Therapeutic Potential of Hypoxic Conditioning Technology in Post-Stroke Recovery: From Molecular and Physiological Mechanisms to Clinical Practice (A Narrative Review)



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Acute cerebral circulatory failure (ACCF) remains one of the leading causes of disability and mortality, retaining the risks of development and progression of cognitive and functional impairment even in the late recovery period. The acuteness of the problem actualizes the necessity to search for innovative approaches to rehabilitation and maintenance of a satisfactory quality of life for such patients. The technology of hypoxic conditioning (HC) in interval modes, in particular, in the form of a course of procedures of interval hypoxic-hyperoxic exposures (IHHE), is a promising non-pharmacological approach capable of potentiating the processes of neuroplasticity, synaptogenesis, and cerebral hemodynamics. This review aims to analyse the therapeutic potential of IHHE in the context of post-ACCF rehabilitation, including its effects on molecular mechanisms of adaptation, angiogenesis and functional recovery. The methodology includes a systematic search in PubMed, Scopus, eLIBRARY.RU and other databases, with a focus on studies related to hypoxic preconditioning, neuroprotection and clinical outcomes. The results demonstrate that IHHE activates HIF-1α-dependent pathways, stimulating angiogenesis via VEGF and neurogenesis via BDNF, which is supported by experimental and clinical data. Moderate hypoxia (9-16% O₂) optimizes redox balance by suppressing pro-inflammatory cytokines (IL-6, TNF-α) and enhancing antioxidant defence via Nrf2, which correlates with a reduction in ischaemic damage volume. Clinically, IGGE improves cognitive performance (memory, attention) and motor function, especially when combined with aerobic exercise training, improving exercise tolerance (15-20% increase in 6MWT distance) and quality of life. Cardioprotective effects include normalization of blood pressure and reduction of oxidative stress markers (malonyl dialdehyde), which is significant in patients with polymorbidity. Integrating IHHE into multimodal rehabilitation programmes promotes synergistic methods, enhancing neurovascular remodeling. Although promising, optimization of personalized protocols, considering age and comorbid pathologies, and randomized trials to assess long-term safety are required. This review is addressed to neurologists, molecular biologists and rehabilitation specialists, emphasising the translational potential of IHHE into clinical practice, subject to further validation of its efficacy.

Full Text

Restricted Access

About the authors

Malachi Nyamukondiwa

I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)

Author for correspondence.
Email: nmalachi8@gmail.com
ORCID iD: 0000-0002-9834-2505

PhD student

Russian Federation, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubezkaya Str., b. 2, Moscow, 119991, Russian Federation

Elizaveta Sergeevna Koneva

I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)

Email: elizaveta.coneva@yandex.ru
ORCID iD: 0000-0002-9859-194X
SPIN-code: 8200-2155

Doctor of Medical Sciences, Associate Professor, Professor

Russian Federation, 8 Trubezkaya Str., b. 2, Moscow, 119991, Russian Federation; 2 Otradnoye, b. 1., Krasnogorsk, 143442, Moscow region, Russian Federation

Oleg Stanislavovich Glazachev

I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)

Email: glazachev@mail.ru
ORCID iD: 0000-0001-9960-6608
SPIN-code: 6168-2110

Doctor of Medical Sciences, Professor, Professor

Russian Federation, 8 Trubezkaya Str., b. 2, Moscow, 119991, Russian Federation

References

  1. Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J MolSci. 2020;21(20):7609. https://doi.org/10.3390/ijms21207609
  2. Grefkes C, Fink GR: Recovery from stroke: current concepts and future perspectives. Neurologicalresearchandpractice. 2020; 2(1):17. https://doi.org/10.1186/s42466-020-00060-6
  3. Kadykov A.S., Shakhparonova N.V. Rehabilitation after stroke. RMJ.2003;11(25):1390-1394.
  4. Levin OS, Bogolepova AN. Poststroke motor and cognitive disorders: clinical features and modern approaches to rehabilitation. Journal of neurology and psychiatry named after S.S. Korsakov. S.S. Korsakov.- 2020;120(11):99-107. https://doi.org/10.17116/jnevro202012011199
  5. Damulin IV, Ekusheva EV. Poststroke neuroplasticity processes. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2014;6(3):69-74. (In Russ.) https://doi.org/10.14412/2074-2711-2014-3-69-74
  6. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915-925. https://doi.org/10.1016/j.bbadis.2016.01.015
  7. Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, Hietanen M. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288-1294. https://doi.org/10.1111/ene.12743
  8. Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018;38(2):208-211. https://doi.org/10.1055/s-0038-1649503
  9. Baillieul S, Chacaroun S, Doutreleau S, Detante O, Pépin JL, Verges S. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp Biol Med (Maywood). 2017;242(11):1198-1206. https://doi.org/10.1177/1535370217712691
  10. Bondarenko N.N., Khomutov E.V., Ryapolova T.L., Kishenya M.S., Ignatenko T.S., Tolstoy V.A., Evtushenko I.S., Tumanova S.V. Molecular and cellular mechanisms of the organism's response to hypoxia. Ulyanovsk Medico-Biological Journal. 2023. 2: 6-29.
  11. Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci. 2024;45(1):55-63. https://doi.org/10.1007/s10072-023-07012-3
  12. Burtscher J, Citherlet T, Camacho-Cardenosa A, et al. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol. 2024;602(21):5757-5783. https://doi.org/10.1113/JP285230
  13. Burtscher J., Glazachev O.S., Kopp M., Burtscher M. Effects of intermittent hypoxia exposures and interval hypoxic training on exercise tolerance (narrative review). Sports medicine: research and practice. 2024;14(2):16-23. https://doi.org/10.47529/2223-2524.2024.2.5. (in Russian).
  14. Rybnikova E.A., Nalivaeva N.N., Zenko M.Y., Baranova K.A. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci. 2022. 16: 941740. https://doi.org/10.3389/fnins.2022.941740.
  15. Glazachev O.S., Lyamina N.P., Spirina G.K. Intermittent hypoxic conditioning: experience and potential in cardiac rehabilitation programs. Russian Journal ofCardiology. 2021;26(5):4426. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4426
  16. Semenov D.G., Belyakov A.V. Hypoxic Conditioning as a Stimulus for the Formation of Hypoxic Tolerance of the Brain // Uspehi fiziologičeskih nauk. - 2023. - Vol. 54. - N. 2. - P. 3-19. doi: 10.31857/S0301179823020066. (In Russ.)
  17. Gluschenkova N.V., Sarkisian O.G., Goncharova Z.A. Mallignant ischemic stroke: clinical and biochemical features of diagnosis. South Russian Journal of Therapeutic Practice. 2023;4(2):35-45. (In Russ.) https://doi.org/10.21886/2712-8156-2023-4-2-35-45
  18. Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension?. Exp Biol Med (Maywood). 2008;233(6):627-650. https://doi.org/10.3181/0710-MR-267
  19. Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of intermittent hypoxia–hyperoxia on performance-and health-related outcomes in humans: A systematic review. Sports medicine-open. 2022, 8(1):70. https://doi.org/10.1186/s40798-022-00450-x.
  20. Glazachev O, Kopylov P, Susta D, Dudnik E, Zagaynaya E. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol. 2017;40(6):370-376.
  21. Kono Y, Fukuda S, Hanatani A, et al. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Devel Ther. 2014;8:1175-1181. https://doi.org/10.2147/DDDT.S68715
  22. Bayer U, Glazachev OS, Likar R, Burtscher M, Kofer W, Pinter G, Stettner H, Demschar S, Trummer B, Neuwersch S. Adaptation to intermittent hypoxia–hyperoxia improves cognitive performance and exercise tolerance in the elderly. Adv Gerontol. 2017;7:214–20. https://doi.org/10.1134/S2079057017030031.
  23. Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012; 26(2):163-172. https://doi.org/10.1177/1545968311412055
  24. Mikhalishchina AS, Zagainy ED, Vasina YAV, Glazachev OS. Effect of single interval hypoxic stimulation on cognitive functions of healthy volunteers. Bulletin of Psychophysiology. 2023: 4. doi: 10.34985/d2699-5404-1619-b
  25. Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci. 2024; 16: 1402774.https://doi.org/10.3389/fnagi.2024.1402774
  26. Janssen Daalen JM, Meinders MJ, Giardina F, et al. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol. 2022;22(1):262. https://doi.org/10.1186/s12883-022-02770-7
  27. Cai M, Chen X, Shan J, et al. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol. 2021;12:643619. https://doi.org/10.3389/fphar.2021.643619
  28. Kostenko AA, Koneva ES, Malyutin DS, et al. Hypoxic training in rehabilitation of patients at the early stages of recovery after SARS-CoV-2 pneumonia. Problems of Balneology, Physiotherapy and Exercise Therapy. 2022;99(4‑2):11‑16. (In Russ.)
  29. https://doi.org/10.17116/kurort20229904211
  30. Bestavashvili AA, Glazachev OS, Bestavashvili AA, Ines D, Suvorov AY, Vorontsov NV, Tuter DS, Gognieva DG, Yong Z, Pavlov CS, Glushenkov DV, Sirkina EA, Kaloshina IV, Kopylov PY. The efects of intermittent hypoxic–hyperoxic exposures on lipid profle and infammation in patients with metabolic syndrome. Front Cardiovasc Med. 2021. https:// doi.org/10.3389/fcvm.2021.700826.
  31. Serebrovska TV, Grib ON, Portnichenko VI, Serebrovska ZO, Egorov E, Shatylo VB. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High Alt MedBiol. 2019;20(4):383-391. https://doi.org/10.1089/ham.2019.0053
  32. Susta D, Dudnik E, Glazachev OS. A programme based on repeated hypoxia–hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study. Clin Physiol Funct Imaging. 2017;37:276–81. https://doi.org/10.1111/cpf.12296.
  33. Prikhodko VA, Selizarova NO, Okovityĭ SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Russian Journal of Archive of Pathology. 2021;83(2):52‑61. (In Russ.) https://doi.org/10.17116/patol20218302152
  34. Martynov MU, Zhuravleva MV, Vasyukova NS, Kuznetsova EV, Kameneva TR. Oxidative stress in the pathogenesis of stroke and its correction. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(1):16‑27. (In Russ.) https://doi.org/10.17116/jnevro202312301116
  35. Chen L, Gao Y, Li Y, et al. Severe Intermittent Hypoxia Modulates the Macrophage Phenotype and Impairs Wound Healing Through Downregulation of HIF-2α. NatSciSleep. 2022;14:1511-1520. https://doi.org/10.2147/NSS.S382275
  36. Mallet RT, Burtscher J, Gatterer H, Glazachev O, Millet GP, Burtscher M. Hyperoxia-enhanced intermittent hypoxia conditioning: mechanisms and potential benefits. Med Gas Res. 2024;14(3):127-129. https://doi: 10.4103/mgr.MEDGASRES-D-23-00046
  37. Burtscher J, Duderstadt Y, Gatterer H, et al. Hypoxia Sensing and Responses in Parkinson's Disease. Int J MolSci. 2024;25(3):1759. https://doi.org/10.3390/ijms25031759
  38. Lei L, Feng J, Wu G, et al. HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J MolSci. 2022;23(24):16140. https://doi.org/10.3390/ijms232416140
  39. Damgaard V, Mariegaard J, Lindhardsen JM, Ehrenreich H, Miskowiak KW. Neuroprotective Effects of Moderate Hypoxia: A Systematic Review. Brain Sci. 2023;13(12):1648. https://doi.org/10.3390/brainsci13121648
  40. Elendu C, Amaechi DC, Elendu TC, et al. Stroke and cognitive impairment: understanding the connection and managing symptoms. Ann Med Surg (Lond). 2023;85(12):6057-6066. https://doi.org/10.1097/MS9.0000000000001441
  41. Chen L, Ren SY, Li RX, et al. Chronic Exposure to Hypoxia Inhibits Myelinogenesis and Causes Motor Coordination Deficits in Adult Mice. Neurosci Bull. 2021;37(10):1397-1411. https://doi.org/10.1007/s12264-021-00745-1
  42. Tuter DS, Kopylov PY, Syrkin AL, et al. Intermittent systemic hypoxic-hyperoxic training for myocardial protection in patients undergoing coronary artery bypass surgery: first results from a single-centre, randomised controlled trial. Open Heart. 2018;5(2):e000891. https://doi.org/10.1136/openhrt-2018-000891
  43. Bayer U, Likar R, Pinter G, et al. Effects of intermittent hypoxia-hyperoxia on mobility and perceived health in geriatric patients performing a multimodal training intervention: a randomized controlled trial. BMC Geriatr. 2019;19(1):167. https://doi.org/10.1186/s12877-019-1184-1
  44. Duderstadt Y, Schreiber S, Burtscher J, et al. Controlled Hypoxia Acutely Prevents Physical Inactivity-Induced Peripheral BDNF Decline. Int J Mol Sci. 2024;25(14):7536. Duderstadt Y, Schreiber S, Burtscher J, et al. Controlled Hypoxia Acutely Prevents Physical Inactivity-Induced Peripheral BDNF Decline. Int J MolSci. 2024;25(14):7536.
  45. Li G, Guan Y, Gu Y, Guo M, Ma W, Shao Q, Liu J, Ji X. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long‐term hypoxia. CNS Neuroscience & Therapeutics. 2023, 29(1):202-215. https://doi.org/10.1111/cns.13996
  46. Li, G., Liu, J., Guan, Y., & Ji, X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neuroscience & Therapeutics. 2021, 27(12), 1446-1457. https://doi.org/10.1111/cns.13754
  47. Wakhloo D, Scharkowski F, Curto Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11(1):1313. https://doi.org/10.1038/s41467-020-15041-1
  48. Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci. 2019;39(7):1320-1331. https://doi.org/10.1523/JNEUROSCI.1359-18.2018
  49. Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci. 2022;16:1067411. https://doi.org/10.3389/fnins.2022.1067411
  50. Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients-A Randomized Controlled Trial. Front Physiol. 2022; 13:899096. https://doi.org/10.3389/fphys.2022.899096
  51. Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med. 2019;142:123-131. Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free RadicBiolMed. 2019;142: 123-131.
  52. Doehner W, Fischer A, Alimi B, Muhar J, Springer J, Altmann C, Schueller PO. Intermittent Hypoxic-Hyperoxic Training During Inpatient Rehabilitation Improves Exercise Capacity and Functional Outcome in Patients With Long Covid: Results of a Controlled Clinical Pilot Trial. J Cachexia Sarcopenia Muscle. 2024;15(6):2781-2791. doi: 10.1002/jcsm.13628.
  53. Glazachev O.S., Geppe N.A., Timofeev Yu.S., Samartseva V.G., Dudnik E.N., Zapara M.A., Chebysheva S.N. Indicators of individual hypoxia resistance — a way to optimize hypoxic training for children. RossiyskiyVestnikPerinatologiiiPediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(4):78-84. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-4-78-84
  54. Ignatenko G.A., Bagriy A.E., Ignatenko T.S., Tolstoy V.A., Evtushenko I.S., Mykhailichenko E.S. Possibilities and Prospects of Hypoxytherapy Application in Cardiology. The Russian Archives of Internal Medicine. 2023;13(4):245-252. https://doi.org/10.20514/2226-6704-2023-13-4-245-252.
  55. Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol. 2024;15:1347529. https://doi.org/10.3389/fphar.2024.1347529

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.