Underwater mass movements on seasonally inundated banks of the Votkinsk Reservoir (Kama River, Russia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a study conducted at a monitoring site near the village of Galyovo on the right bank of the Votkinsk reservoir. The research focuses on the processes of mass movement of fine and clastic material, including the destruction of rockfall slopes and the displacement of debris. The following methods and results were employed. Observations were conducted on the destruction of rockfall slopes, primarily composed of siltstones undercut by abrasion. The peculiarities of debris displacement were also noted. High-precision tacheometric surveying in non-reflective mode was used to determine the rates of slope failure. This method allowed for accurate measurements of slope movement. The rates of debris displacement were calculated by analyzing images obtained from drones and conducting topographic surveying. Mass measurements of the debris position were used to quantify the displacement rates. For the first time, the rates of slow mass movement of material delivered to the shoal due to bank destruction were determined and quantified. The main contribution to the volume of loose material entering the reservoir at the monitoring site was caused by weathering of high slopes. The rate of slope retreat was determined to be 14—15 cm/year, resulting in an input of colluvium of 6.6—7 m3 per linear meter per year. In the seasonally submerged areas of the shallow coastal zone, sediment transport was found to be related to various processes, including wave activity and mass movement of material in underwater conditions. The study recorded the displacement of sediments lining the shallow coastal zone before the formation of seasonal ice cover, with sliding distances of 15—20 meters by the beginning of spring water discharge. The movement of boulders was also observed, mainly in the range of 10—20 cm/year. It was noted that mass displacement of fine sediments in the summer was compensated by the input of products of crumbling, collapse, and bank abrasion. The data obtained from this study can be used to assess the role of various processes in the shallow water of the reservoir and calculate the rate of siltation of the reservoir. This information is valuable for understanding and managing the geomorphological dynamics of the coastal area and the reservoir.

About the authors

I. E. Egorov

Udmurt State University

Email: egorov.i53@mail.ru
Russian Federation, Izhevsk

I. V. Gleyzer

Udmurt State University

Email: ivangrig@yandex.ru
Russian Federation, Izhevsk

I. I. Grigorev

Udmurt State University

Author for correspondence.
Email: ivangrig@yandex.ru
Russian Federation, Izhevsk

A. G. Kazakov

Udmurt State University

Email: ivangrig@yandex.ru
Russian Federation, Izhevsk

References

  1. Agafonov B. P. (1981). The process of freshly formed ledges retreat on slopes. Geografiya i prirodnye resursy. № 4. P. 37—45. (in Russ.)
  2. Agafonov B. P. (1986). On the nature of the slow displacement of loose cover. Izvestiya AN SSSR. Seriya geograficheskaya. № 4. P. 55—64. (in Russ.)
  3. Agafonov B. P. (2005). Ascending lithoflows in the formation of lake shores (on the example of Baikal). In: Novye i traditsionnye idei v geomorfologii. V Shchukinskiye chteniya. Moscow: Geograficheskii fakul’tet MGU (Publ.). P. 197—199. (in Russ.)
  4. Auzert A. V. (1982). La mezure du creep: mise au point bibliographique. Recherche Geographiques Strasbourg. № 19—21b. Р. 211—218.
  5. Azhigirov A. A., Golosov V. N. (1990). Slow mass movement assessment in engineering-geographical studies. Geomorfologiya. № 1. P. 33—40. (in Russ.)
  6. Berkgaut V. V., Belousova N. I. (1985). Mass movement on slopes and soils. Geomorfologiya. № 1. P. 57—65. (in Russ.)
  7. Dedkov A. P., Duglav V. A. (1967). Slow movement of soil and soil masses on turfed slopes. Izvestiya AN SSSR. Seriya geograficheskaya. № 4. P. 90—93. (in Russ.)
  8. Egorov I. E., Gleizer I. V., Kazakov A. G. (2018). Slow mass velocities displacement of soils in above-water and underwater conditions of the drainage basin. In: Tridtsat’ tret’e plenarnoe mezhvuzovskoe koordinatsionnoe soveshchanie po probleme erozionnykh, ruslovykh i ust’evykh protsessov (g. Nizhnevartovsk, 2—4 oktyabrya 2018 g.): Doklady i kratkie soobshcheniya. Nizhnevartovsk: NVGU (Publ.). P. 96—98. (in Russ.)
  9. Egorov I. E., Gleizer I. V., Kazakov A. G. (2019). Features of the development of the relief of the coastal shallow waters of the Votkinsk Reservoir. In: Zakonomernosti proyavleniya erozionnykh i ruslovykh protsessov v razlichnykh prirodnykh usloviyakh: Materialy V Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, ob”edinennoi s XXXIV plenarnym soveshchaniem Mezhvuzovskogo nauchno-koordinatsionnogo soveta po probleme erozionnykh, ruslovykh i ust’evykh protsessov (g. Moskva, MGU imeni M. V. Lomonosova, 3—6 sentyabrya 2019 g.). Moscow: LENAND (Publ.). P. 197—198. (in Russ.)
  10. Harris C. (1972). Processes of soil movement in turfbanked solifluction lobes, Okstindan, Northern Norway. Polar Geomorphol. Symp. Aberdeen. London, Inst. Brit. Geogr. P. 155—174.
  11. Makkaveev N. I., Kalinin A. M. (1969). Displacement of large fragments and rock blocks as a result of the abluvial effect. In: Eksperimentalʹnaya geomorfologiya. Vyp. 2. Moscow: MGU (Publ.). P. 107—112. (in Russ.)
  12. Moeyersons J. (1989). A possible causal relationship between creep and sliding on Rwaza Hill, southern Rwanda. Earth Surf. Processes Landforms. V. 14. Iss. 6. P. 597—614. https://doi.org/10.1002/esp.3290140615
  13. Mozzherin V. I., Kurbanova S. G., Kurzhanova A. A. (2002). O skorosti poimennoi deflyuktsii v Srednem Povolzh’e. In: Soobshcheniya semnadtsatogo plenarnogo Mezhvuzovskogo nauchno-koordinatsionnogo soveta po probleme erozionnykh, ruslovykh i ust’evykh protsessov. Krasnodar: Krasnodarskii agrarnyi universitet (Publ.). P. 145—146. (in Russ.)
  14. Nazarov N. N. (2007). Spatiotemporal features of the coastal zone morpholithogenesis of the dam section of the Votkinsk Reservoir. Geograficheskii vestnik. № 1—2. P. 11—19. (in Russ.)
  15. Nazarov N. N. (2008). Geodinamika poberezhii vodokhranilishch Permskogo kraya (Coasts geodynamics of reservoirs in the Perm Region). Perm’: ZAO “Poligrafkomplekt” (Publ.). 152 p. (in Russ.)
  16. Panov D. G. (1966). Obshchaya geomorfologiya (General geomorphology). Moscow: Vysshaya shkola (Publ.). 426 p. (in Russ.)
  17. Pozdnyakov A. V., Rojhvager Z. B. (1980). Mathematical model of slope evolution due to viscous-plastic movement of debris mantle. Geomorfologiya. № 4. P. 54—60. (in Russ.)
  18. Sturman V. I., Egorov I. E., Artem’eva A.A. (2002). An integrated geo-ecological approach of solving the problem of accidents in oil field pipelines. Energetika i neftyanaya promyshlennost’. № 1. P. 67—74. (in Russ.)
  19. Swanston D. N. (1981). Creep and earthflow from undisturbed and management impacted slopes in the Coast and Cascade ranges of the Pasific northwest, U.S.A. In: Erosion and sediment transport in Pacific Rim steeplands. Davies T. R.H., Pearce A. J. (Eeds.). Christchurch, New Zealand. I.A.H.S. Publ. 132. Washington, DC and Wallingford, United Kingdom: International Association of Hydrological Sciences. P. 76—94.
  20. Tabor R. W. (1971). Origin of ridge-top depressions by largescale creep in the Olimpic mountains, Washington. Bull. Geol. Soc. Am. V. 82. № 7. P. 1811—1822. https://doi.org/10.1130/0016-7606(1971)82[1811: OORDBL]2.0.CO;2
  21. Timofeev D. A. (1978). Terminologiya denudatsii i sklonov (Terminology of denudation and slopes). Moscow: Nauka (Publ.). 243 p. (in Russ.)
  22. Voskresensky S. S. (1971). Dinamicheskaya geomorfologiya. Formirovanie sklonov (Dynamic geomorphology. Slopes Genesis.). Moscow: MGU (Publ.). 229 p. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of the observation object and the location of the same type of shores of the Votkinsk reservoir within Udmurtia.

Download (486KB)
3. Fig. 2. Operation of navigation equipment at reference points.

Download (615KB)
4. Fig. 3. Aerial view of a fragment of the coastal strip of the Votkinsk reservoir (the coordinate grid is drawn through 2 meters, the arrow indicates the direction of the slope): (a) — 2021 year, (б) — 2022 year.

Download (692KB)
5. Fig. 4. Dynamics of the vertical profile at the hospital according to the results of scanning from 2015 to 2022 years.

Download (213KB)
6. Fig. 5. Coastal shallow water after water discharge at the Votkinsk reservoir.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences