Гены цистеин-богатых пептидов пырея Thinopyrum elongatum
- Авторы: Слезина М.П.1, Истомина Е.А.1, Шиян А.Н.1, Одинцова Т.И.1
-
Учреждения:
- Институт общей генетики им. Н.И. Вавилова Российской академии наук
- Выпуск: Том 60, № 10 (2024)
- Страницы: 56-70
- Раздел: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://rjpbr.com/0016-6758/article/view/667180
- DOI: https://doi.org/10.31857/S0016675824100055
- EDN: https://elibrary.ru/wfjmcc
- ID: 667180
Цитировать
Аннотация
Цистеин-богатые пептиды играют важную роль в защитной системе растений. Цель настоящей работы состояла в поиске in silico генов антимикробных и сигнальных пептидов в геноме пырея удлиненного Thinopyrum elongatum (Host) D.R. Dewey (2n = 14, EE) − дикорастущего злака, обладающего высокой устойчивостью к патогенам и абиотическому стрессу. В результате биоинформатического анализа в геноме пырея было выявлено 154 новых гена предшественников антимикробных и сигнальных пептидов, относящихся к девяти семействам. В ряде генов цистеин-богатых пептидов обнаружены интроны. Были определены структура предшественников пептидов и локализация генов пептидов в хромосомах пырея. Показано наибольшее сходство последовательностей пептидов пырея с гомологичными пептидами растений родов Triticum и Aegilops, что подтверждает цитогенетические данные о родстве генома Е с геномом D и близкими ему геномами. Полученные результаты вносят вклад в характеристику молекулярных компонентов иммунной системы Th. elongatum и послужат базой для дальнейшего исследования механизмов устойчивости, а также для научно обоснованного практического использования этого вида в качестве донора устойчивости в селекции пшеницы.
Ключевые слова
Полный текст

Об авторах
М. П. Слезина
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: odintsova2005@rambler.ru
Россия, Москва, 119991
Е. А. Истомина
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: odintsova2005@rambler.ru
Россия, Москва, 119991
А. Н. Шиян
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: odintsova2005@rambler.ru
Россия, Москва, 119991
Т. И. Одинцова
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Автор, ответственный за переписку.
Email: odintsova2005@rambler.ru
Россия, Москва, 119991
Список литературы
- Dodds P., Rathjen J. Plant immunity: Towards an integrated view of plant–pathogen interactions // Nat. Rev. Genet. 2010. V. 11. P. 539–548. doi: 10.1038/nrg2812.
- Zou F., Tan C., Shinali T.S. et al. Plant antimicrobial peptides: A comprehensive review of their classification, production, mode of action, functions, applications, and challenges // Food Funct. 2023. V. 14. № 12. P. 5492−5515. doi: 10.1039/d3fo01119d
- Li J., Hu S., Jian W. et al. Plant antimicrobial peptides: structures, functions, and applications // Bot. Stud. 2021. V. 62. № 1. 5. doi: 10.1186/s40529-021-00312-x
- Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants // Pharmaceuticals. 2015. V. 8. № 4. P. 711–757. doi: 10.3390/ph8040711
- Bolouri Moghaddam M.R., Vilcinskas A., Rahnamaeian M. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants // Mol. Plant Pathol. 2016. V. 17. № 3. P. 464−471. doi: 10.1111/mpp.12299
- Campos M.L., de Souza C.M., de Oliveira K.B.S. et al. The role of antimicrobial peptides in plant immunity // J. Exp. Bot. 2018. V. 69. № 21. P. 4997−5011. doi: 10.1093/jxb/ery294
- Hu Z., Zhang H., Shi K. Plant peptides in plant defense responses // Plant Signal. Behav. 2018. V. 13. № 8. doi: 10.1080/15592324.2018.1475175
- Xie H., Zhao W., Li W. et al. Small signaling peptides mediate plant adaptions to abiotic environmental stress // Planta. 2022. V. 255. № 4. 72. doi: 10.1007/s00425-022-03859-6
- Marmiroli N., Maestri E. Plant peptides in defense and signaling // Peptides. 2014. V. 56. P. 30−44. doi: 10.1016/j.peptides.2014.03.013
- Yamaguchi K., Kawasaki T. Pathogen- and plant-derived peptides trigger plant immunity // Peptides. 2021. V. 144. doi: 10.1016/j.peptides.2021.170611
- Tavormina P., De Coninck B., Nikonorova N. et al. The plant peptidome: An expanding repertoire of structural features and biological functions // Plant Cell. 2015. V. 27. № 8. P. 2095−2118. doi: 10.1105/tpc.15.00440
- Silverstein K.A., Graham M.A., Paape T.D. et al. Genome organization of more than 300 defensin-like genes in Arabidopsis // Plant Physiol. 2005. V. 138. № 2. P. 600−610. doi: 10.1104/pp.105.060079
- Silverstein K.A., Moskal W.A. Jr., et al. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants // Plant J. 2007. V. 51. № 2. P. 262−280. doi: 10.1111/j.1365-313X.2007.03136.x
- Коростылева Т.В., Шиян А.Н., Одинцова Т.И. Генетический ресурс пырея Thinopyrum elongatum (Host) D.R. Dewey в селекционном улучшении пшеницы // Генетика. 2023. Т. 59. № 10. С. 1112–1119. doi: 10.31857/S0016675823100077
- Slezina M.P., Istomina E.A., Korostyleva T.V. et al. Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling // Int. J. Mol. Sci. 2021. V. 22. № 11. doi: 10.3390/ijms22115741.
- Teufel F., Almagro Armenteros J.J., Johansen A.R. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models // Nat. Biotechnol. 2022. V. 40. P. 1023−1025. doi: 10.1038/s41587-021-01156-3
- Gawde U., Chakraborty S., Waghu F.H. et al. CAMPR4: A database of natural and synthetic antimicrobial peptides // Nucl. Acids Res. 2023. V. 51. P. D377–D383. doi: 10.1093/nar/gkac933.
- Gasteiger E., Hoogland C., Gattiker A. et al. Protein identification and analysis tools on the ExPASy server // The Proteomics Protocols Handbook / Ed. John M. Walker. USA: Humana Press, 2005. P. 571–607.
- Eisenhaber B., Wildpaner M., Schultz C.J. et al. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice // Plant Physiol. 2003. V. 133. P. 1691−1701. doi: 10.1104/pp.103.023580.
- Parisi K., Shafee T.M.A., Quimbar P. et al. The evolution, function and mechanisms of action for plant defensins // Semin. Cell Dev. Biol. 2019. V. 88. P. 107–118. doi: 10.1016/j.semcdb.2018.02.004
- Lay F.T., Anderson M.A. Defensins − components of the innate immune system in plants // Curr. Protein and Pept. Sci. 2005. V. 6. № 1. P. 85–101. doi: 10.2174/1389203053027575.
- Cools T.L., Struyfs C., Cammue B.P., Thevissen K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections // Future Microbiol. 2017. V. 12. P. 441−454. doi: 10.2217/fmb-2016-0181
- Sathoff A.E., Samac D.A. Antibacterial activity of plant defensins // Mol. Plant Microbe Interact. 2019. V. 32. № 5. P. 507−514. doi: 10.1094/MPMI-08-18-0229-CR
- Mirouze M., Sels J., Richard O. et al. A putative novel role for plant defensins: A defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance // Plant J. 2006. V. 47. № 3. P. 329−342. doi: 10.1111/j.1365-313X.2006.02788.x
- Sasaki K., Kuwabara C., Umeki N. et al. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat // J. Biotechnol. 2016. V. 228. P. 3−7. doi: 10.1016/j.jbiotec.2016.04.015
- Stotz H.U., Spence B., Wang Y. A defensin from tomato with dual function in defense and development // Plant Mol. Biol. 2009. V. 71. № 1−2. P. 131−143. doi: 10.1007/s11103-009-9512-z
- Odintsova T.I., Slezina M.P., Istomina E.A. et al. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance // PeerJ. 2019. V. 7. doi: 10.7717/peerj.6125
- Slezina M.P., Istomina E.A., Kulakovskaya E.V. et al. The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens // Int. J. Mol. Sci. 2022. V. 23. № 15. doi: 10.3390/ijms23158383
- Segura A., Moreno M., Madueño F. et al. Snakin-1, a peptide from potato that is active against plant pathogens // Mol. Plant Microbe Interact. 1999. V. 12. № 1. P. 16−23. doi: 10.1094/MPMI.1999.12.1.16
- Nahirñak V., Almasia N.I., Fernandez P.V. et al. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition // Plant Physiol. 2012. V. 158. № 1. P. 252−263. doi: 10.1104/pp.111.186544
- Zhang S., Yang C., Peng J. et al. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana // Plant Mol. Biol. 2009. V. 69. P. 745–759. doi: 10.1007/s11103-009-9452-7
- Oliveira-Lima M., Benko-Iseppon A.M., Neto J.R.C.F. et al. Snakin: Structure, roles and applications of a plant antimicrobial peptide // Curr. Protein Pept. Sci. 2017. V. 18. № 4. P. 368–374. doi: 10.2174/1389203717666160619183140
- Berrocal-Lobo M., Segura A., Moreno M. et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection // Plant Physiol. 2002. V. 128. № 3. P. 951−961. doi: 10.1104/pp.010685
- Meiyalaghan S., Thomson S.J., Fiers M.W. et al. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status // BMC Genomics. 2014. V. 15. 2. doi: 10.1186/1471-2164-15-2
- Iqbal A., Khan R.S. Snakins: Antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants // Mol. Biol. Rep. 2023. V. 50. № 10. P. 8683−8690. doi: 10.1007/s11033-023-08734-5
- Slavokhotova A.A., Shelenkov A.A., Andreev Y.A., Odintsova T.I. Hevein-like antimicrobial peptides of plants // Biochemistry (Mosc). 2017. V. 82. № 13. P. 1659−1674. doi: 10.1134/S0006297917130065
- Slavokhotova A.A., Naumann T.A., Price N.P. et al. Novel mode of action of plant defense peptides – hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases // FEBS J. 2014. V. 281. № 20. P. 4754−4764. doi: 10.1111/febs.13015
- Van den Bergh K.P., Rougé P., Proost P. et al. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.) // Planta. 2004. V. 219. № 2. P. 221−232. doi: 10.1007/s00425-004-1238-1
- Loo S., Tay S.V., Kam A. et al. Anti-fungal hevein-like peptides biosynthesized from quinoa cleavable hololectins // Molecules. 2021. V. 26. № 19. doi: 10.3390/molecules26195909
- Odintsova T.I., Vassilevski A.A., Slavokhotova A.A. et al. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif // FEBS J. 2009. V. 276. № 15. P. 4266−4275. doi: 10.1111/j.1742-4658.2009.07135.x
- Höng K., Austerlitz T., Bohlmann T., Bohlmann H. The thionin family of antimicrobial peptides // PLoS One. 2021. V. 16. № 7. doi: 10.1371/journal.pone.0254549
- Oard S., Rush M.C., Oard J.H. Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani // J. Appl. Microbiol. 2004. V. 97. № 1. P. 169−180. doi: 10.1111/j.1365-2672.2004.02291.x
- Molina A., Ahl Goy P., Fraile A. et al. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II // Plant Science. 1993. V. 92. № 2. P. 169–177. doi: 10.1016/0168-9452(93)90203-C
- Terras F., Schoofs H., Thevissen K. et al. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors // Plant Physiol. 1993. V. 103. № 4. P. 1311−1319. doi: 10.1104/pp.103.4.1311
- Salminen T.A., Blomqvist K., Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function // Planta. 2016. V. 244. № 5. P. 971−997. doi: 10.1007/s00425-016-2585-4
- Kader J.C. Lipid-transfer proteins in plants // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996. V. 47. P. 627−654. doi: 10.1146/annurev.arplant.47.1.627
- Santos-Silva C.A.D., Ferreira-Neto J.R.C., Amador V.C. et al. From gene to transcript and peptide: A deep overview on non-specific lipid transfer proteins (nsLTPs) // Antibiotics (Basel). 2023. V. 12. № 5. 939. doi: 10.3390/antibiotics12050939
- Fahlberg P., Buhot N., Johansson O.N., Andersson M.X. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana // Mol. Plant Pathol. 2019. V. 20. № 1. P. 69−77. doi: 10.1111/mpp.12740
- Edstam M.M., Blomqvist K., Eklöf A. et al. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin // Plant Mol. Biol. 2013. V. 83. № 6. P. 625−649. doi: 10.1007/s11103-013-0113-5
- Yang Y., Li P., Liu C. et al. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses // Plant Physiol. Biochem. 2022. V. 172. P. 33−47. doi: 10.1016/j.plaphy.2022.01.002
- Liu F., Zhang X., Lu C. et al. Non-specific lipid transfer proteins in plants: Presenting new advances and an integrated functional analysis // J. Exp. Bot. 2015. V. 66. № 19. P. 5663−5681. doi: 10.1093/jxb/erv313
- Missaoui K., Gonzalez-Klein Z., Pazos-Castro D. et al. Plant non-specific lipid transfer proteins: An overview // Plant Physiol. Biochem. 2022. V. 171. P. 115−127. doi: 10.1016/j.plaphy.2021.12.026
- Odintsova T.I., Slezina M.P., Istomina E.A. et al. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers // Pathogens. 2019. V. 8. № 4. 221. doi: 10.3390/pathogens8040221
- Pearce G., Moura D.S., Stratmann J., Ryan C.A. Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development // Proc. Natl Acad. Sci. USA. 2001. V. 98. № 22. P. 12843−12847. doi: 10.1073/pnas.201416998
- Blackburn M.R., Haruta M., Moura D.S. Twenty years of progress in physiological and biochemical investigation of RALF peptides // Plant Physiol. 2020. V. 182. № 4. P. 1657−1666. doi: 10.1104/pp.19.01310
- Stegmann M., Monaghan J., Smakowska-Luzan E. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling // Science. 2017. V. 355. № 6322. P. 287−289. doi: 10.1126/science.aal2541
- Gutiérrez-Marcos J.F., Costa L.M., Biderre-Petit C. et al. Maternally expressed gene1 Is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression // Plant Cell. 2004. V. 16. № 5. P. 1288−1301. doi: 10.1105/tpc.019778
- Villalba M., Batanero E., López-Otín C. et al. The amino acid sequence of Ole e I, the major allergen from olive tree (Olea europaea) pollen // Eur. J. Biochem. 1993. V. 216. № 3. P. 863−869. doi: 10.1111/j.1432-1033.1993.tb18208.x
- Castro A.J., de Dios Alché J., Cuevas J. et al. Pollen from different olive tree cultivars contains varying amounts of the major allergen Ole e 1 // Int. Arch. Allergy Immunol. 2003. V. 131. № 3. P. 164−173. doi: 10.1159/000071482
- De Dios Alché J., M’rani-Alaoui M., Castro A.J., Rodríguez-García M.I. Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination // Plant Cell. Physiol. 2004. V. 45. № 9. P. 1149−1157. doi: 10.1093/pcp/pch127
- Han F.P., Fedak G. Molecular characterization of partial amphiploids from Triticum durum × tetraploid Thinopyrum elongatum as novel source of resistance to wheat Fusarium head blight // Proc. 10th Int. Wheat Genet. Symp. Paestum. 2003. P. 1148–1150.
- Miller S.S., Watson E.M., Lazebnik J. et al. Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese spring wheat // Botany. 2011. V. 89. P. 301–311. doi: 10.1139/b11-017
- Ceoloni C., Forte P., Kuzmanović L. et al. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL // Theor. Appl. Genet. 2017. V. 130. P. 2005– 2024. doi: 10.1007/s00122-017-2939-8
- Konkin D., Hsueh Y.C., Kirzinger M. et al. Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL // BMC Genomics. 2022. V. 23. № 1. 228. doi: 10.1186/s12864-022-08433-8
- Wang R.R., Larson S.R., Jensen K.B. et al. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species // Genome. 2015. V. 58. № 2. P. 63–70. doi: 10.1139/gen-2014-0186
- Singh J., Chhabra B., Raza A. et al. Important wheat diseases in the US and their management in the 21st century // Front. Plant Sci. 2023. V. 13. doi: 10.3389/fpls.2022.1010191
- Liu Z., Li D., Zhang X. Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization // J. Integr. Plant Biol. 2007. V. 49. № 7. P. 1080–1086. doi: 10.1111/j.1672-9072.2007.00462.x
- Gaál E., Valárik M., Molnár I. et al. Identification of COS markers for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes // PLoS One. 2018. V. 13. № 12. doi: 10.1371/journal.pone.0208840.
- Ke T., Cao H., Huang J. et al. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus // BMC Genomics. 2015. V. 16. № 1. 653. doi: 10.1186/s12864-015-1849-x
- Tian D., Xie Q., Deng Z. et al. Small secreted peptides encoded on the wheat (Triticum aestivum L.) genome and their potential roles in stress responses // Front. Plant Sci. 2022. V. 13. doi: 10.3389/fpls.2022.1000297
Дополнительные файлы
