Cysteine-Rich Peptide Genes of Wheatgrass Thinopyrum elongatum

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cysteine-rich peptides play an important role in the plant defense system. The aim of the present work was to search in silico for genes encoding antimicrobial and signaling peptides in the genome of Thinopyrum elongatum (Host) D.R. Dewey (2n = 14, EE) − a wild grass species with high resistance to pathogens and abiotic stress. Bioinformatic analysis revealed 154 new genes of antimicrobial and signaling peptide precursors belonging to 9 families in Th. elongatum genome. Introns were detected in a number of cysteine-rich peptide genes. The structure of peptide precursors and localization of peptide genes in wheat chromosomes were determined. The greatest similarity of the sequences of Th. elongatum peptides with homologous peptides of plants of the genera Triticum and Aegilops was shown, which confirms the cytogenetic data on the relatedness of genome E with genome D and similar genomes. The results obtained contribute to the characterization of molecular components of the immune system of Th. elongatum and will serve as a basis for further studies of resistance mechanisms, as well as for scientifically justified practical use of this species as a resistance donor in wheat breeding.

全文:

受限制的访问

作者简介

M. Slezina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: odintsova2005@rambler.ru
俄罗斯联邦, Moscow, 119991

E. Istomina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: odintsova2005@rambler.ru
俄罗斯联邦, Moscow, 119991

A. Shiyan

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: odintsova2005@rambler.ru
俄罗斯联邦, Moscow, 119991

T. Odintsova

Vavilov Institute of General Genetics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: odintsova2005@rambler.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Dodds P., Rathjen J. Plant immunity: Towards an integrated view of plant–pathogen interactions // Nat. Rev. Genet. 2010. V. 11. P. 539–548. doi: 10.1038/nrg2812.
  2. Zou F., Tan C., Shinali T.S. et al. Plant antimicrobial peptides: A comprehensive review of their classification, production, mode of action, functions, applications, and challenges // Food Funct. 2023. V. 14. № 12. P. 5492−5515. doi: 10.1039/d3fo01119d
  3. Li J., Hu S., Jian W. et al. Plant antimicrobial peptides: structures, functions, and applications // Bot. Stud. 2021. V. 62. № 1. 5. doi: 10.1186/s40529-021-00312-x
  4. Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants // Pharmaceuticals. 2015. V. 8. № 4. P. 711–757. doi: 10.3390/ph8040711
  5. Bolouri Moghaddam M.R., Vilcinskas A., Rahnamaeian M. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants // Mol. Plant Pathol. 2016. V. 17. № 3. P. 464−471. doi: 10.1111/mpp.12299
  6. Campos M.L., de Souza C.M., de Oliveira K.B.S. et al. The role of antimicrobial peptides in plant immunity // J. Exp. Bot. 2018. V. 69. № 21. P. 4997−5011. doi: 10.1093/jxb/ery294
  7. Hu Z., Zhang H., Shi K. Plant peptides in plant defense responses // Plant Signal. Behav. 2018. V. 13. № 8. doi: 10.1080/15592324.2018.1475175
  8. Xie H., Zhao W., Li W. et al. Small signaling peptides mediate plant adaptions to abiotic environmental stress // Planta. 2022. V. 255. № 4. 72. doi: 10.1007/s00425-022-03859-6
  9. Marmiroli N., Maestri E. Plant peptides in defense and signaling // Peptides. 2014. V. 56. P. 30−44. doi: 10.1016/j.peptides.2014.03.013
  10. Yamaguchi K., Kawasaki T. Pathogen- and plant-derived peptides trigger plant immunity // Peptides. 2021. V. 144. doi: 10.1016/j.peptides.2021.170611
  11. Tavormina P., De Coninck B., Nikonorova N. et al. The plant peptidome: An expanding repertoire of structural features and biological functions // Plant Cell. 2015. V. 27. № 8. P. 2095−2118. doi: 10.1105/tpc.15.00440
  12. Silverstein K.A., Graham M.A., Paape T.D. et al. Genome organization of more than 300 defensin-like genes in Arabidopsis // Plant Physiol. 2005. V. 138. № 2. P. 600−610. doi: 10.1104/pp.105.060079
  13. Silverstein K.A., Moskal W.A. Jr., et al. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants // Plant J. 2007. V. 51. № 2. P. 262−280. doi: 10.1111/j.1365-313X.2007.03136.x
  14. Коростылева Т.В., Шиян А.Н., Одинцова Т.И. Генетический ресурс пырея Thinopyrum elongatum (Host) D.R. Dewey в селекционном улучшении пшеницы // Генетика. 2023. Т. 59. № 10. С. 1112–1119. doi: 10.31857/S0016675823100077
  15. Slezina M.P., Istomina E.A., Korostyleva T.V. et al. Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling // Int. J. Mol. Sci. 2021. V. 22. № 11. doi: 10.3390/ijms22115741.
  16. Teufel F., Almagro Armenteros J.J., Johansen A.R. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models // Nat. Biotechnol. 2022. V. 40. P. 1023−1025. doi: 10.1038/s41587-021-01156-3
  17. Gawde U., Chakraborty S., Waghu F.H. et al. CAMPR4: A database of natural and synthetic antimicrobial peptides // Nucl. Acids Res. 2023. V. 51. P. D377–D383. doi: 10.1093/nar/gkac933.
  18. Gasteiger E., Hoogland C., Gattiker A. et al. Protein identification and analysis tools on the ExPASy server // The Proteomics Protocols Handbook / Ed. John M. Walker. USA: Humana Press, 2005. P. 571–607.
  19. Eisenhaber B., Wildpaner M., Schultz C.J. et al. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice // Plant Physiol. 2003. V. 133. P. 1691−1701. doi: 10.1104/pp.103.023580.
  20. Parisi K., Shafee T.M.A., Quimbar P. et al. The evolution, function and mechanisms of action for plant defensins // Semin. Cell Dev. Biol. 2019. V. 88. P. 107–118. doi: 10.1016/j.semcdb.2018.02.004
  21. Lay F.T., Anderson M.A. Defensins − components of the innate immune system in plants // Curr. Protein and Pept. Sci. 2005. V. 6. № 1. P. 85–101. doi: 10.2174/1389203053027575.
  22. Cools T.L., Struyfs C., Cammue B.P., Thevissen K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections // Future Microbiol. 2017. V. 12. P. 441−454. doi: 10.2217/fmb-2016-0181
  23. Sathoff A.E., Samac D.A. Antibacterial activity of plant defensins // Mol. Plant Microbe Interact. 2019. V. 32. № 5. P. 507−514. doi: 10.1094/MPMI-08-18-0229-CR
  24. Mirouze M., Sels J., Richard O. et al. A putative novel role for plant defensins: A defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance // Plant J. 2006. V. 47. № 3. P. 329−342. doi: 10.1111/j.1365-313X.2006.02788.x
  25. Sasaki K., Kuwabara C., Umeki N. et al. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat // J. Biotechnol. 2016. V. 228. P. 3−7. doi: 10.1016/j.jbiotec.2016.04.015
  26. Stotz H.U., Spence B., Wang Y. A defensin from tomato with dual function in defense and development // Plant Mol. Biol. 2009. V. 71. № 1−2. P. 131−143. doi: 10.1007/s11103-009-9512-z
  27. Odintsova T.I., Slezina M.P., Istomina E.A. et al. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance // PeerJ. 2019. V. 7. doi: 10.7717/peerj.6125
  28. Slezina M.P., Istomina E.A., Kulakovskaya E.V. et al. The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens // Int. J. Mol. Sci. 2022. V. 23. № 15. doi: 10.3390/ijms23158383
  29. Segura A., Moreno M., Madueño F. et al. Snakin-1, a peptide from potato that is active against plant pathogens // Mol. Plant Microbe Interact. 1999. V. 12. № 1. P. 16−23. doi: 10.1094/MPMI.1999.12.1.16
  30. Nahirñak V., Almasia N.I., Fernandez P.V. et al. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition // Plant Physiol. 2012. V. 158. № 1. P. 252−263. doi: 10.1104/pp.111.186544
  31. Zhang S., Yang C., Peng J. et al. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana // Plant Mol. Biol. 2009. V. 69. P. 745–759. doi: 10.1007/s11103-009-9452-7
  32. Oliveira-Lima M., Benko-Iseppon A.M., Neto J.R.C.F. et al. Snakin: Structure, roles and applications of a plant antimicrobial peptide // Curr. Protein Pept. Sci. 2017. V. 18. № 4. P. 368–374. doi: 10.2174/1389203717666160619183140
  33. Berrocal-Lobo M., Segura A., Moreno M. et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection // Plant Physiol. 2002. V. 128. № 3. P. 951−961. doi: 10.1104/pp.010685
  34. Meiyalaghan S., Thomson S.J., Fiers M.W. et al. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status // BMC Genomics. 2014. V. 15. 2. doi: 10.1186/1471-2164-15-2
  35. Iqbal A., Khan R.S. Snakins: Antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants // Mol. Biol. Rep. 2023. V. 50. № 10. P. 8683−8690. doi: 10.1007/s11033-023-08734-5
  36. Slavokhotova A.A., Shelenkov A.A., Andreev Y.A., Odintsova T.I. Hevein-like antimicrobial peptides of plants // Biochemistry (Mosc). 2017. V. 82. № 13. P. 1659−1674. doi: 10.1134/S0006297917130065
  37. Slavokhotova A.A., Naumann T.A., Price N.P. et al. Novel mode of action of plant defense peptides – hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases // FEBS J. 2014. V. 281. № 20. P. 4754−4764. doi: 10.1111/febs.13015
  38. Van den Bergh K.P., Rougé P., Proost P. et al. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.) // Planta. 2004. V. 219. № 2. P. 221−232. doi: 10.1007/s00425-004-1238-1
  39. Loo S., Tay S.V., Kam A. et al. Anti-fungal hevein-like peptides biosynthesized from quinoa cleavable hololectins // Molecules. 2021. V. 26. № 19. doi: 10.3390/molecules26195909
  40. Odintsova T.I., Vassilevski A.A., Slavokhotova A.A. et al. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif // FEBS J. 2009. V. 276. № 15. P. 4266−4275. doi: 10.1111/j.1742-4658.2009.07135.x
  41. Höng K., Austerlitz T., Bohlmann T., Bohlmann H. The thionin family of antimicrobial peptides // PLoS One. 2021. V. 16. № 7. doi: 10.1371/journal.pone.0254549
  42. Oard S., Rush M.C., Oard J.H. Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani // J. Appl. Microbiol. 2004. V. 97. № 1. P. 169−180. doi: 10.1111/j.1365-2672.2004.02291.x
  43. Molina A., Ahl Goy P., Fraile A. et al. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II // Plant Science. 1993. V. 92. № 2. P. 169–177. doi: 10.1016/0168-9452(93)90203-C
  44. Terras F., Schoofs H., Thevissen K. et al. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors // Plant Physiol. 1993. V. 103. № 4. P. 1311−1319. doi: 10.1104/pp.103.4.1311
  45. Salminen T.A., Blomqvist K., Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function // Planta. 2016. V. 244. № 5. P. 971−997. doi: 10.1007/s00425-016-2585-4
  46. Kader J.C. Lipid-transfer proteins in plants // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996. V. 47. P. 627−654. doi: 10.1146/annurev.arplant.47.1.627
  47. Santos-Silva C.A.D., Ferreira-Neto J.R.C., Amador V.C. et al. From gene to transcript and peptide: A deep overview on non-specific lipid transfer proteins (nsLTPs) // Antibiotics (Basel). 2023. V. 12. № 5. 939. doi: 10.3390/antibiotics12050939
  48. Fahlberg P., Buhot N., Johansson O.N., Andersson M.X. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana // Mol. Plant Pathol. 2019. V. 20. № 1. P. 69−77. doi: 10.1111/mpp.12740
  49. Edstam M.M., Blomqvist K., Eklöf A. et al. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin // Plant Mol. Biol. 2013. V. 83. № 6. P. 625−649. doi: 10.1007/s11103-013-0113-5
  50. Yang Y., Li P., Liu C. et al. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses // Plant Physiol. Biochem. 2022. V. 172. P. 33−47. doi: 10.1016/j.plaphy.2022.01.002
  51. Liu F., Zhang X., Lu C. et al. Non-specific lipid transfer proteins in plants: Presenting new advances and an integrated functional analysis // J. Exp. Bot. 2015. V. 66. № 19. P. 5663−5681. doi: 10.1093/jxb/erv313
  52. Missaoui K., Gonzalez-Klein Z., Pazos-Castro D. et al. Plant non-specific lipid transfer proteins: An overview // Plant Physiol. Biochem. 2022. V. 171. P. 115−127. doi: 10.1016/j.plaphy.2021.12.026
  53. Odintsova T.I., Slezina M.P., Istomina E.A. et al. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers // Pathogens. 2019. V. 8. № 4. 221. doi: 10.3390/pathogens8040221
  54. Pearce G., Moura D.S., Stratmann J., Ryan C.A. Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development // Proc. Natl Acad. Sci. USA. 2001. V. 98. № 22. P. 12843−12847. doi: 10.1073/pnas.201416998
  55. Blackburn M.R., Haruta M., Moura D.S. Twenty years of progress in physiological and biochemical investigation of RALF peptides // Plant Physiol. 2020. V. 182. № 4. P. 1657−1666. doi: 10.1104/pp.19.01310
  56. Stegmann M., Monaghan J., Smakowska-Luzan E. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling // Science. 2017. V. 355. № 6322. P. 287−289. doi: 10.1126/science.aal2541
  57. Gutiérrez-Marcos J.F., Costa L.M., Biderre-Petit C. et al. Maternally expressed gene1 Is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression // Plant Cell. 2004. V. 16. № 5. P. 1288−1301. doi: 10.1105/tpc.019778
  58. Villalba M., Batanero E., López-Otín C. et al. The amino acid sequence of Ole e I, the major allergen from olive tree (Olea europaea) pollen // Eur. J. Biochem. 1993. V. 216. № 3. P. 863−869. doi: 10.1111/j.1432-1033.1993.tb18208.x
  59. Castro A.J., de Dios Alché J., Cuevas J. et al. Pollen from different olive tree cultivars contains varying amounts of the major allergen Ole e 1 // Int. Arch. Allergy Immunol. 2003. V. 131. № 3. P. 164−173. doi: 10.1159/000071482
  60. De Dios Alché J., M’rani-Alaoui M., Castro A.J., Rodríguez-García M.I. Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination // Plant Cell. Physiol. 2004. V. 45. № 9. P. 1149−1157. doi: 10.1093/pcp/pch127
  61. Han F.P., Fedak G. Molecular characterization of partial amphiploids from Triticum durum × tetraploid Thinopyrum elongatum as novel source of resistance to wheat Fusarium head blight // Proc. 10th Int. Wheat Genet. Symp. Paestum. 2003. P. 1148–1150.
  62. Miller S.S., Watson E.M., Lazebnik J. et al. Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese spring wheat // Botany. 2011. V. 89. P. 301–311. doi: 10.1139/b11-017
  63. Ceoloni C., Forte P., Kuzmanović L. et al. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL // Theor. Appl. Genet. 2017. V. 130. P. 2005– 2024. doi: 10.1007/s00122-017-2939-8
  64. Konkin D., Hsueh Y.C., Kirzinger M. et al. Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL // BMC Genomics. 2022. V. 23. № 1. 228. doi: 10.1186/s12864-022-08433-8
  65. Wang R.R., Larson S.R., Jensen K.B. et al. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species // Genome. 2015. V. 58. № 2. P. 63–70. doi: 10.1139/gen-2014-0186
  66. Singh J., Chhabra B., Raza A. et al. Important wheat diseases in the US and their management in the 21st century // Front. Plant Sci. 2023. V. 13. doi: 10.3389/fpls.2022.1010191
  67. Liu Z., Li D., Zhang X. Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization // J. Integr. Plant Biol. 2007. V. 49. № 7. P. 1080–1086. doi: 10.1111/j.1672-9072.2007.00462.x
  68. Gaál E., Valárik M., Molnár I. et al. Identification of COS markers for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes // PLoS One. 2018. V. 13. № 12. doi: 10.1371/journal.pone.0208840.
  69. Ke T., Cao H., Huang J. et al. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus // BMC Genomics. 2015. V. 16. № 1. 653. doi: 10.1186/s12864-015-1849-x
  70. Tian D., Xie Q., Deng Z. et al. Small secreted peptides encoded on the wheat (Triticum aestivum L.) genome and their potential roles in stress responses // Front. Plant Sci. 2022. V. 13. doi: 10.3389/fpls.2022.1000297

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Alignment of amino acid sequences of DEFL precursors from Th. elongatum (Te) and T. kiharae (Tk) [27], as well as some plant defensins. Conserved amino acid residues are highlighted in gray. Cysteine ​​residues in the mature peptide are highlighted in white on a black background. Groups of similar peptides are separated by a blank line.

下载 (1MB)
3. Fig. 2. Alignment of amino acid sequences of precursors: a − snakains of Th. elongatum, TkSN1 of wheat [28] and some snakains of plants of the genus Triticum; b − hevein-like peptide of Th. elongatum and peptide WAMP-1 of wheat (P85966.2); c − thionin-like peptide of Th. elongatum and homologous sequence of T. aestivum; d − peptides of the RALF family of Th. elongatum and other plants; d − peptides of the MEG family of Th. elongatum, peptide MEG2 of Solanum lycopersicum [15] and peptides MEG1 (NP_001384080.1), MEG2-like (NP_001413142.1) of Zea mays; e − peptides of the Ole e 1 family from Th. elongatum, Ole e 1-like peptide from Olea europaea var. sylvestris (XP_022872526.1) and homologous sequences; g − cysteine-rich peptides from Th. elongatum with a new motif and their closest homologues. Conserved amino acid residues are highlighted in grey. Cysteine ​​residues in the mature peptide are highlighted in white on a black background. Groups of similar peptides are separated by an empty line.

下载 (1MB)
4. Fig. 3. Alignment of amino acid sequences of lipid transfer proteins of Th. elongatum. Conserved amino acid residues are highlighted in gray. Cysteine ​​residues in the mature peptide are highlighted in white on a black background. Similar peptide types are separated by a blank line.

下载 (2MB)
5. Fig. 4. Map of the location of AMP genes and signal peptides on the chromosomes of Th. elongatum.

下载 (648KB)
6. Fig. 5. Distribution of AMP genes and signal peptides on couch grass chromosomes. Snakin, Hevein-like, Thionin.

下载 (98KB)
7. Fig. 6. Representation of genes of peptides of different subgroups in chromosomes of wheatgrass. Snakin, Hevein-like, Thionin.

下载 (96KB)

版权所有 © Russian Academy of Sciences, 2024