Полиморфизм микросателлитных локусов в популяциях кавказских скальных ящериц и его использование для оценки генетического разнообразия комплекса Darevskia raddei
- Авторы: Одегов Д.О.1, Валяева А.А.1, Аракелян М.С.2, Рысков А.П.1, Корчагин В.И.1, Мартиросян И.А.1
-
Учреждения:
- Институт биологии гена Российской академии наук
- Ереванский государственный университет
- Выпуск: Том 60, № 3 (2024)
- Страницы: 59-67
- Раздел: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjpbr.com/0016-6758/article/view/666970
- DOI: https://doi.org/10.31857/S0016675824030069
- EDN: https://elibrary.ru/DPBCHD
- ID: 666970
Цитировать
Аннотация
Изучение кавказских скальных ящериц комплекса Darevskia raddei sensu lato, представленного несколькими подвидами, имеет большой интерес и научную значимость в связи с их участием в межвидовых гибридизациях с образованием пяти из семи известных однополых (партеногенетических) видов рода Darevskia. В статье приведены генетические параметры для популяций (подвидов) D. r. raddei и D. r. nairensis, полученные на основе анализа изменчивости десяти микросателлитных локусов 230 особей из 17 популяций Армении и Арцаха (Нагорного Карабаха). Согласно этим параметрам, популяции D. r. raddei характеризуются большим разнообразием по числу аллелей и генотипов по сравнению с популяциями D. r. nairensis. Анализ генетической дифференциации показал, что популяции D. r. raddei подразделяются на две группы, одна из которых ближе к D .r. nairensis, чем к D. r. raddei. Анализ индекса ассоциаций показал отсутствие свободной перекомбинации аллелей между подвидами, что говорит об их изоляции и отсутствии скрещивания между особями. Таким образом, на основе расширенной популяционной выборки и разработанной панели микросателлитных маркеров получены новые данные о популяционной структуре вида D. raddei, о генетическом разнообразии и дифференциации популяций D. r. raddei и D. r. nairensis.
Полный текст

Об авторах
Д. О. Одегов
Институт биологии гена Российской академии наук
Автор, ответственный за переписку.
Email: irena-m@yandex.ru
Россия, Москва, 117334
А. А. Валяева
Институт биологии гена Российской академии наук
Email: irena-m@yandex.ru
Россия, Москва, 117334
М. С. Аракелян
Ереванский государственный университет
Email: irena-m@yandex.ru
Армения, Ереван, 0025
А. П. Рысков
Институт биологии гена Российской академии наук
Email: irena-m@yandex.ru
Россия, Москва, 117334
В. И. Корчагин
Институт биологии гена Российской академии наук
Email: irena-m@yandex.ru
Россия, Москва, 117334
И. А. Мартиросян
Институт биологии гена Российской академии наук
Email: irena-m@yandex.ru
Россия, Москва, 117334
Список литературы
- Arribas O.J. Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Merttens, 1921, sensu lato) and their relationships among the Eurasian Lacertid lizards // Rus. J. Herpetol. 1999. V. 6. № 1. P. 1–22. https://doi.org/10.30906/1026-2296-1999-6-1-1-22
- Boettger O. Kriechthiere der Kaukasusländer, gesammelt durch die Radde-Valentin’sche Expedition nach dem Karabagh und durch die Herren Dr. J. Valentin un P. Reibisch // Ber Senck Ges. 1892: 131−150 P.
- Даревский И. С. Скальные ящерицы Кавказа (Систематика, экология и филогения полиморфной группы кавказских ящериц подрода Archaeolacerta). Л.: Наука, Ленингр. отд., 1967. 214 с.
- Eiselt J., Schmidtle, J.F., Darevsky I.S. Untersuchungen an Felseidechsen (Lacerta saxicola-Komplex) in der östlichen Türkei. 2. Eine neue Unterart der Lacerta raddei BOETTGER, 1892 (Squamata: Sauria: Lacertidae) // Herpetozoa. 1993. V. 6. № 1/2. P. 65 – 70.
- Rastegar-Pouyani N., Karamiani R., Oraei H. et al. A New Subspecies of Darevskia raddei (Boettger, 1892) (Sauria: Lacertidae) from the West Azerbaijan Province, Iran // Asian Herpetol. Research. 2011. V. 2. № 4. P. 216–222. https://doi.org/10.3724/sp.j.1245.2011.00216
- Moritz C., Uzzel T., Spolsky C. et al. The maternal ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae) // Genetica. 1992. V. 87. P. 53–62. https://doi.org/10.1007/bf00128773
- Freita, S., Rocha S., Campos J. et al. Parthenogenesis through the ice ages: A biogeographic analysis of the parthenogenetic rock lizards (genus Darevskia) // Mol. Phylogenet. Evol. 2016. V. 102. P. 117–127. https://doi.org/10.1016/j.ympev.2016.05.035
- Bobyn M.L., Darevsky I.S., Kupriyanova L.A. Allozyme variation in populations of Lacerta raddei and Lacerta nairensis from Armenia // Amphibia–Reptilia. 1996. V. 17. P. 233–246. https://doi.org/10.1163/156853896X00414
- Yanchukov A., Tarkhnishvili D., Erdolu M. et al. Precise paternal ancestry of hybrid unisexual ZW lizards (genus Darevskia: Lacertidae: Squamata) revealed by Z-linked genomic markers // Biol. J. Linnean Society. 2022. V. 136. № 2. P. 293 – 305. https://doi.org/10.1093/biolinnean/blac023
- Carretero M.A., García-Muñoz E., Argaña E. et al. Parthenogenetic Darevskia lizards mate frequently if they have the chance: A quantitative analysis of copulation marks in a sympatric zone // J. Nat. History. V. 52. № 7–8. P. 405–413. https://doi.org/10.1080/00222933.2018.1435832
- Гирнык А.Е., Вергун А.А., Рысков А.П. Идентификация гибридных особей скальных ящериц Darevskia armeniaca×Darevskia valentini на основе микросателлитного генотипирования // Генетика. 2023. T. 59. № 6. С. 723–727. https://doi.org/10.31857/S0016675823060073
- Омельченко А.В., Гирнык А.Е., Осипов Ф.А. и др. Генетическая дифференциация природных популяций ящериц комплекса Darevskia raddei по данным микросателлитного маркирования геномов // Генетика. 2016. Т. 52. № 2. С. 260–264. https://doi.org/10.1134/S1022795416020083
- Ochkalova S., Korchagin V., Vergun A. et al. First genome of rock lizard Darevskia valentini involved in formation of several parthenogenetic species // Genes. 2022. V. 13. № 9. https://doi.org/10.3390/genes13091569
- Thiel T., Michalek W., Varshney R. et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) // Theor Appl Genet. 2003. V. 106. № 3. P. 411–422. https://doi.org/10.1007/s00122-002-1031-0
- Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features // Bioinformatics. 2010. V. 26. № 6. P. 841–842. https://doi.org/10.1093/bioinformatics/btq033
- Untergasser A., Cutcutache I., Koressaar T. et al. Primer3 – new capabilities and interfaces // Nucl. Acids Res. 2012. V. 40. № 15. P. 115. https://doi.org/10.1093/nar/gks596
- Koressaar T., Remm M. Enhancements and modifications of primer design program Primer3 // Bioinformatics. 2007. V. 23. № 10. P. 1289–1291. https://doi.org/10.1093/bioinformatics/btm091
- Camacho C., Coulouris G., Avagyan V. et al. BLAST+: architecture and applications // BMC Bioinformatics. 2009. V. 10. P. 421. https://doi.org/10.1186/1471-2105-10-421
- Jombart T. adegenet: A R package for the multivariate analysis of genetic markers // Bioinformatics. 2008. V. 24. № 11. P. 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
- Jombart T., Ahmed I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data // Bioinformatics. 2011. V. 27. № 21. P. 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2022. https://www.R-project.org/
- Goudet J. Hierfstat, a package for R to compute and test hierarchical F-statistics // Mol. Ecol. Notes. 2005. V. 5. № 1. P. 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
- Paradis E. pegas: An R package for population genetics with an integrated–modular approach // Bioinformatics. 2010. V. 26 № 3. P. 419–420. https://doi.org/ 10.1093/bioinformatics/btp696
- Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction // PeerJ. 2014. https://doi.org/10.7717/peerj.281
- Nei M. Molecular Evolutionary Genetics, N. Y. Chichester, West Sussex: Columbia Univ. Press, 1987. 514 p. https://doi.org/10.7312/nei-92038
- Hedrick P.W. A standardized genetic differentiation measure // Evolution. 2005. V. 59. № 8. P. 1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x
- Meirmans P.G, Hedrick P.W. Assessing population structure: FST and related measures // Mol. Ecol. Resources. 2011. V. 11. № 1. P. 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x
- Jombart T., Devillard S. and Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations // BMC Genetics. 2010. V. 11. № 94. https://doi.org/10.1186/1471-2156-11-94
- Kamvar Z.N., Brooks J.K., Grunwald N.J. New R tools for analyzing genome-wide population genetic data with a focus on clonality // Front. Genet. 2015. V. 6. https://doi: 10.3389/fgen.2015.00208
- Spangenberg V., Kolomiets O., Stepanyan I. et al. Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi // Chromosoma. 2020. V. 129. № 3–4. P. 275–283. https://doi: 10.1007/s00412-020-00744-7
- Гречко В.В., Банникова А.А., Косушкин С.А. и др. Молекулярно-генетическое разнообразие комплекса ящериц Darevskia raddei (Lacertidae: Sauria): ранние этапы видообразования // Мол. биология. 2007. Т. 41. № 5. С. 839–851. https://doi.org/10.1134/S0026893307050093
- Spangenberg V., Arakelyan M., Galoyan E. et al. Extraordinary centromeres: Differences in the meiotic chromosomes of two rock lizards species Darevskia portschinskii and Darevskia raddei // PeerJ 2019. https://doi.org/10.7717/peerj.6360
- Cota L.G., Moreira P.A. Brandão M.M. et al. Structure and genetic diversity of Anacardium humile (Anacardiaceae): A tropical shrub // Genet. and Mol. Research. 2017. V. 16. № 3. P. 1–13. http://dx.doi.org/10.4238/gmr16039778
- Валяева А.А., Мартиросян И.А. Генетический полиморфизм локуса du47g в популяциях скальных ящериц Darevskia raddei Армении // Актуальные вопросы зоологии, экологии и охраны природы. 2021. Вып. 3. С. 30–34.
Дополнительные файлы
