Novel statistical data processing approach for evaluating rehabilitation effectiveness in children with hemiparetic cerebral palsy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Gait disturbances are a key factor contributing to disability in children with cerebral palsy. Conventional scales and group-based statistical tests poorly capture small but clinically significant improvements after rehabilitation. This highlights the need for new methods of objective evaluation of rehabilitation effectiveness.

AIM: The work aimed to compare the performance of an individualized statistical method of magnitude-based decisions in interpreting instrumented gait analysis data obtained with inertial sensors for assessing rehabilitation effectiveness in children with hemiparetic cerebral palsy, with conventional group statistical approaches (p-value).

METHODS: This was an observational, single-center, prospective, continuous study. It was based on the analysis of instrumented gait analysis with inertial sensors protocols performed before and after a rehabilitation course in children aged 8–17 years with hemiparetic cerebral palsy at the Department of Pediatric Medical Rehabilitation, Russian Children’s Clinical Hospital.

RESULTS: In a cohort of 23 children with hemiparetic cerebral palsy, the standard paired t-test did not reveal statistically significant group changes in spatiotemporal gait parameters (p > 0.05 for all indicators). However, individualized MBD analysis recorded clinically significant positive changes in most patients: increased step velocity and cycle length on the paretic side (in 47% and 33% of cases, respectively), greater ranges of motion in the knee (67%) and ankle (40%) joints, improved foot clearance (47%), as well as reduced pathological compensations in the lumbosacral region (53%). Thus, the MBD method demonstrated greater sensitivity to individual rehabilitation effects, detecting improvements that remained unnoticed with the classical group-based approach.

CONCLUSION: Individualized MBD analysis makes it possible to objectively register clinically significant improvements in gait that are not detected by conventional group tests, thereby justifying its use for evaluating rehabilitation effectiveness.

Full Text

Restricted Access

About the authors

Igor O. Vedernikov

Russian Children's Clinical Hospital — Branch of the Pirogov Russian National Research Medical University

Author for correspondence.
Email: pulmar@bk.ru
ORCID iD: 0009-0006-1327-2525
SPIN-code: 5047-2594
Russian Federation, Moscow

Olga A. Laisheva

Russian Children's Clinical Hospital — Branch of the Pirogov Russian National Research Medical University; Pirogov Russian National Research Medical University

Email: olgalaisheva@mail.ru
ORCID iD: 0000-0002-8084-1277
SPIN-code: 8188-2819

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

Boris A. Polyaev

Pirogov Russian National Research Medical University

Email: rasmirbi@gmail.com
ORCID iD: 0000-0002-9648-2336
SPIN-code: 1990-4635

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Timofey S. Kovalchuk

Pirogov Russian National Research Medical University

Email: doctor@tim-kovalchuk.ru
ORCID iD: 0000-0002-9870-4596
Russian Federation, Moscow

Denis V. Chindilov

Neurosoft

Email: chindilov@neurosoft.com
SPIN-code: 9390-7483
Russian Federation, Ivanovo

References

  1. Akhmatkhanova НН, Badalyan OL, Bril AG, et al. Physical and rehabilitation medicine for cerebral palsy in children: National guidelines. Part 1. Moscow; 2021. (In Russ).
  2. Carcreff L, Gerber CN, Paraschiv-Ionescu A. Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Scientific reports. 2020;1(10):2091. doi: 10.1038/s41598-020-59002-6
  3. DeMauro SB, McDonald SA, Heyne RJ, et al. Increasing prevalence of cerebral palsy among two-year-old children born at< 27 weeks of gestation: a cohort study. The Journal of Pediatrics. 2024;(268):113944. doi: 10.1016/j.jpeds.2024.113944
  4. Novikov VА, Umnov VV, Zharkov DS, et al. The effect of secondary orthopedic complications on the quality of life of children with cerebral palsy. Traumatology and Orthopedics of Russia. 2025; 31(2). doi: 10.17816/2311-2905-17653
  5. Naaz F, Nayak BP, Panigrahi S, et al. Psychosocial and economic burden on families of children with cerebral palsy: a correlation with locomotor severity. Cureus. 2025;17(1). doi: 10.7759/cureus.76794
  6. Fong MM, Gibson N, Williams SA, et al. Clinical functional outcome measures for children with cerebral palsy after gait corrective orthopaedic surgery: A scoping review. Developmental Medicine & Child Neurology. 2023;12(65):1573–1586. doi: 10.1111/dmcn.156222023
  7. Schwartz MH, Aldahondo N, MacWilliams BA. A Patient-Reported Measure of Locomotor Function Derived from the Functional Assessment Questionnaire. 2021. doi: 10.1101/2021.06.12.21258826
  8. Brodke DJ, Makaroff K, Kelly EG, et al. Slow-motion smartphone video improves interobserver reliability of gait assessment in ambulatory cerebral palsy. Journal of Children's Orthopaedics. 2023;17(4):376–381. doi: 10.1177/18632521231177273
  9. Choo CZY, Chow JY, Komar J. Validation of the Perception Neuron system for full-body motion capture. PloS one. 2022;1(17):e0262730. doi: 10.1371/journal.pone.0262730
  10. Jocham AJ, Laidig D, Guggenberger B, et al. Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice. Gait & Posture. 2024;(108):63–69. doi: 10.1016/j.gaitpost.2023.11.002
  11. Manupibul U, Tanthuwapathom R, Jarumethitanont W, et al. Integration of force and IMU sensors for developing low-cost portable gait measurement system in lower extremities. Scientific Reports. 2023;1(13):10653. doi: 10.1038/s41598-023-37761-2
  12. Prisco G, Pirozzi M A, Santone A, et al. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics (Basel, Switzerland). 2024;1(15). doi: 10.3390/diagnostics15010036
  13. Matkivsky RA, Shapkina OA, Usanova EP, et al. Evaluation of the effectiveness of medical rehabilitation of children with chronic diseases of the digestive system. Medical Almanac. 2012;(2):193–195. EDN: OXQLFZ
  14. Nosovsky AM, Pikhlak AE, Logachev V. Statistics of small samples in medical research. Russian Medical Journal. 2013;(6):57–60. EDN: RWILYR
  15. Hopkins WG. Magnitude-Based decisions as hypothesis tests. Sportscience. 2020;(24):1–16.
  16. De la Torre J, Marin J, Polo M, et al. MCQ-Balance: a method to monitor patients with balance disorders and improve clinical interpretation of posturography. PeerJ. 2021;(9):e10916. doi: 10.7717/peerj.10916
  17. Marin J, Marin JJ, Blanco T, et al. Is my patient improving? Individualized gait analysis in rehabilitation. Applied Sciences. 2020;23(10):8558. doi: 10.3390/app10238558
  18. Picelli A, Lobba D, Midiri A, et al. Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clinical rehabilitation. 2014;3(28):232–242. doi: 10.1177/0269215513497735
  19. Raciti L, Raciti G, A Ammendoliaet A, al. Improving spasticity by using botulin toxin: an overview focusing on combined approaches. Brain Sciences. 2024;7(14):631. doi: 10.3390/brainsci14070631
  20. Synnot A, Chau M, Pitt V, et al. Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database of Systematic Reviews. 2017;(11). doi: 10.1002/14651858.CD008929.pub2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of individualized assessment of differences in gait analysis parameters using inertial sensors before and after rehabilitation, based on the MBD method (patient N., 8 years old): paretic leg (left), non-paretic leg (right).

Download (851KB)
3. Fig. 2. Box plots of gait parameters before and after the rehabilitation course: a and b, single support; c and d, stance phase; e and f, step velocity; g and h, step frequency; i, gait rhythmicity; j, number of steps per 100 meters.

Download (249KB)
4. Fig. 3. Changes in gait parameters.

Download (732KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.