Utsui, Y. Synthesis of a piperidinomethylthiophene derivative as H2-antagonist with inhibitory activity against Helicobacter pylori. Bioorg. Med. Chem. Lett., 1996, 6(15), 1795-1798. doi: 10.1016/0960-894X(96)00313-7
  195. Kijima, H.; Isobe, Y.; Muramatsu, M.; Yokomori, S.; Suzuki, M.; Higuchi, S. Structure-activity characterization of an H2-receptor antagonist, 3-amino-4-4-4-(1-piperidinomethyl)-2-pyridyloxy-cis-2-+++butenylamino-3-cyclobutene-1,2-dione hydrochloride (T-066), involved in the insurmountable antagonism against histamine-induced positive chronotropic action in guinea pig atria. Biochem. Pharmacol., 1998, 55(2), 151-157. doi: 10.1016/S0006-2952(97)00416-4 PMID: 9448737
  196. Zhang, X.; Guo, R.; Kambara, H.; Ma, F.; Luo, H.R. The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr. Opin. Hematol., 2019, 26(1), 28-33. doi: 10.1097/MOH.0000000000000476 PMID: 30407218
  197. Stadtmann, A.; Zarbock, A. CXCR2: From Bench to Bedside. Front. Immunol., 2012, 3, 263. doi: 10.3389/fimmu.2012.00263 PMID: 22936934
  198. Jaffer, T.; Ma, D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl. Cancer Res., 2016, 5(S4), S616-S628. doi: 10.21037/tcr.2016.10.06
  199. Merritt, J.R.; Rokosz, L.L.; Nelson, K.H., Jr; Kaiser, B.; Wang, W.; Stauffer, T.M.; Ozgur, L.E.; Schilling, A.; Li, G.; Baldwin, J.J.; Taveras, A.G.; Dwyer, M.P.; Chao, J. Synthesis and structure–activity relationships of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists. Bioorg. Med. Chem. Lett., 2006, 16(15), 4107-4110. doi: 10.1016/j.bmcl.2006.04.082 PMID: 16697193
  200. Gonsiorek, W.; Fan, X.; Hesk, D.; Fossetta, J.; Qiu, H.; Jakway, J.; Billah, M.; Dwyer, M.; Chao, J.; Deno, G.; Taveras, A.; Lundell, D.J.; Hipkin, R.W. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J. Pharmacol. Exp. Ther., 2007, 322(2), 477-485. doi: 10.1124/jpet.106.118927 PMID: 17496166
  201. Biju, P.; Taveras, A.G.; Dwyer, M.P.; Yu, Y.; Chao, J.; Hipkin, R.W.; Fan, X.; Rindgen, D.; Fine, J.; Lundell, D. Fluoroalkyl α side chain containing 3,4-diamino-cyclobutenediones as potent and orally bioavailable CXCR2–CXCR1 dual antagonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1431-1433. doi: 10.1016/j.bmcl.2009.01.033 PMID: 19196511
  202. Che, J.X.; Wang, Z.L.; Dong, X.W.; Hu, Y.H.; Xie, X.; Hu, Y.Z. Bicyclo2.2.1heptane containing N, N ′-diarylsquaramide CXCR2 selective antagonists as anti-cancer metastasis agents. RSC Advances, 2018, 8(20), 11061-11069. doi: 10.1039/C8RA01806E PMID: 35541503
  203. McCleland, B.W.; Davis, R.S.; Palovich, M.R.; Widdowson, K.L.; Werner, M.L.; Burman, M.; Foley, J.J.; Schmidt, D.B.; Sarau, H.M.; Rogers, M.; Salyers, K.L.; Gorycki, P.D.; Roethke, T.J.; Stelman, G.J.; Azzarano, L.M.; Ward, K.W.; Busch-Petersen, J. Comparison of N,N′-diarylsquaramides and N,N′-diarylureas as antagonists of the CXCR2 chemokine receptor. Bioorg. Med. Chem. Lett., 2007, 17(6), 1713-1717. doi: 10.1016/j.bmcl.2006.12.067 PMID: 17236763
  204. Dwyer, M.P.; Biju, P. Discovery of 3,4-diaminocyclobut-3-ene-1,2-dione-based CXCR2 receptor antagonists for the treatment of inflammatory disorders. Curr. Top. Med. Chem., 2010, 10(13), 1339-1350. doi: 10.2174/156802610791561246 PMID: 20536426
  205. Martin, B.; Lai, X.; Baettig, U.; Neumann, E.; Kuhnle, T.; Porter, D.; Robinson, R.; Hatto, J.; D’Souza, A.M.; Steward, O.; Watson, S.; Press, N.J. Early process development of a squaramide-based CXCR2 receptor antagonist. Org. Process Res. Dev., 2015, 19(8), 1038-1043. doi: 10.1021/acs.oprd.5b00072
  206. Liu, S.; Liu, Y.; Wang, H.; Ding, Y.; Wu, H.; Dong, J.; Wong, A.; Chen, S.H.; Li, G.; Chan, M.; Sawyer, N.; Gervais, F.G.; Henault, M.; Kargman, S.; Bedard, L.L.; Han, Y.; Friesen, R.; Lobell, R.B.; Stout, D.M. Design, synthesis, and evaluation of novel 3-amino-4-hydrazine-cyclobut-3-ene-1,2-diones as potent and selective CXCR2 chemokine receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5741-5745. doi: 10.1016/j.bmcl.2009.08.014 PMID: 19713110
  207. Dohme, M.S. Long-Term study of the effects of navarixin (SCH 527123, MK-7123) in participants with moderate to severe COPD (MK-7123-019). ClinicalTrials.gov Identifier: NCT01006616, Available from: https://www. clinicaltrials.gov/ct2/show/results/NCT01006616
  208. Dohme, M.S. Efficacy and safety study of navarixin (MK-7123) in combination with pembrolizumab (MK-3475) in adults with selected advanced/metastatic solid tumors (MK-7123-034). ClinicalTrials.gov Identifier: NCT03473925, Available from: https://clinicaltrials.gov/ct2/show/results/NCT03473925#evnt
  209. Lee, C.W.; Cao, H.; Ichiyama, K.; Rana, T.M. Design and synthesis of a novel peptidomimetic inhibitor of HIV-1 Tat–TAR interactions: Squaryldiamide as a new potential bioisostere of unsubstituted guanidine. Bioorg. Med. Chem. Lett., 2005, 15(19), 4243-4246. doi: 10.1016/j.bmcl.2005.06.077 PMID: 16054360
  210. Ghosh, A.K.; Williams, J.N.; Kovela, S.; Takayama, J.; Simpson, H.M.; Walters, D.E.; Hattori, S.; Aoki, M.; Mitsuya, H. Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2565-2570. doi: 10.1016/j.bmcl.2019.08.006 PMID: 31416666
  211. Palli, M.A.; McTavish, H.; Kimball, A.; Horn, T.D. Immunotherapy of recurrent herpes labialis with squaric acid. JAMA Dermatol., 2017, 153(8), 828-829. doi: 10.1001/jamadermatol.2017.0725 PMID: 28538997
  212. McTavish, H.; Zerebiec, K.W.; Zeller, J.C.; Shekels, L.L.; Matson, M.A.; Kren, B.T. Immune characteristics correlating with HSV‐1 immune control and effect of squaric acid dibutyl ester on immune characteristics of subjects with frequent herpes labialis episodes. Immun. Inflamm. Dis., 2019, 7(1), 22-40. doi: 10.1002/iid3.241 PMID: 30756512
  213. Chang, A.L.S.; Honari, G.; Guan, L.; Zhao, L.; Palli, M.A.; Horn, T.D.; Dudek, A.Z.; McTavish, H. A phase 2, multicenter, placebo-controlled study of single-dose squaric acid dibutyl ester to reduce frequency of outbreaks in patients with recurrent herpes labialis. J. Am. Acad. Dermatol., 2020, 83(6), 1807-1809. doi: 10.1016/j.jaad.2020.04.021 PMID: 32289388
  214. Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 2006, 368(9534), 489-504. doi: 10.1016/S0140-6736(06)69157-5 PMID: 16890836
  215. Fajardo-Ortiz, D.; Lopez-Cervantes, M.; Duran, L.; Dumontier, M.; Lara, M.; Ochoa, H.; Castano, V.M. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One, 2017, 12(5), e0178293. doi: 10.1371/journal.pone.0178293 PMID: 28542584
  216. Schwetz, T.A.; Fauci, A.S. The extended impact of human immunodeficiency virus/AIDS research. J. Infect. Dis., 2019, 219(1), 6-9. PMID: 30165415
  217. World Health Organization (WHO). HIV Drug Resistance Report 2021; World Health Organization: Geneva, Switzerland. 2020. Available from: http://www.who.int/hiv
  218. Mitsuya, Y.; Liu, T.F.; Rhee, S.Y.; Fessel, W.J.; Shafer, R.W. Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment. J. Infect. Dis., 2007, 196(8), 1177-1179. doi: 10.1086/521624 PMID: 17955436
  219. Tang, M.W.; Shafer, R.W. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs, 2012, 72(9), e1-e25. doi: 10.2165/11633630-000000000-00000 PMID: 22686620
  220. Pandey, S.; Wilmer, E.N.; Morrell, D.S. Examining the efficacy and safety of squaric acid therapy for treatment of recalcitrant warts in children. Pediatr. Dermatol., 2015, 32(1), 85-90. doi: 10.1111/pde.12387 PMID: 25040421
  221. Losol, E. Şentürk, N. Squaric acid dibutyl ester for the treatment of alopecia areata: A retrospective evaluation. Dermatol. Ther., 2021, 34(1), e14726. doi: 10.1111/dth.14726 PMID: 33377267
  222. World Health Organization. Global Tuberculosis Report. , 2020. Geneva, Switzerland
  223. World Health Organization. Global Tuberculosis Report. , 2021. Geneva, Switzerland
  224. Fernandes, G.F.S.; Thompson, A.M.; Castagnolo, D.; Denny, W.A.; Dos Santos, J.L. Tuberculosis drug discovery: challenges and new horizons. J. Med. Chem., 2022, 65(11), 7489-7531. doi: 10.1021/acs.jmedchem.2c00227 PMID: 35612311
  225. Li, H.; Salinger, D.H.; Everitt, D.; Li, M.; Del Parigi, A.; Mendel, C.; Nedelman, J.R. Long-term effects on QT prolongation of pretomanid alone and in combinations in patients with tuberculosis. Antimicrob. Agents Chemother., 2019, 63(10), e00445-e19. doi: 10.1128/AAC.00445-19 PMID: 31358590
  226. Dooley, K.E.; Rosenkranz, S.L.; Conradie, F.; Moran, L.; Hafner, R.; von Groote-Bidlingmaier, F.; Lama, J.R.; Shenje, J.; De Los Rios, J.; Comins, K.; Morganroth, J.; Diacon, A.H.; Cramer, Y.S.; Donahue, K.; Maartens, G.; Alli, O.; Gottesman, J.; Guevara, M.; Hikuam, C.; Hovind, L.; Karlsson, M.; McClaren, J.; McIlleron, H.; Murtaugh, W.; Rolls, B.; Shahkolahi, A.; Stone, L.; Tegha, G.; Tenai, J.; Upton, C.; Wimbish, C. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infect. Dis., 2021, 21(7), 975-983. doi: 10.1016/S1473-3099(20)30770-2 PMID: 33587897
  227. Szumowski, J.D.; Lynch, J.B. Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des. Devel. Ther., 2015, 9, 677-682. PMID: 25678771
  228. Khoshnood, S.; Goudarzi, M.; Taki, E.; Darbandi, A.; Kouhsari, E.; Heidary, M.; Motahar, M.; Moradi, M.; Bazyar, H. Bedaquiline: Current status and future perspectives. J. Glob. Antimicrob. Resist., 2021, 25, 48-59. doi: 10.1016/j.jgar.2021.02.017 PMID: 33684606
  229. Divita, K.M.; Khatik, G.L. Current perspective of ATP synthase inhibitors in the management of the tuberculosis. Curr. Top. Med. Chem., 2021, 21(18), 1623-1643. doi: 10.2174/1568026621666210913122346 PMID: 34517802
  230. Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of imidazo1,2- apyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399. doi: 10.1021/acs.jmedchem.6b01358 PMID: 28075132
  231. Li, P.; Wang, B.; Li, G.; Fu, L.; Zhang, D.; Lin, Z.; Huang, H.; Lu, Y. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur. J. Med. Chem., 2020, 206, 112538. doi: 10.1016/j.ejmech.2020.112538 PMID: 32927218
  232. Sperling, O.; Fuchs, A.; Lindhorst, T.K. Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org. Biomol. Chem., 2006, 4(21), 3913-3922. doi: 10.1039/b610745a PMID: 17047870
  233. Lindhorst, T.K.; Bruegge, K.; Fuchs, A.; Sperling, O. A bivalent glycopeptide to target two putative carbohydrate binding sites on FimH. Beilstein J. Org. Chem., 2010, 6, 801-809. doi: 10.3762/bjoc.6.90 PMID: 20978621
  234. Grabosch, C.; Hartmann, M.; Schmidt-Lassen, J.; Lindhorst, T.K. Squaric acid monoamide mannosides as ligands for the bacterial lectin FimH: covalent inhibition or not? ChemBioChem, 2011, 12(7), 1066-1074. doi: 10.1002/cbic.201000774 PMID: 21472956
  235. Buurman, E.T.; Foulk, M.A.; Gao, N.; Laganas, V.A.; McKinney, D.C.; Moustakas, D.T.; Rose, J.A.; Shapiro, A.B.; Fleming, P.R. Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae. J. Bacteriol., 2012, 194(20), 5504-5512. doi: 10.1128/JB.01103-12 PMID: 22843845
  236. Molodtsov, V.; Fleming, P.R.; Eyermann, C.J.; Ferguson, A.D.; Foulk, M.A.; McKinney, D.C.; Masse, C.E.; Buurman, E.T.; Murakami, K.S. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J. Med. Chem., 2015, 58(7), 3156-3171. doi: 10.1021/acs.jmedchem.5b00050 PMID: 25798859
  237. Li, G.; Tian, Y.; Zhu, W.G. The roles of histone deacetylases and their inhibitors in cancer Therapy. Front. Cell Dev. Biol., 2020, 8, 576946. doi: 10.3389/fcell.2020.576946 PMID: 33117804
  238. Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432. doi: 10.1038/sj.onc.1210610 PMID: 17694083
  239. Hanessian, S.; Vinci, V.; Auzzas, L.; Marzi, M.; Giannini, G. Exploring alternative Zn-binding groups in the design of HDAC inhibitors: Squaric acid, N-hydroxyurea, and oxazoline analogues of SAHA. Bioorg. Med. Chem. Lett., 2006, 16(18), 4784-4787. doi: 10.1016/j.bmcl.2006.06.090 PMID: 16870438
  240. Fournier, J.F.; Bhurruth-Alcor, Y.; Musicki, B.; Aubert, J.; Aurelly, M.; Bouix-Peter, C.; Bouquet, K.; Chantalat, L.; Delorme, M.; Drean, B.; Duvert, G.; Fleury-Bregeot, N.; Gauthier, B.; Grisendi, K.; Harris, C.S.; Hennequin, L.F.; Isabet, T.; Joly, F.; Lafitte, G.; Millois, C.; Morgentin, R.; Pascau, J.; Piwnica, D.; Rival, Y.; Soulet, C.; Thoreau, É.; Tomas, L. Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorg. Med. Chem. Lett., 2018, 28(17), 2985-2992. doi: 10.1016/j.bmcl.2018.06.029 PMID: 30122227
  241. Lauffer, B.E.L.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943. doi: 10.1074/jbc.M113.490706 PMID: 23897821
  242. Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121. doi: 10.1021/acs.jmedchem.7b01457 PMID: 29251920
  243. Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631. doi: 10.1124/dmd.113.056176 PMID: 24492893
  244. Lu, X.; Yan, G.; Dawood, M.; Klauck, S.M.; Sugimoto, Y.; Klinger, A.; Fleischer, E.; Shan, L.; Efferth, T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem. Pharmacol., 2021, 194, 114677. doi: 10.1016/j.bcp.2021.114677 PMID: 34265280
  245. Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol., 2000, 18(5), 1135-1149. doi: 10.1200/JCO.2000.18.5.1135 PMID: 10694567
  246. Onaran, M.B.; Comeau, A.B.; Seto, C.T. Squaric acid-based peptidic inhibitors of matrix metalloprotease-1. J. Org. Chem., 2005, 70(26), 10792-10802. doi: 10.1021/jo0517848 PMID: 16356002
  247. Santamaria, S. ADAMTS‐5: A difficult teenager turning 20. Int. J. Exp. Pathol., 2020, 101(1-2), 4-20. doi: 10.1111/iep.12344 PMID: 32219922
  248. Sandy, J.D.; Flannery, C.R.; Neame, P.J.; Lohmander, L.S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Invest., 1992, 89(5), 1512-1516. doi: 10.1172/JCI115742 PMID: 1569188
  249. Apte, S.S. Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem. J., 2016, 473(1), e1-e4. doi: 10.1042/BJ20151072 PMID: 26657033
  250. Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging therapeutic agents in osteoarthritis. Biochem. Pharmacol., 2019, 165, 4-16. doi: 10.1016/j.bcp.2019.02.034 PMID: 30826327
  251. Charton, J.; Leroux, F.; Delaroche, S.; Landry, V.; Deprez, B.P.; Deprez-Poulain, R.F. Synthesis of a 200-member library of squaric acid N-hydroxylamide amides (vol 18, pg 4968, 2008). Bioorg. Med. Chem. Lett., 2009, 19(1), 283-283. doi: 10.1016/j.bmcl.2008.08.116 PMID: 19932024
  252. Noll, D.M.; Mason, T.M.; Miller, P.S. Formation and repair of interstrand cross-links in DNA. Chem. Rev., 2006, 106(2), 277-301. doi: 10.1021/cr040478b PMID: 16464006
  253. Hashimoto, S.; Anai, H.; Hanada, K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ., 2016, 38(1), 9. doi: 10.1186/s41021-016-0037-9 PMID: 27350828
  254. Sengerová, B.; Allerston, C.K.; Abu, M.; Lee, S.Y.; Hartley, J.; Kiakos, K.; Schofield, C.J.; Hartley, J.A.; Gileadi, O.; McHugh, P.J. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J. Biol. Chem., 2012, 287(31), 26254-26267. doi: 10.1074/jbc.M112.367243 PMID: 22692201
  255. Baddock, H.T.; Yosaatmadja, Y.; Newman, J.A.; Schofield, C.J.; Gileadi, O.; McHugh, P.J. The SNM1A DNA repair nuclease. DNA Repair (Amst.), 2020, 95, 102941. doi: 10.1016/j.dnarep.2020.102941 PMID: 32866775
  256. Allerston, C.K.; Lee, S.Y.; Newman, J.A.; Schofield, C.J.; McHugh, P.J.; Gileadi, O. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res., 2015, 43(22), 11047-11060. doi: 10.1093/nar/gkv1256 PMID: 26582912
  257. Dürr, E.M.; Doherty, W.; Lee, S.Y.; El-Sagheer, A.H.; Shivalingam, A.; McHugh, P.J.; Brown, T.; McGouran, J.F. Squaramide-based 5′-phosphate replacements bind to the DNA repair exonuclease SNM1A. ChemistrySelect, 2018, 3(45), 12824-12829. doi: 10.1002/slct.201803375 PMID: 31414040
  258. Zamanova, S.; Shabana, A.M.; Mondal, U.K.; Ilies, M.A. Carbonic anhydrases as disease markers. Expert Opin. Ther. Pat., 2019, 29(7), 509-533. doi: 10.1080/13543776.2019.1629419 PMID: 31172829
  259. Mboge, M.; Mahon, B.; McKenna, R.; Frost, S. Carbonic anhydrases: Role in pH control and cancer. Metabolites, 2018, 8(1), 19. doi: 10.3390/metabo8010019 PMID: 29495652
  260. Supuran, C.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(6), 671-686. doi: 10.1080/17460441.2020.1743676 PMID: 32208982
  261. Arrighi, G.; Puerta, A.; Petrini, A.; Hicke, F.J.; Nocentini, A.; Fernandes, M.X.; Padrón, J.M.; Supuran, C.T.; Fernández-Bolaños, J.G.; López, Ó. Squaramide-tethered sulfonamides and coumarins: synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations. Int. J. Mol. Sci., 2022, 23(14), 7685. doi: 10.3390/ijms23147685 PMID: 35887037
  262. Lovering, F.; Kirincich, S.; Wang, W.; Combs, K.; Resnick, L.; Sabalski, J.E.; Butera, J.; Liu, J.; Parris, K.; Telliez, J.B. Identification and SAR of squarate inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med. Chem., 2009, 17(9), 3342-3351. doi: 10.1016/j.bmc.2009.03.041 PMID: 19364658
  263. Meng, W.; Swenson, L.L.; Fitzgibbon, M.J.; Hayakawa, K.; ter Haar, E.; Behrens, A.E.; Fulghum, J.R.; Lippke, J.A. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J. Biol. Chem., 2002, 277(40), 37401-37405. doi: 10.1074/jbc.C200418200 PMID: 12171911
  264. Fiege, B.; Rabbani, S.; Preston, R.C.; Jakob, R.P.; Zihlmann, P.; Schwardt, O.; Jiang, X.; Maier, T.; Ernst, B. The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. ChemBioChem, 2015, 16(8), 1235-1246. doi: 10.1002/cbic.201402714 PMID: 25940742
  265. Scharenberg, M.; Schwardt, O.; Rabbani, S.; Ernst, B. Target selectivity of FimH antagonists. J. Med. Chem., 2012, 55(22), 9810-9816. doi: 10.1021/jm3010338 PMID: 23088608
  266. Tomàs, S.; Prohens, R.; Vega, M.; Rotger, M.C.; Deyà, P.M.; Ballester, P.; Costa, A. Squaramido-based receptors: design, synthesis, and application to the recognition of tetraalkylammonium compounds. J. Org. Chem., 1996, 61(26), 9394-9401. doi: 10.1021/jo9614147
  267. Rotger, M.C.; Piña, M.N.; Frontera, A.; Martorell, G.; Ballester, P.; Deyà, P.M.; Costa, A. Conformational preferences and self-template macrocyclization of squaramide-based foldable modules. J. Org. Chem., 2004, 69(7), 2302-2308. doi: 10.1021/jo035546t PMID: 15049622
  268. Bauer, H. Gmelins Krokonsure. Naturwissenschaften, 1978, 65(9), 487-488. doi: 10.1007/BF00702841
  269. Hettegger, H.; Hosoya, T.; Rosenau, T. Chemistry of the redox series from hexahydroxybenzene to cyclohexanehexaone. Curr. Org. Synth., 2015, 13(1), 86-100. doi: 10.2174/1570179412666150710182456
  270. Bou, A.; Pericàs, M.A.; Serratosa, F. Synthetic applications of di-tert-butoxyethyne, II: New syntheses of squaric, semisquaric and croconic acids. Tetrahedron Lett., 1982, 23(3), 361-364. doi: 10.1016/S0040-4039(00)86831-8
  271. Braga, D.; Maini, L.; Grepioni, F. Croconic acid and alkali metal croconate salts: some new insights into an old story. Chemistry, 2002, 8(8), 1804-1812. doi: 10.1002/1521-3765(20020415)8:83.0.CO;2-C PMID: 11933108
  272. Dunitz, J.D.; Seiler, P.; Czechtizky, W. Crystal structure of potassium croconate dihydrate, after 175 years. Angew. Chem. Int. Ed., 2001, 40(9), 1779-1780. doi: 10.1002/1521-3773(20010504)40:93.0.CO;2-6 PMID: 11353510
  273. Gonçalves, N.S.; Santos, P.S.; Vencato, I. Lithium croconate dihydrate. Acta Crystallogr. C, 1996, 52(3), 622-624. doi: 10.1107/S0108270195011887
  274. Braga, D.; Maini, L.; Grepioni, F. Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network. CrystEngComm, 2001, 3(6), 27-29. doi: 10.1039/b100020i
  275. Lam, C.K.; Cheng, M.F.; Li, C.L.; Zhang, J.P.; Chen, X.M.; Li, W.K.; Mak, T.C.W. Stabilization of D 5h and C 2v valence tautomers of the croconate dianion. Chem. Commun. (Camb.), 2004, (4), 448-449. doi: 10.1039/B312545A PMID: 14765252
  276. Ramachandran, C.N.; Ruckenstein, E. Density functional theoretical studies of the isomers of croconic acid and their dimers. Comput. Theor. Chem., 2011, 973(1-3), 28-32. doi: 10.1016/j.comptc.2011.06.024
  277. Gelb, R.I.; Schwartz, L.M.; Laufer, D.A.; Yardley, J.O. The structure of aqueous croconic acid. J. Phys. Chem., 1977, 81(13), 1268-1274. doi: 10.1021/j100528a010
  278. Schwartz, L.M.; Gelb, R.I.; Yardley, J.O. Aqueous dissociation of croconic acid. J. Phys. Chem., 1975, 79(21), 2246-2251. doi: 10.1021/j100588a009
  279. Kravchenko, M.S.; Fumarova, M.S. Group detection and semiquantitative determination of alkali metals with croconic acid. J. Anal. Chem., 1995, 50(12), 1179-1182.
  280. Jia, Y.Q.; Feng, S.S.; Shen, M.L.; Lu, L.P. Construction of multifunctional materials based on Tb 3+ and croconic acid, directed by K + cations: synthesis, structures, fluorescence, magnetic and ferroelectric behaviors. CrystEngComm, 2016, 18(28), 5344-5352. doi: 10.1039/C6CE00308G
  281. Lam, C.K.; Mak, T.C.W. Rhodizonate and croconate dianions as divergent hydrogen-bond acceptors in the self-assembly of supramolecular structures. Chem. Commun. (Camb.), 2001, (17), 1568-1569. doi: 10.1039/b104386m PMID: 12240385
  282. Salidu, M.; Artizzu, F.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Marchiò, L.; Concas, G.; Congiu, F. Self-assembly supramolecular architectures of chromium(III) complexes using croconate as building block. Dalton Trans., 2009, (3), 557-563. doi: 10.1039/B810216N PMID: 19122914
  283. Gómez-García, C.J.; Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Faulmann, C.; Canadell, E. A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate)ferrate(III) hybrid molecular system. Chem. Commun. (Camb.), 2006, (47), 4931-4933. doi: 10.1039/B610408H PMID: 17136251
  284. Cai, Y.; Luo, S.; Zhu, Z.; Gu, H. Ferroelectric mechanism of croconic acid: A first-principles and Monte Carlo study. J. Chem. Phys., 2013, 139(4), 044702. doi: 10.1063/1.4813500 PMID: 23901998
  285. Sui, Y.; Luo, Q.Y.; Zhao, G.; Hong, X.K.; Liu, Y.J.; Mi, J. Preparation and properties of PVDF composite films modified with organic ferroelectric croconic acid. Ferroelectrics, 2017, 506(1), 165-173. doi: 10.1080/00150193.2017.1282758
  286. Hu, L.; Feng, R.; Wang, J.; Bai, Z.; Jin, W.; Zhang, L.; Nie, Q.M.; Qiu, Z.J.; Tian, P.; Cong, C.; Zheng, L.; Liu, R. Space-charge-stabilized ferroelectric polarization in self-oriented croconic acid films. Adv. Funct. Mater., 2018, 28(11), 1705463. doi: 10.1002/adfm.201705463
  287. Luo, C.; Huang, R.; Kevorkyants, R.; Pavanello, M.; He, H.; Wang, C. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett., 2014, 14(3), 1596-1602. doi: 10.1021/nl500026j PMID: 24548267
  288. Luo, C.; Zhu, Y.; Xu, Y.; Liu, Y.; Gao, T.; Wang, J.; Wang, C. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power Sources, 2014, 250, 372-378. doi: 10.1016/j.jpowsour.2013.10.131
  289. Deruiter, J.; Jacyno, J.M.; Cutler, H.G.; Davis, R.A. Studies on aldose reductase inhibitors from fungi. 2. Moniliformin and small ring analogs. J. Enzyme Inhib., 1993, 7(4), 249-256. doi: 10.3109/14756369309040767
  290. Williams, R.F.X. Transition-metal complexes with organo-chalcogen ligands. 1. Synthesis of dithiocroconate dianion. Phosphorus Sulfur Related Elements, 1976, 2(1-3), 141-146. doi: 10.1080/03086647608078939
  291. Jeppesen, A.; Nielsen, B.E.; Larsen, D.; Akselsen, O.M.; Sølling, T.I.; Brock-Nannestad, T.; Pittelkow, M. Croconamides: a new dual hydrogen bond donating motif for anion recognition and organocatalysis. Org. Biomol. Chem., 2017, 15(13), 2784-2790. doi: 10.1039/C7OB00441A PMID: 28272644
  292. Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. (Camb.), 2014, 5(9), 3617-3626. doi: 10.1039/C4SC01629G PMID: 26146535
  293. Busschaert, N.; Gale, P.A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed., 2013, 52(5), 1374-1382. doi: 10.1002/anie.201207535 PMID: 23283851
  294. Davis, J.T.; Okunola, O.; Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev., 2010, 39(10), 3843-3862. doi: 10.1039/b926164h PMID: 20820462
  295. Akhtar, N.; Saha, A.; Kumar, V.; Pradhan, N.; Panda, S.; Morla, S.; Kumar, S.; Manna, D. Diphenylethylenediamine-based potent anionophores: Transmembrane chloride ion transport and apoptosis inducing activities. ACS Appl. Mater. Interfaces, 2018, 10(40), 33803-33813. doi: 10.1021/acsami.8b06664 PMID: 30221925
  296. Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation products—I. Tetrahedron, 1969, 25(17), 3935-3945. doi: 10.1016/S0040-4020(01)82926-4
  297. Eistert, B.; Fink, H.; Werner, H.K. Phenazin-Derivate aus Rhodizonsäure. Justus Liebigs Ann. Chem., 1962, 657(1), 131-141. doi: 10.1002/jlac.19626570118
  298. Rillaers, G.A.; Depoorter, H. Spektrale Sensibilisierung. German Patent DE1930224A1, January 15, 1970.
  299. Song, X.; Foley, J.W. A new water-soluble near-infrared croconium dye. Dyes Pigments, 2008, 78(1), 60-64. doi: 10.1016/j.dyepig.2007.10.006
  300. Hamilton, A.L.; West, R.M.; Briggs, M.S.J.; Cummins, W.J.; Bruce, I.E. European Patent EP0898596B1, April 21, 1997.
  301. Harmatys, K.M.; Battles, P.M.; Peck, E.M.; Spence, G.T.; Roland, F.M.; Smith, B.D. Selective photothermal inactivation of cells labeled with near-infrared croconaine dye. Chem. Commun. (Camb.), 2017, 53(71), 9906-9909. doi: 10.1039/C7CC05196D PMID: 28828431
  302. Chen, Q.; Liu, X.; Zeng, J.; Cheng, Z.; Liu, Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30. doi: 10.1016/j.biomaterials.2016.04.041 PMID: 27177219
  303. Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268. doi: 10.1093/annonc/mdl104 PMID: 16740598
  304. Tang, L.; Zhang, F.; Yu, F.; Sun, W.; Song, M.; Chen, X.; Zhang, X.; Sun, X. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials, 2017, 129, 28-36. doi: 10.1016/j.biomaterials.2017.03.009 PMID: 28324863
  305. Tang, L.; Sun, X.; Liu, N.; Zhou, Z.; Yu, F.; Zhang, X.; Sun, X.; Chen, X. Radiolabeled angiogenesis-targeting croconaine nanoparticles for trimodality imaging guided photothermal therapy of glioma. ACS Appl. Nano Mater., 2018, 1(4), 1741-1749. doi: 10.1021/acsanm.8b00195 PMID: 30506043
  306. Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed; John Wiley & Sons, Ltd., 2009.
  307. Guha, S.; Shaw, G.K.; Mitcham, T.M.; Bouchard, R.R.; Smith, B.D. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH. Chem. Commun. (Camb.), 2016, 52(1), 120-123. doi: 10.1039/C5CC08317F PMID: 26502996
  308. Zhao, B.; Back, M.H. The photochemistry of the rhodizonate dianion in aqueous solution. Can. J. Chem., 1991, 69(3), 528-532. doi: 10.1139/v91-079
  309. Zhao, B.; Back, M.H. The flash photolysis of aqueous solutions of rhodizonic and croconic acids. Int. J. Chem. Kinet., 1994, 26(1), 25-36. doi: 10.1002/kin.550260105
  310. Murakami, K.; Haneda, M.; Naruse, M.; Yoshino, M. Prooxidant action of rhodizonic acid: Transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2′-deoxyguanosine formation in DNA. Toxicol. In Vitro, 2006, 20(6), 910-914. doi: 10.1016/j.tiv.2006.01.009 PMID: 16504460
  311. Wu, M.; Burton, J.D.; Tsymbal, E.Y.; Zeng, X.C.; Jena, P. Multiferroic materials based on organic transition-metal molecular nanowires. J. Am. Chem. Soc., 2012, 134(35), 14423-14429. doi: 10.1021/ja304199x PMID: 22881120
  312. Chen, S.; Enders, A.; Zeng, X.C. Influence of structural fluctuations, proton transfer, and electric field on polarization switching of supported two-dimensional hydrogen-bonded oxocarbon monolayers. Chem. Mater., 2015, 27(13), 4839-4847. doi: 10.1021/acs.chemmater.5b01717
  313. Misiołek, A.W.; Jackson, J.E. Building blocks for molecule-based magnets: a theoretical study of triplet-singlet gaps in the dianion of rhodizonic acid 1,4-dimethide and its derivatives. J. Am. Chem. Soc., 2001, 123(20), 4774-4780. doi: 10.1021/ja0021417 PMID: 11457287
  314. McCaffrey, V.P.; Gentner, R.; Misiolek, A.W.; Jackson, J.E. Rhodizonic acid derivatives as molecular magnets: synthetic, spectroscopic and theoretical studies. Abstr. Pap. Amer. Chem. Soc., 2002, 224, U204-U204.
  315. Wu, D.; Li, H.; Li, R.; Hu, Y.; Hu, X. In situ growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chem. Commun. (Camb.), 2018, 54(81), 11415-11418. doi: 10.1039/C8CC06317F PMID: 30246824
  316. Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano, 2018, 12(4), 3424-3435. doi: 10.1021/acsnano.7b09177 PMID: 29617114
  317. Saxena, O.C. Titrimetric microdetermination of yttrium and scandium: Disodium salt of rhodizonic acid as complexing agent. Microchem. J., 1972, 17(1), 68-71. doi: 10.1016/0026-265X(72)90038-0
  318. Uhl, W.; Prott, M. Insertion of rhodizonic acid into the gallium-gallium and indium-indium bonds of digallane(4) and diindane(4) compounds. Z. Anorg. Allg. Chem., 2002, 628(11), 2259-2263. doi: 10.1002/1521-3749(200211)628:113.0.CO;2-C
  319. Wang, C.C.; Kuo, C.T.; Chou, P.T.; Lee, G.H. Rhodizonate metal complexes with a 2D chairlike M6 metal-organic framework: M(C6O6)(bpym)(H2O).n H2O. Angew. Chem. Int. Ed., 2004, 43(34), 4507-4510. doi: 10.1002/anie.200460278 PMID: 15340955
  320. Dooronbekov, Zh.; Kasatkin, IuN.; Fedorov, N.A. The effect of the sodium salt of rhodizonic acid on the excretion of radioactive strontium from the organism. Med. Radiol. (Mosk.), 1960, 5, 76-79. PMID: 13723839
  321. Seris, J.L. On some biochemical properties of rhodizonic acid. Glutathione and homocysteine. C. R. Hebd. Seances Acad. Sci., 1961, 252, 3672-3674. PMID: 13750246
  322. Bru, A.; Seris, J.L.; Regis, H.; Soubiran, J.; Lucot, H. Protective effect of rhodizonic acid and certain of its derivatives on the radiosensitivity of yeasts in culture. J. Radiol. Electrol. Med. Nucl., 1967, 48(10), 555-558. PMID: 5585302
  323. Takeuchi, S.; Inoue, Y. Hypoglycemic actions of tetrahydroxyquinone, rhodizonic acid and trichinoyl in mice and rabbits. Jpn. J. Pharmacol., 1968, 18(3), 312-320. doi: 10.1254/jjp.18.312 PMID: 5304400
  324. Moiroux, J.; Escourrou, D.; Fleury, M.B. 324 - Electrochemical behavior of carbonyl compounds and aci-reductones in relation to electron transport in biological processes: Rhodizonic acid and its reduction product in aqueous acid media. Bioelectrochem. Bioenerg., 1980, 7(2), 333-344. doi: 10.1016/0302-4598(80)87009-7
  325. Naish, S.; Riley, P.A. Effect of rhodizonic acid on the lag period of tyrosinase. Yale J. Biol. Med., 1984, 57(3), 400.
  326. De Souza-Pinto, N.C.; Vercesi, A.E.; Hoffmann, M.E. Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: Involvement of Ca22+ and H2O2 in the impairment of DNA replication and mitochondrial function. Free Radic. Biol. Med., 1996, 20(5), 657-666. doi: 10.1016/0891-5849(95)02179-5 PMID: 8721612
  327. Kuniyoshi, A. Experimental and clinical studies of the antidiabetic action of dipotassium rhodizonate (CPK-2). Nippon Ika Daigaku Zasshi, 1970, 37(4), 310-323. doi: 10.1272/jnms1923.37.310 PMID: 5478470
  328. Douglas, K.T.; Nadvi, I.N. Inhibition of glyoxalase I: a possible transition-state analogue inhibitor approach to potential antineoplastic agents? FEBS Lett., 1979, 106(2), 393-396. doi: 10.1016/0014-5793(79)80539-6 PMID: 499526
  329. Godin, J. Therapeutic antioxidant formulation comprising catechol, quinone, rhodizonic acid salts and sulfite. Patent US20070149623A1, 2007.
  330. Braga, D.; Cojazzi, G.; Maini, L.; Grepioni, F. Reversible solid-state interconversion of rhodizonic acid H2C6O6 into H6C6O8 and the solid-state structure of the rhodizonate dianion C6O62− (aromatic or non-aromatic?). New J. Chem., 2001, 25(10), 1221-1223. doi: 10.1039/B107317F
  331. Fleury, M.B.; Molle, G. Spectrophotometric study on ionization and hydration equilibrium given by rhodizonic acid in aqueous solution. CR. Acad. Sci. C. Chim., 1971, 273(10), 605-608.
  332. Gelb, R.I.; Schwartz, L.M.; Laufer, D.A. The structure of aqueous rhodizonic acid. J. Phys. Chem., 1978, 82(18), 1985-1988. doi: 10.1021/j100507a006
  333. Wong, Z.X.; Abdallah, H.H. Gas-phase acidity and liquid phase pK(a) calculations of some cyclic oxocarbon acids (CnOnH2 (n=3, 4, 5, 6)): A theoretical investigation. Acta Chim. Slov., 2012, 59(2), 273-280. PMID: 24061240
  334. Lu, F.; Rheingold, A.L.; Miller, J.S. Characterization of the elusive rhodizonate ring-contraction decarbonylation C5O4(OH)CO2Me2- intermediate to croconate. Chemistry, 2013, 19(44), 14795-14797. doi: 10.1002/chem.201303190 PMID: 24123324
  335. Bettermann, H.; Dasting, I.; Wolff, U. Kinetic investigations of the laser-induced photolysis of sodium rhodizonate in aqueous solutions. Spectrochim. Acta A, 1997, 53(2), 233-245.
  336. Quiñonero, D.; Garau, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P.M. Quantification of aromaticity in oxocarbons: the problem of the fictitious "nonaromatic" reference system. Chemistry, 2002, 8(2), 433-438. doi: 10.1002/1521-3765(20020118)8:23.0.CO;2-T PMID: 11843155
  337. Cowan, J.A.; Howard, J.A.K. Dipotassium rhodizonate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2004, 60(4), m511-m513. doi: 10.1107/S160053680400529X
  338. Odani, T.; Kubota, T. Nonaqueous electrolyte and nonaqueous electrolyte battery using the same. Patent US20080226983A1, 2008.
  339. Morley, J.O. Theoretical studies on the electronic structure and nonlinear properties of dicyanomethylene substituted squaramides, croconamides and rhodizonamides. J. Mol. Struct. Theochem, 1995, 357(1-2), 49-57. doi: 10.1016/0166-1280(95)04279-F
  340. Farminer, A.R.; Skujins, S.; Webb, G.A. Spectroscopic and structural studies of some oxocarbon condensation products. J. Mol. Struct., 1971, 10(1), 111-119. doi: 10.1016/0022-2860(71)87065-5
  341. Aoyama, M.; Kawamura, H.; Matsunami, S.; Onishima, Y. Preparation of dipyrazino2,3-a:2',3'-cphenazine derivatives as organic electroluminescence materials. Patent JP2007230974A, 2007.
  342. Yeh, M.C.; Liao, S.C.; Chao, S.H.; Ong, C.W. Synthesis of polyphilic hexaazatrinaphthylenes and mesomorphic properties. Tetrahedron, 2010, 66(46), 8888-8892. doi: 10.1016/j.tet.2010.09.064
  343. Ito, M.; Chihara, K.; Nakamoto, K.; Kano, Y.; Okada, S.; Nagashima, H. Electrode active material containing pyrazine derivative and aqueous electrolyte sodium or magnesium ion secondary battery using same. Patent WO2015147326A1, 2015.
  344. Martin, R. Electrodes for energy storage devices. WO2015097197A1, 2015.
  345. Wend, G.R.; Ledig, K.W. Phenazinone compositions for treating amebiasis. Patent US3495006A, 1970.
  346. Wendt, G.R.; Ledig, K.W. Amebicidal 11,12-dihydroxydibenzoa,cphenazine-10,13-dione and 4,5-dihydro-9,10-dihydroxyindeno4,3a,3-a,bphenazine-8,11-dione. Patent US3501476A, 1970.
  347. Pushkareva, Z.V.; Alekseeva, L.V. Synthesis of substances containing fragments of folic acid. III. The synthesis of some pteridine derivatives. Zh. Obshch. Khim., 1962, 32, 1058-1062.
  348. Endo, H.; Tada, M.; Katagiri, K. Antitumor activity of phenazine derivatives against sarcoma 180 in mice. VII. Phenazinequinone derivatives. Sci. Rep. Res. Inst. Tohoku Univ. Ser. C, 1967, 14(3-4), 175-176. PMID: 5616568
  349. Schieven, G.L. Phosphotyrosine phosphatase inhibitors or tyrosine kinase activators for controlling cellular proliferation. Patent US5877210A, 1999.
  350. Zhao, Y.; Bai, H.; Jiang, X.; Li, S. Method for preparation of 6-acyl-3-substituted methylene pyrone compounds and their medicinal application. Patent CN1990478A, 2007.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024