Human Health, Environmental Comfort and Well-Being. Part 2. Ecological Comfort as a New and Strategic Factor in the Protection of Modern Human Health

Cover Page

Cite item

Full Text

Abstract

Since the dawn of humanity, human beings have inherently sought a state of security, trying to make their existence as comfortable as possible. Accordingly, among the many factors affecting human health, comfort and well-being, the quality of the micro-environment and ecology, as well as the health care system and health-saving resources, are important. In this regard, environmental security, with its systemic nature, brings a significant contribution to the PPM model by optimizing the state of balance in the interrelationship of natural, anthropogenic, physiological and social processes. Accordingly, individualized nutrition and pharmacointervention for preventive and prophylactic purposes, being important tools for health preservation, represent an integrative approach aimed at understanding the interaction between nutrition and the environment within the formed or formed lifestyle. This review will consider the main components of human health protection, as well as their impact on the preservation of ecobiocenosis stability.

About the authors

S. V. Suchkov

Russian Academy of Natural Sciences; Russian University of Medicine; New York Academy of Sciences; University of World Politics and Law

Author for correspondence.
Email: med_nika2000@mail.ru

Department of Clinical Allergology and Immunology

Russian Federation, Moscow; Moscow; New York, USA; Moscow

H. Abe

Abe Cancer Clinic

Email: med_nika2000@mail.ru
Japan, Tokyo

S. Murphy

Massachusetts General Hospital (MGH); Harvard Medical School

Email: med_nika2000@mail.ru
United States, Boston, MA; Boston, MA

D. Smith

Mayo Clinic

Email: med_nika2000@mail.ru
United States, Rochester, MN

V. S. Polyakova

University of World Politics and Law

Email: med_nika2000@mail.ru
Russian Federation, Moscow

D. Scherman

European Academy of Sciences; National Center for Scientific Research (CNRS); Paris Descartes University

Email: med_nika2000@mail.ru

Unité de Pharmacologie Chimique et Génétique d’Imagerie

Belgium, Liège; Paris, France; Paris, France

A. P. Glinushkin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: med_nika2000@mail.ru
Russian Federation, Moscow

P. Barach

Wayne State University, School of Medicine

Email: mbikeeva@yandex.ru
Russian Federation, Detroit, MI

A. O. Terentʼev

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: mbikeeva@yandex.ru
Russian Federation, Moscow

M. Tan

NAKADA Geriatric Health and Welfare Facilities

Email: mbikeeva@yandex.ru
Japan, Nakada Tome Miyagi

A. N. Suvorov

Institute of Experimental Medicine, Russian Academy of Sciences; St. Petersburg State University

Email: mbikeeva@yandex.ru

Department of Microbiology

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Гнедых Н.Н. Роль стратегических карт в управлении человеческими ресурсами современного предприятия // Управление человеческими ресурсами – основа развития инновационной экономики. 2010. № 2. С. 226–230.
  2. Лебедев А.Н., Ковешников А.И. Концепция формирования общего экологического каркаса на территориях Орловской, Брянской и Калужской областей. http://science-bsea.bgita.ru/2008/les_2008/lebedev_koncepcia.htm
  3. Хуррамов И.А. Проблемы экологического образования и воспитания на примере мирового сообщества // Молодой ученый. 2012. № 11. С. 493–496.
  4. Athanasios A., Charalampos V., Vasileios T., Ashraf G.M. Protein-protein interaction (PPI) network: recent advances in drug discovery // Curr. Drug Metab. 2017. V. 18 (1). P. 5–10. https://doi.org/10.2174/138920021801170119204832
  5. Bano R., Gupta S., Shekhar C. Translational research in biomedical sciences in India: Challenges, observations and national perspectives // Indian J. Med. Res. 2020. V. 152 (4). P. 335–341.
  6. Bebek G. Identifying gene interaction networks // Meth. Mol. Biol. 2012. V. 850. P. 483–494. https://doi.org/10.1007/978-1-61779-555-8_26
  7. Bludau I., Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity // Nat. Rev. Mol. Cell Biol. 2020. V. 21 (6). P. 327–340. https://doi.org/10.1038/s41580-020-0231-2
  8. Chaudhary N., Kumar V., Sangwan P. et al. Personalized nutrition and -omics // Comp. Foodomics. 2020. P. 495–507. https://doi.org/10.1016/B978-0-08-100596-5.22880-1
  9. Chen S.J., Lia D.L., Chen C.H. et al. Construction and analysis of protein-protein interaction network of heroin use disorder // Sci. Rep. 2019. V. 9. P. 4980. https://doi.org/10.1038/s41598-019-41552-z
  10. Choi R.Y., Coyner A.S., Kalpathy-Cramer J. et al. Introduction to machine learning, neural networks, and deep learning // Transl. Vis. Sci. Technol. 2020. V. 9 (2). P. 14. https://doi.org/10.1167/tvst.9.2.14
  11. Conte F., Fiscon G., Licursi V. et al. A paradigm shift in medicine: A comprehensive review of network-based approaches // Biochim. Biophys. Acta Gene Regul. Mech. 2020. V. 1863 (6). P. 194416. https://doi.org/10.1016/j.bbagrm.2019.194416
  12. Costanzo M., Vandersluis B., Koch E.N. et al. A global genetic interaction network maps a wiring diagram of cellular function // Science. 2016. V. 353 (6306). https://doi.org/10.1126/science.aaf1420
  13. Cui T., El Mekkaoui K., Reinvall J. et al. Gene–gene interaction detection with deep learning // Comm. Biol. 2022. V. 5 (1238). https://doi.org/10.1038/s42003-022-04186-y
  14. Cusick M.E., Klitgord N., Vidal M., Hill D.E. Interactome: gateway into systems biology // Hum. Mol. Genet. 2005. V. 14 (2). P. R171–R181.
  15. Di Renzo L., Gualtieri P., Romano L. et al. Role of personalized nutrition in chronic-degenerative diseases // Nutrients. 2019. V. 11 (8). P. 1707. https://doi.org/10.3390/nu11081707
  16. Fang Z., Chen L. Personalized prediction of human diseases with single-sample dynamic network biomarkers // Biomark. Med. 2020. V. 14 (8). P. 615–620. https://doi.org/10.2217/bmm-2020-0066
  17. Ferguson L.R., De Caterina R., Görman U. et al. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: Part 1 – fields of precision nutrition // J. Nutr. Nutrigenom. 2016. V. 9 (1). P. 12–27. https://doi.org/10.1159/000445350
  18. Fernandez M.A., Raine K.D. Digital food retail: public health opportunities // Nutrients. 2021. V. 13 (11). P. 3789. https://doi.org/10.3390/nu13113789
  19. Fu B. Preface for special issue, ecotechnologies for controlling non-point source pollution and protecting aquatic ecosystem (ENPE-2017) // Sci. Tot. Environ. 2018. V. 618. P. 1032. https://doi.org/10.1016/j.scitotenv.2017.09.085
  20. Ghadie M.A., Coulombe-Huntington J., Xia Y. Interactome evolution: insights from genome-wide analyses of protein-protein interactions // Curr. Opin. Struct. Biol. 2018. V. 50. P. 42–48. https://doi.org/10.1016/j.sbi.2017.10.012
  21. Goh K.I., Cusick M.E., Valle D. et al. The human disease network // PNAS USA. 2007. V. 104 (21). P. 8685–8690.
  22. Huttlin E.L., Bruckner R.J., Paulo J.A. et al. Architecture of the human interactome defines protein communities and disease networks // Nature. 2017. V. 545 (7655). P. 505–509.
  23. Jiang T., Gradus J.L., Rosellini A.J. Supervised machine learning: a brief primer // Behav. Ther. 2020. V. 51 (5). P. 675–687. https://doi.org/10.1016/j.beth.2020.05.002
  24. Kaiser R.H., Chase H.W., Phillips M.L. et al. Dynamic resting-state network biomarkers of antidepressant treatment response // Biol. Psychiatry. 2022. V. 92 (7). P. 533–542. https://doi.org/10.1016/j.biopsych.2022.03.020
  25. Karimizadeh E., Sharifi-Zarchi A., Nikaein H. et al. Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis // BMC Med. Genom. 2019. V. 12. P. 199. https://doi.org/10.1186/s12920-019-0632-2
  26. Lage K. Protein-protein interactions and genetic diseases: The interactome // Biochim. Biophys. Acta. 2014. V. 1842 (10). P. 1971–1980.
  27. Lin J.S., Lai E.M. Protein-protein interactions: yeast two-hybrid system // Bacterial protein secretion systems / Eds L. Journet, E. Cascales. N.Y.: Humana Press, 2017. V. 1615. P. 177–187. https://doi.org/10.1007/978-1-4939-7033-9_14
  28. Marcum J.A. Nutrigenetics/nutrigenomics, personalized nutrition, and precision healthcare // Curr. Nutr. Rep. 2020. V. 9 (4). P. 338–345. https://doi.org/10.1007/s13668-020-00327-z
  29. Matthews D.E., Norman K. Editorial: Biomarkers in nutritional research // Curr. Opin. Clin. Nutr. Metab. Care. 2021. V. 24 (5). P. 393–394. https://doi.org/10.1097/MCO.0000000000000769
  30. Osada J. Nutrition genomics // Int. J. Mol. Sci. 2023. V. 24 (7). P. 6490. https://doi.org/10.3390/ijms24076490
  31. Plewczyński D., Ginalski K. The interactome: predicting the protein-protein interactions in cells // Cell Mol. Biol. Lett. 2009. V. 14 (1). P. 1–22.
  32. Przytycka T.M., Singh M., Slonim D.K. Toward the dynamic interactome: it’s about time // Brief Bioinform. 2010. V. 11 (1). P. 15–29.
  33. Safari-Alighiarloo N., Taghizadeh M., Rezaei-Tavirani M. et al. Protein-protein interaction networks (PPI) and complex diseases // Gastroenterol. Hepatol. Bed. Bench. 2014. V. 7 (1). P. 17–31.
  34. Silverbush D., Sharan R. A systematic approach to orient the human protein-protein interaction network // Nat. Commun. 2019. V. 10. P. 3015. https://doi.org/10.1038/s41467-019-10887-6
  35. Suchkov S.V. Personalized and precision medicine as a new model of the healthcare services // V Russ. Congress of laboratory medicine, September 12, 2019.
  36. Taguchi Y.H. Bioinformatic tools for epitranscriptomics // Am. J. Physiol. Cell Physiol. 2023. V. 324 (2). P. C447–C457. https://doi.org/10.1152/ajpcell.00437.2022
  37. Taylor I.W., Linding R., Warde-Farley D. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome // Nat. Biotechnol. 2009. V. 27 (2). P. 199–204.
  38. Tenenbaum J.D. Translational bioinformatics: past, present, and future // Genom. Proteom. Bioinform. 2016. V. 14 (1). P. 31–41.
  39. Vidal M., Cusick M.E., Barabasi A.L. Interactome networks and human disease // Cell. 2011. V. 144 (6). P. 986–998.
  40. Vimaleswaran K.S., Le Roy C.I., Claus S.P. Foodomics for personalized nutrition: how far are we? // Curr. Opin. Food Sci. 2015. V. 4. P. 129–135.
  41. Voevodin D.A., Rozanova G.N., Poddubikov A.V., Mikhailova N.A. Microbiocenosis, immune system and heredity // Zh. Mikrobiol. Epidemiol. Immunobiol. 2017. V. (2). P. 116–126.
  42. Ung M.H., Liu C.C., Cheng C. Integrative analysis of cancer genes in a functional interactome // Sci. Rep. 2016. V. 6. P. 29228.
  43. Wiredja D., Bebek G. Identifying gene interaction networks // Meth. Mol. Biol. 2017. V. 1666. P. 539–556. https://doi.org/10.1007/978-1-4939-7274-6_27

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences