Stratigraphy and geochronology of the Kuldara Early Paleolithic Site (Tajikistan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Kuldara site, situated near the Khovaling loess plateau in Southern Tajikistan, stands as the most ancient stratified site of the Early Paleolithic in Central Asia. Here, at the end of the 20th century, stone tools were discovered in pedocomplexes 11 and 12, with an estimated age of ~0.9 million years according to geological data. This discovery marked the archaeological materials from Kuldara as evidence of the earliest penetration of ancient people into the southeastern regions of Central Asia. However, despite the significant importance of the site in understanding the conditions and chronology of the initial settlement in the region, a chronostratigraphic study of the complete section of loess-paleosol series at the site had never been conducted before. Consequently, the regional correlation of this monument was critically challenging.

We present the results of a comprehensive study of the stratigraphic sequence of the Kuldara section from modern soil to pedocomplex 11 on the cliff of the eastern bank of the same-named stream. We conducted soil description and detailed paleomagnetic research, measured magnetic susceptibility and its frequency dependence, and carried out archaeological work. Based on the obtained data, we performed, for the first time, a correlation with the oxygen isotope scale of the World Ocean, allowing us to estimate the age of the exposed pedocomplexes and identify significant erosion events in the upper part of the section. As a result of the archaeological work conducted, a collection of stone tools was obtained from pedocomplexes 4, 5, 6, and 10. These artifacts indicate the regular presence of ancient people at the site after the initial episode of settlement around ~0.9 million years ago, and the conducted chronostratigraphic correlation enables a more precise estimation of the timing of individual stages of this presence.

About the authors

E. P. Kulakova

Shmidt Institute of Physics of the Earth RAS; Institute of Archaeology and Ethnography SB RAS

Author for correspondence.
Email: ek.kula@yandex.ru
Russian Federation, Moscow; Novosibirsk

A. A. Anoikin

Institute of Archaeology and Ethnography SB RAS

Email: ek.kula@yandex.ru
Russian Federation, Novosibirsk

T. U. Khudjageldiev

Donish Institute of History, Archaeology and Ethnography NAST

Email: ek.kula@yandex.ru
Tajikistan, Dushanbe

P. M. Sosin

Institute of Water Problems, Hydropower and Ecology NAST

Email: ek.kula@yandex.ru
Tajikistan, Dushanbe

O. A. Tokareva

Institute of Archaeology and Ethnography SB RAS; Institute of Geography RAS

Email: ek.kula@yandex.ru
Russian Federation, Novosibirsk; Moscow

A. Ch. Karayev

Donish Institute of History, Archaeology and Ethnography NAST

Email: ek.kula@yandex.ru
Tajikistan, Dushanbe

A. G. Rybalko

Institute of Archaeology and Ethnography SB RAS

Email: ek.kula@yandex.ru
Russian Federation, Novosibirsk

R. N. Kurbanov

Institute of Archaeology and Ethnography SB RAS; Institute of Geography RAS; Lomonosov Moscow State University

Email: ek.kula@yandex.ru

Faculty of Geography

Russian Federation, Novosibirsk; Moscow; Moscow

References

  1. Alken P., Thébault E., Beggan C. D. et al. (2021). International Geomagnetic Reference Field: the thirteenth generation. Earth, Planets Space. V. 73. № 1. P. 49. https://doi.org/10.1186/s40623-020-01288-x
  2. Anoikin A., Sosin P., Rybalko A. et al. (2023). Lakhuti-IV — A new site of the early Palaeolithic in Central Asia (Tajikistan). Archaeological Res. in Asia. V. 35. P. 100466. https://doi.org/10.1016/j.ara.2023.100466
  3. Anoikin A. A., A. G. Rybalko, Khudjageldiev T. U. et al. (2023). Lakhuti-IV: A New Site of the Loessic Paleolithic in Tajikistan. Arkheologiya, etnografiya i antropologiya Yevrazii. Iss. 51. № 2. P. 3—13. https://doi.org/10.17746/1563-0110.2023.51.2.003-013
  4. Bolshakov V. A. (2006). Correlation of continental and deep-sea deposits of the Pleistocene: a statement of the question and some problems. Izvestiya RAN. Seriya geograficheskaya. № 4. P. 16—28. (in Russ.)
  5. Bronger A. (2003). Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quat. Int. V. 106—107. P. 11—31.
  6. Cohen K. M., Gibbard P. L. (2019). Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. V. 500. P. 20—31. https://doi.org/10.1016/j.quaint.2019.03.009
  7. Ding Z. L., Ranov V. A., Yang S. L. et al. (2002). The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett. V. 200. P. 387—400. https://doi.org/10.1016/S0012-821X(02)00637-4
  8. Dodonov A. E. (2002). Chetvertichnyi period Srednei Azii: stratigrafiya, korrelyatsiya, paleogeografiya (Quaternary period of Central Asia: stratigraphy, correlation, paleogeography). Moscow: GEOS (Publ.). 250 p. (in Russ.)
  9. Dodonov A. E., Baiguzina L. L. (1995). Loess stratigraphy of Central Asia: Palaeoclimatic and palaeoenvironmental aspects. Quat. Sci. Rev. V. 14. Iss. 7—8. P. 707—720. https://doi.org/10.1016/0277-3791(95)00054-2
  10. Dodonov A. E., Penkov A. V. (1977). Some data on the stratigraphy of watershed loess in the Tajik Depression (Southern Tajikistan). Byulleten’ Komissii po izucheniyu chetvertichnogo perioda AN SSSR. № 47b. P. 67—76. (in Russ.)
  11. Dodonov A. E., Sadchikova T. A., Sedov S. N. et al. (2006). Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, Southern Tajikistan. Quat. Int. V. 152—153. P. 48—58.
  12. Enkin R. J. (1994). A computer program package for analysis and presentation of paleomagnetic data. Pacific Geoscience Centre, Geological Survey of Canada. 16 р.
  13. Field book for describing and sampling soils. (2012). Schoeneberger P. J., Wysocki D. A., Benham E. C. (Eds.). Government Printing Office. 300 p.
  14. Fisher R. A. (1953). Dispersion on a sphere. Proc. R. Soc. London, Ser. A. V. 217. P. 295—305.
  15. Forster Th., Heller F. (1994). Loess deposits from the Tajik depression (Central Asia): Magnetic properties and palaeoclimate. Earth Planet. Sci. Lett. V. 128. P. 501—512.
  16. Frechen M., Dodonov A. E. (1998). Loess chronology of the Middle and Upper Pleistocene in Tadjikistan. Int. J. Earth Sci. V. 87. Iss. 1. P. 2—20. https://doi.org/10.1007/s005310050185
  17. Gladilin V. N., Sitliviy V. I. (1992). Ashel’ Tsentral’noi Evropy (Acheulean of Central Europe). Kiev: Naukova dumka (Publ.). 267 p. (in Russ.)
  18. IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
  19. Khudjageldiev T. (2012). Palaeolithic sites in the loess-paleosol section of Khonako (Khovaling district). Nasledie predkov. № 15. P. 108—118. (in Russ.)
  20. Khudjageldiev T. U., Kolobova K. A., Schnaider S. V., Krivoshapkin A. I. (2019). First evidence of bifacial technology in the Middle Palaeolithic of Tajikistan. Stratum Plus: Arkheologiya i kul’turnaya antropologiya. № 1. P. 265—277. (in Russ.)
  21. Kirschvink J. L. (1980). The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. Int. V. 62. P. 699—718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
  22. Kulakova E. P., Kurbanov R. N. (2023). First paleomagnetic data on the Matuyama-Brunhes transition in the loess-paleosol series of Tajikistan. In: Kosterov A., Lyskova E., Mironova I. et al. (Eds.). Problems of Geocosmos-2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. P. 67—84. https://doi.org/10.1007/978-3-031-40728-4_6
  23. Laukhin S. A., Ranov V. A., Vlasov V. K. et al. (2004). Radiothermoluminescence dating of the Pleistocene of Southern Tajikistan. Arkheologicheskie raboty v Tadzhikistane. Iss. XXIX. P. 36—66. (in Russ.)
  24. Lisiecki L. E., Raymo M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. V. 20. PA1003. https://doi.org/10.1029/2004PA001071
  25. Liu Q., Jin C., Hu P. et al. (2015). Magnetostratigraphy of Chinese loess-paleosol sequences. Earth-Sci. Rev. V. 150. P. 139—167. https://doi.org/10.1016/j.earscirev.2015.07.009
  26. Lomov S. P., Ranov V. A. (1984). Buried soils of Tajikistan and the distribution of Paleolithic tools in them. Pochvovedenie. № 4. P. 21—30. (in Russ.)
  27. Maher B. A., Taylor R. M. (1988). Formation of ultrafine-grained magnetite in soils. Nature. V. 336. P. 368—371. https://doi.org/10.1038/336368a0
  28. Muhs D. R. (2013). Loess and its geomorphic, stratigraphic, and paleoclimatic significance in the Quaternary. In: Shroder, J. (Ed. in Chief), Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.). Treatise on Geomorphology. Academic Press, San Diego, CA. V. 11. Aeolian Geomorphology. P. 149—183.
  29. Nazarov P., Zhongshan S., Mamadjanov Y., Sajid Z. (2020). Loess deposits in southern Tajikistan (Central Asia): Magnetic properties and paleoclimate. Quat. Geochronology. V. 60. P. 101114. https://doi.org/10.1016/j.quageo.2020.101114
  30. Penkov A. V., Gamov L. N. (1980). Paleomagnetic benchmarks in the Pliocene-Quaternary strata of Southern Tajikistan. In: Granitsa neogena i chetvertichnoi sistemy. M.: Nauka (Publ.). P. 184—189. (in Russ.)
  31. Ranov V. (1995). The “loessic palaeolithic” in South Tadjikistan, Central Asia: Its industries, chronology and correlation. Quat. Sci. Rev. V. 14. Iss. 7—8. P. 731—745. https://doi.org/10.1016/0277-3791(95)00055-0
  32. Ranov V. A. (1988). Works of the Stone Age study group in 1981. Arkheologicheskie raboty v Tadzhikistane. Vol. XXI. P. 201—233. (in Russ.)
  33. Ranov V. A. (1991). Works of the Stone Age study group in 1983. Arkheologicheskie raboty v Tadzhikistane. Vol. XXIII. P. 116—142. (in Russ.)
  34. Ranov V. A. (2000). Loess-paleosol formation of Southern Tajikistan and Loess Palaeolithic. Arkheologicheskie raboty v Tadzhikistane. Vol. XXVII. P. 21—49. (in Russ.)
  35. Ranov V. A., Amosova A. G. (1990). Works of the Stone Age study group in 1982. Arkheologicheskie raboty v Tadzhikistane. V. XXII. P. 161—194. (in Russ.)
  36. Ranov V. A., Dodonov A. E., Lomov S. P. et al. (1987). Kuldara — a new Early Palaeolithic site in Southern Tajikistan. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda. № 56. P. 65—75. (in Russ.)
  37. Ranov V. A., Karimova G. R. (2005). Stone age of the Afghan-Tajik Depression. Dushanbe: Devashtich (Publ.). 252 p. (in Russ.)
  38. Ranov V. A., Schaefer J. (2000). Loess Palaeolithic. Arkheologiya, etnografiya i antropologiya Evrazii. № 2. P. 20—32. (in Russ.)
  39. Rozanov B. G. (2004). Morphology of soils: a textbook for higher education. Moscow: Akademicheskii proekt (Publ.). 432 p. (in Russ.)
  40. Schafer J., Ranov V. A., Sosin P. M. (1998). The “cultural evolution” of Man and the chronostratigraphical background of changing environment in the loess paleosoil sequences of Obi-Mazar and Khonako (Tajikistan). Antropology. V. 36. P. 121—135.
  41. Smalley I. J., Marković S. B., Svircev Z. (2011). Loess is almost totally formed by the accumulayion of dust. Quat. Int. V. 240. P. 4—11.
  42. Smolikova L. (1969). Buried soils in loess, polygenesis of buried soils. In: Less — periglyatsial — paleolit na territorii Srednei i Vostochnoi Evropy. Moscow: VINITI (Publ). P. 182—187. (in Russ.)
  43. Soil survey. (1959). Moscow, V. V. Dokuchaev Soil Science Institute. 346 p. (in Russ.)
  44. Sosin P. M., Shefer Y., Tursova T. V., Ranov V. A. (2015). Paleosoils of Khonako-3 (geochronology, structure, composition). In: Coming back to beginnings: In memory of an outstanding archaeologist Vadim Ranov. Novosibirsk: Publishing Department of Institute of Archaeology and Ethnography SB RAS. P. 57—67. (in Russ.)
  45. Spassov S., Heller F., Evans M. E. et al. (2003). A lock-in model for the complex Matuyama-Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Geophys. J. Int. V. 155. P. 350—366.
  46. Tauxe L. (2010). Essentials of paleomagnetism. Berkeley: University of California Press. 489 p.
  47. Tokareva O. A., Lebedeva M. P., Sosin P. M. et al. (2024). Structure and properties of Late Pleistocene paleosols of the loess-paleosol section of Obi-Mazar (Tajikistan). Izvestiya RAN. Seriya geograficheskaya. V. 88. № 2. С. 176-195. https://doi.org/10.31857/S2587556624020067.
  48. Valet J.-P., Meynadier L., Guyodo Y. (2005). Geomagnetic dipole strength and reversal rate over the past two million years. Nature. V. 435. P. 802—805. https://doi.org/10.1038/nature03674
  49. Zhou L. P., Shackleton N. J. (1999). Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences. Earth Planet. Sci. Lett. V. 168. Iss. 1-2. P. 117—130. https://doi.org/10.1016/S0012-821X(99)00052-7
  50. Zhou W., Beck J. W., Kong X. et al. (2014). Timing of the Brunhes‒Matuyama magnetic polarity reversal in Chinese loess using ¹⁰Be. Geology. V. 42. Iss. 6. P. 467—470. https://doi.org/10.1130/G35443.1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the study region (Kuldara site) on the map of Tajikistan (а), position of the Kuldara site and other Obi-Mazar River valley sites of loessic Paleolithic (б), and position of 1981—1984 and 2021 archaeological excavations of the Kuldarа site on the orthophotoplan of the digital surface model (в).

Download (1MB)
3. Fig. 2. Perspective photograph of a general view of the section on the right side of ravine, lithological column of the uncovered section, and photographs of lithologic differences.

Download (616KB)
4. Fig. 3. Lithologic chart of the Kuldara section (а), field magnetic susceptibility curve (MS) (б), frequency dependence of magnetic susceptibility (χfd, %) (в), magnetic declination (D) and inclination (I) curves (г, д), virtual geomagnetic pole (VGP) latitude (е), and magnetostratigraphic column (ж). The erosional boundaries are marked with a wavy line. 1 — pedocomplex (PC), 2 — loess (L), 3 — petrocalcic horizons, 4 — carbonate nodules, 5 — erosion boundaries.

Download (554KB)
5. Fig. 4. Characteristic orthogonal NRM demagnetization plots, stereograms and demagnetization plots for samples from different levels of the Kuldara section.

Download (669KB)
6. Fig. 5. Archaeological material from the Kuldara site (excavations in 2021): (а) — flake from PC 10; (б) — flake from PC 6; (в) — core from PC 5; (г) — chip; (д, е) — cores from PC 4 (drawing by T. U. Khudjageldiev).

Download (528KB)
7. Fig. 6. Summary chronostratigraphic scheme of the Kuldara site: artifacts (а), lithologic column (б), magnetic zonality scale (в), magnetic susceptibility curve (г), frequency dependence of magnetic susceptibility (д), marine isotope stages (е), Quaternary stratigraphic subdivisions (ж), and global magnetostratigraphic scale (з). MIS is given by (Lisiecki, Raymo, 2005), geologic scale by (Cohen, Gibbard, 2019).

Download (419KB)

Copyright (c) 2024 Russian Academy of Sciences