Polymorphism of microsatellite loci in populations of Caucasian rock lizards and its use for assessing the genetic diversity of Darevskia raddei
- Authors: Odegov D.O.1, Valyaeva A.A.1, Arakelyan M.S.2, Ryskov A.P.1, Korchagin V.I.1, Martirosyan I.A.1
-
Affiliations:
- Institute of Gene Biology Russian Academy of Sciences
- Yerevan State University
- Issue: Vol 60, No 3 (2024)
- Pages: 59-67
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjpbr.com/0016-6758/article/view/666970
- DOI: https://doi.org/10.31857/S0016675824030069
- EDN: https://elibrary.ru/DPBCHD
- ID: 666970
Cite item
Abstract
The study of Caucasian rock lizards of the Darevskia raddei complex, represented by several subspecies, is of great interest and scientific significance in connection with their participation in interspecific hybridizations with the formation of five of the seven known unisexual (parthenogenetic) species of the genus Darevskia. Here are presented genetic parameters for populations (subspecies) of D. r. raddei and D. r. nairensis based on the analysis of the variability of 10 microsatellite loci of 230 individuals from 17 populations of Armenia and Nagorno-Karabakh. According to these parameters, D. r. raddei are characterized by greater diversity in the number of alleles and genotypes compared to D. r. nairensis. Genetic differentiation analysis showed that D. r. raddei populations are divided into two groups, one of which is genetically closer to D. r. nairensis than D. r. raddei. Analysis of the association index showed the absence of free recombination of alleles between subspecies, which indicates their isolation and the absence of crossing between individuals. Thus, based on the expanded population sample and the developed panel of microsatellite markers, new data on the population structure of D. raddei species, genetic diversity and differentiation of D. r. raddei and D. r. nairensis were obtained.
Full Text

About the authors
D. O. Odegov
Institute of Gene Biology Russian Academy of Sciences
Author for correspondence.
Email: irena-m@yandex.ru
Russian Federation, Moscow, 117334
A. A. Valyaeva
Institute of Gene Biology Russian Academy of Sciences
Email: irena-m@yandex.ru
Russian Federation, Moscow, 117334
M. S. Arakelyan
Yerevan State University
Email: irena-m@yandex.ru
Armenia, Erevan, 0025
A. P. Ryskov
Institute of Gene Biology Russian Academy of Sciences
Email: irena-m@yandex.ru
Russian Federation, Moscow, 117334
V. I. Korchagin
Institute of Gene Biology Russian Academy of Sciences
Email: irena-m@yandex.ru
Russian Federation, Moscow, 117334
I. A. Martirosyan
Institute of Gene Biology Russian Academy of Sciences
Email: irena-m@yandex.ru
Russian Federation, Moscow, 117334
References
- Arribas O.J. Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Merttens, 1921, sensu lato) and their relationships among the Eurasian Lacertid lizards // Rus. J. Herpetol. 1999. V. 6. № 1. P. 1–22. https://doi.org/10.30906/1026-2296-1999-6-1-1-22
- Boettger O. Kriechthiere der Kaukasusländer, gesammelt durch die Radde-Valentin’sche Expedition nach dem Karabagh und durch die Herren Dr. J. Valentin un P. Reibisch // Ber Senck Ges. 1892: 131−150 P.
- Даревский И. С. Скальные ящерицы Кавказа (Систематика, экология и филогения полиморфной группы кавказских ящериц подрода Archaeolacerta). Л.: Наука, Ленингр. отд., 1967. 214 с.
- Eiselt J., Schmidtle, J.F., Darevsky I.S. Untersuchungen an Felseidechsen (Lacerta saxicola-Komplex) in der östlichen Türkei. 2. Eine neue Unterart der Lacerta raddei BOETTGER, 1892 (Squamata: Sauria: Lacertidae) // Herpetozoa. 1993. V. 6. № 1/2. P. 65 – 70.
- Rastegar-Pouyani N., Karamiani R., Oraei H. et al. A New Subspecies of Darevskia raddei (Boettger, 1892) (Sauria: Lacertidae) from the West Azerbaijan Province, Iran // Asian Herpetol. Research. 2011. V. 2. № 4. P. 216–222. https://doi.org/10.3724/sp.j.1245.2011.00216
- Moritz C., Uzzel T., Spolsky C. et al. The maternal ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae) // Genetica. 1992. V. 87. P. 53–62. https://doi.org/10.1007/bf00128773
- Freita, S., Rocha S., Campos J. et al. Parthenogenesis through the ice ages: A biogeographic analysis of the parthenogenetic rock lizards (genus Darevskia) // Mol. Phylogenet. Evol. 2016. V. 102. P. 117–127. https://doi.org/10.1016/j.ympev.2016.05.035
- Bobyn M.L., Darevsky I.S., Kupriyanova L.A. Allozyme variation in populations of Lacerta raddei and Lacerta nairensis from Armenia // Amphibia–Reptilia. 1996. V. 17. P. 233–246. https://doi.org/10.1163/156853896X00414
- Yanchukov A., Tarkhnishvili D., Erdolu M. et al. Precise paternal ancestry of hybrid unisexual ZW lizards (genus Darevskia: Lacertidae: Squamata) revealed by Z-linked genomic markers // Biol. J. Linnean Society. 2022. V. 136. № 2. P. 293 – 305. https://doi.org/10.1093/biolinnean/blac023
- Carretero M.A., García-Muñoz E., Argaña E. et al. Parthenogenetic Darevskia lizards mate frequently if they have the chance: A quantitative analysis of copulation marks in a sympatric zone // J. Nat. History. V. 52. № 7–8. P. 405–413. https://doi.org/10.1080/00222933.2018.1435832
- Гирнык А.Е., Вергун А.А., Рысков А.П. Идентификация гибридных особей скальных ящериц Darevskia armeniaca×Darevskia valentini на основе микросателлитного генотипирования // Генетика. 2023. T. 59. № 6. С. 723–727. https://doi.org/10.31857/S0016675823060073
- Омельченко А.В., Гирнык А.Е., Осипов Ф.А. и др. Генетическая дифференциация природных популяций ящериц комплекса Darevskia raddei по данным микросателлитного маркирования геномов // Генетика. 2016. Т. 52. № 2. С. 260–264. https://doi.org/10.1134/S1022795416020083
- Ochkalova S., Korchagin V., Vergun A. et al. First genome of rock lizard Darevskia valentini involved in formation of several parthenogenetic species // Genes. 2022. V. 13. № 9. https://doi.org/10.3390/genes13091569
- Thiel T., Michalek W., Varshney R. et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) // Theor Appl Genet. 2003. V. 106. № 3. P. 411–422. https://doi.org/10.1007/s00122-002-1031-0
- Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features // Bioinformatics. 2010. V. 26. № 6. P. 841–842. https://doi.org/10.1093/bioinformatics/btq033
- Untergasser A., Cutcutache I., Koressaar T. et al. Primer3 – new capabilities and interfaces // Nucl. Acids Res. 2012. V. 40. № 15. P. 115. https://doi.org/10.1093/nar/gks596
- Koressaar T., Remm M. Enhancements and modifications of primer design program Primer3 // Bioinformatics. 2007. V. 23. № 10. P. 1289–1291. https://doi.org/10.1093/bioinformatics/btm091
- Camacho C., Coulouris G., Avagyan V. et al. BLAST+: architecture and applications // BMC Bioinformatics. 2009. V. 10. P. 421. https://doi.org/10.1186/1471-2105-10-421
- Jombart T. adegenet: A R package for the multivariate analysis of genetic markers // Bioinformatics. 2008. V. 24. № 11. P. 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
- Jombart T., Ahmed I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data // Bioinformatics. 2011. V. 27. № 21. P. 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2022. https://www.R-project.org/
- Goudet J. Hierfstat, a package for R to compute and test hierarchical F-statistics // Mol. Ecol. Notes. 2005. V. 5. № 1. P. 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
- Paradis E. pegas: An R package for population genetics with an integrated–modular approach // Bioinformatics. 2010. V. 26 № 3. P. 419–420. https://doi.org/ 10.1093/bioinformatics/btp696
- Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction // PeerJ. 2014. https://doi.org/10.7717/peerj.281
- Nei M. Molecular Evolutionary Genetics, N. Y. Chichester, West Sussex: Columbia Univ. Press, 1987. 514 p. https://doi.org/10.7312/nei-92038
- Hedrick P.W. A standardized genetic differentiation measure // Evolution. 2005. V. 59. № 8. P. 1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x
- Meirmans P.G, Hedrick P.W. Assessing population structure: FST and related measures // Mol. Ecol. Resources. 2011. V. 11. № 1. P. 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x
- Jombart T., Devillard S. and Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations // BMC Genetics. 2010. V. 11. № 94. https://doi.org/10.1186/1471-2156-11-94
- Kamvar Z.N., Brooks J.K., Grunwald N.J. New R tools for analyzing genome-wide population genetic data with a focus on clonality // Front. Genet. 2015. V. 6. https://doi: 10.3389/fgen.2015.00208
- Spangenberg V., Kolomiets O., Stepanyan I. et al. Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi // Chromosoma. 2020. V. 129. № 3–4. P. 275–283. https://doi: 10.1007/s00412-020-00744-7
- Гречко В.В., Банникова А.А., Косушкин С.А. и др. Молекулярно-генетическое разнообразие комплекса ящериц Darevskia raddei (Lacertidae: Sauria): ранние этапы видообразования // Мол. биология. 2007. Т. 41. № 5. С. 839–851. https://doi.org/10.1134/S0026893307050093
- Spangenberg V., Arakelyan M., Galoyan E. et al. Extraordinary centromeres: Differences in the meiotic chromosomes of two rock lizards species Darevskia portschinskii and Darevskia raddei // PeerJ 2019. https://doi.org/10.7717/peerj.6360
- Cota L.G., Moreira P.A. Brandão M.M. et al. Structure and genetic diversity of Anacardium humile (Anacardiaceae): A tropical shrub // Genet. and Mol. Research. 2017. V. 16. № 3. P. 1–13. http://dx.doi.org/10.4238/gmr16039778
- Валяева А.А., Мартиросян И.А. Генетический полиморфизм локуса du47g в популяциях скальных ящериц Darevskia raddei Армении // Актуальные вопросы зоологии, экологии и охраны природы. 2021. Вып. 3. С. 30–34.
Supplementary files
