Physical Activity and the Myokine Irisin in Non-pharmacological Treatment of Alzheimer Disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Alzheimer disease (AD) is the most common form of dementia, characterized by progressive cognitive decline, memory impairment, synaptic dysfunction, and neurodegeneration. The available treatment options primarily aim to temporarily alleviate symptoms without addressing the underlying pathogenetic mechanisms. In recent years, there has been an increased focus on non-pharmacological approaches that may slow the progression of AD and improve cognitive function. One promising area is the investigation of irisin, a myokine released in response to physical activity that has been shown in recent studies to exert multifaceted neuroprotective effects. Irisin regulates brain-derived neurotrophic factor expression, activates neurogenesis, improves insulin sensitivity and energy metabolism, and reduces neuroinflammation and oxidative stress. Preclinical studies have demonstrated that irisin improves memory performance, spatial learning, and synaptic plasticity in animal models of AD. Moreover, physical activity that promotes irisin secretion has been shown to improve cognitive function and overall well-being in patients with AD. This review summarizes current data on the mechanisms of irisin action and its role in the pathogenesis and treatment of AD. The review emphasizes the need for further research, particularly studies on pharmacological modulation of irisin and the integration of physical exercise into comprehensive treatment strategies. Irisin is considered a promising target for developing novel prevention and treatment strategies in AD.

Full Text

Restricted Access

About the authors

Yuriy A. Gibizov

North Ossetian State Medical Academy

Email: sadreit@rambler.ru
ORCID iD: 0009-0004-2126-1813
Russian Federation, Vladikavkaz

Liza B. Vagapova

Stavropol State Medical University

Email: vagapova.li@mail.ru
ORCID iD: 0009-0006-5148-6794
Russian Federation, Stavropol

Alina O. Aguzarova

North Ossetian State Medical Academy

Email: aguzarova20021410@gmail.com
ORCID iD: 0009-0009-5879-7570
Russian Federation, Vladikavkaz

Julia V. Nazarova

Ryazan State Medical University named after I.P. Pavlov

Email: nazar-yulia2015@yandex.ru
ORCID iD: 0009-0003-2589-3538
Russian Federation, Ryazan

Yana A. Zotkina

Pavlov First Saint Petersburg State Medical University

Email: zotckina.yana@yandex.ru
ORCID iD: 0009-0008-5204-4386
Russian Federation, Saint Petersburg

Ekaterina A. Atamanyuk

Privolzhsky Research Medical University

Email: ekaterina_ataman@mail.ru
ORCID iD: 0009-0006-2719-664X
Russian Federation, Nizhny Novgorod

Mariia M. Rodikova

Sechenov First Moscow State Medical University

Email: rodikova_00@mail.ru
ORCID iD: 0009-0008-9183-6888
Russian Federation, Moscow

Rafael N. Timergaleev

Kazan Federal University

Email: rafa-el99@mail.ru
ORCID iD: 0009-0001-5632-1394
Russian Federation, Kazan

Aleksandr M. Kupriyanov

Krasnoyarsk State Medical University

Email: mgaine@mail.ru
ORCID iD: 0009-0003-4931-0261
Russian Federation, Krasnoyarsk

Anastasiia A. Chuprina

Vernadsky Crimean Federal University

Email: Chuprinik5@gmail.com
ORCID iD: 0009-0009-8268-2511
Russian Federation, Simferopol

Azamat I. Aslakhanov

Stavropol State Medical University

Email: azamat.aslakhanov@mail.ru
ORCID iD: 0009-0001-1878-2739
Russian Federation, Stavropol

Victoria Yu. Veremiychuk

Pavlov First Saint Petersburg State Medical University

Email: dr.veremiychuk_vu@mail.ru
ORCID iD: 0009-0005-4056-346X
Russian Federation, Saint Petersburg

Anton O. Maryin

Ulyanovsk State University

Author for correspondence.
Email: antonmarin241@mail.ru
ORCID iD: 0009-0004-2472-4828
Russian Federation, Ulyanovsk

References

  1. Tappakhov AA, Nikolaeva TYa, Popova TE, Shnayder NA. Difficulties in diagnosing atypical variants of Alzheimer’s disease. Russian neurological journal. 2021;26(5):16–23. doi: 10.30629/2658-7947-2021-26-5-16-23 EDN: FNJALQ
  2. Odinak MM, Litvinenko IV, Emelin AIu, et al. Pathomorphological changes in dementia: a priority of domestic researchers. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6-2):28–34. doi: 10.17116/jnevro20161166228-34 EDN: WMWLST
  3. Kolykhalov IV. Current approaches to optimize treatment of dementia and Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6):87–92. doi: 10.17116/jnevro20161166187-92 EDN: WDCPQV
  4. Khasanova GR, Muzaffarova MSh. Risk factors for the alzheimer’s disease. Systematic review and meta-analysis. Fundamental and Clinical Medicine. 2023;8(4):101–114. doi: 10.23946/2500-0764-2023-8-4-101-114 EDN: HFNWXA
  5. Ishmuratova AN, Abramov MA, Kuznetsov KO, et al. The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review. Problems of Endocrinology. 2023;69(5):73–83. doi: 10.14341/probl13183 EDN: RHLRQI
  6. Vorobev SV, Emelin AYu, Yanishevskij SN. The evolution of ideas about the treatment of Alzheimer’s disease: from the past to the present day. Russian neurological journal. 2022;27(1):5–15. doi: 10.30629/2658-7947-2022-27-1-5-15 EDN: FHDDKL
  7. Rivers-Auty J, Mather AE, Peters R, et al. Anti-inflammatories in Alzheimer’s disease-potential therapy or spurious correlate? Brain Commun. 2020;2(2):fcaa109. doi: 10.1093/braincomms/fcaa109
  8. Ratne N, Jari S, Tadas M, et al. Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer’s disease management. Ageing Res Rev. 2025;105:102687. doi: 10.1016/j.arr.2025.102687
  9. Bykov NA. The effect of physical activity on the human brain. Innovative science. 2024;7(2):26–29. EDN: EFPLEG
  10. Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43(11):1095–1104. doi: 10.1139/apnm-2018-0192
  11. Mamutova EM, Sheptulina AF, Timofeev YuS, et al. Serum concentrations of irisin, erythroferrone, myostatin and interleukin-6 in obese patients depending on the presence of sarcopenia. Russian Journal of Preventive Medicine. 2025;28(2):67–73. doi: 10.17116/profmed20252802167 EDN: YJNAVC
  12. Yardimci A, Ertugrul NU, Ozgen A, et al. Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: An HPLC-ECD study. Neurosci Lett. 2023;806:137245. doi: 10.1016/j.neulet.2023.137245
  13. Tan ZX, Dong F, Wu LY, et al. The Beneficial Role of Exercise on Treating Alzheimer’s Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol. 2021;58(11):5890–5906. doi: 10.1007/s12035-021-02514-7
  14. Andyarzhanova EA, Voronina TA. Irisin at the Crossroad of Autophagy and BNDF Signaling for Neuroplasticity Regulation. Nejrohimiâ. 2023;40(2):132–145 doi: 10.31857/S1027813323020036 EDN: UCLCIM
  15. Zhang H, Jiang X, Ma L, et al. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol. 2022;10:964075. doi: 10.3389/fcell.2022.964075
  16. Kuznetsov KO, Khaidarova RR, Khabibullina RH, et al. Testosterone and Alzheimer’s disease. Problems of Endocrinology. 2022;68(5):97–107. doi: 10.14341/probl13136 EDN: RWUZOC
  17. Vasenina EE, Levin OS, Sonin AG. Modern trends in epidemiology of dementia and management of patients with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6–2): 87–95. doi: 10.17116/jnevro20171176287-95 EDN: ZGYWOX
  18. Pless A, Ware D, Saggu S, et al. Understanding neuropsychiatric symptoms in Alzheimer’s disease: challenges and advances in diagnosis and treatment. Front Neurosci. 2023;17:1263771. doi: 10.3389/fnins.2023.1263771
  19. Giau VV, Senanarong V, Bagyinszky E, et al. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer’s Disease. Int J Mol Sci. 2019;20(6):1514. doi: 10.3390/ijms20061514
  20. Volobuev AN, Pyatin VF, Romanchuk NP, Aleksandrova NN. Genotypes and phenotypes of Alzheimer’s disease. Science and Innovations in Medicine. 2018;3(3):17–20. doi: 10.35693/2500-1388-2018-0-3-17-20 EDN: YPEKJN
  21. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124. doi: 10.3389/fncel.2015.00124
  22. Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer’s disease. Arch Biochem Biophys. 2024;758:110065. doi: 10.1016/j.abb.2024.110065
  23. Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
  24. Onyango IG, Jauregui GV, Čarná M, et al. Neuroinflammation in Alzheimer’s Disease. Biomedicines. 2021;9(5):524. doi: 10.3390/biomedicines9050524
  25. Ahmad SR, Zeyaullah M, AlShahrani AM, et al. Deciphering the Enigma of Neuron-Glial Interactions in Neurological Disorders. Front Biosci (Landmark Ed). 2024;29(4):142. doi: 10.31083/j.fbl2904142
  26. Sirisi S, Sánchez-Aced É, Belbin O, Lleó A. APP dyshomeostasis in the pathogenesis of Alzheimer’s disease: implications for current drug targets. Alzheimers Res Ther. 2024;16(1):144. doi: 10.1186/s13195-024-01504-w
  27. Kukharskiĭ MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(6):103–114. doi: 10.17116/jnevro20151156103-114 EDN: UKQWIN
  28. Penke B, Bogár F, Fülöp L. β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View. Molecules. 2017;22(10):1692. doi: 10.3390/molecules22101692
  29. Wang R, Zhang Y, Li J, Zhang C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience. 2017;344:39–47. doi: 10.1016/j.neuroscience.2016.08.051
  30. Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221. doi: 10.3389/fphar.2015.00221
  31. Hussain T, Tan B, Yin Y, et al. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797
  32. Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci. 2019;59:6–11. doi: 10.1016/j.jocn.2018.10.034
  33. Kempuraj D, Thangavel R, Natteru PA, et al. Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003.
  34. Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease. J Neurochem. 2016;136(3):475–91. doi: 10.1111/jnc.13424
  35. de Oliveira J, Kucharska E, Garcez ML, et al. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells. 2021;10(10):2581. doi: 10.3390/cells10102581
  36. Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016;11(10):1579–1581. doi: 10.4103/1673-5374.193234
  37. Zhang M, Ganz AB, Rohde S, et al. Resilience and resistance to the accumulation of amyloid plaques and neurofibrillary tangles in centenarians: An age-continuous perspective. Alzheimers Dement. 2023;19(7):2831–2841. doi: 10.1002/alz.12899
  38. Richter-Landsberg C. Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration. Biol Chem. 2016;397(3):185–94. doi: 10.1515/hsz-2015-0157
  39. Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
  40. Cai Q, Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1087–1103. doi: 10.3233/JAD-160726
  41. de Calignon A, Spires-Jones TL, Pitstick R, et al. Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J Neuropathol Exp Neurol. 2009;68(7):757–61. doi: 10.1097/NEN.0b013e3181a9fc66
  42. Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–677. doi: 10.1007/s10787-019-00580-x
  43. Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J. 2018;41(1):21–33. doi: 10.1016/j.bj.2018.01.003
  44. Saroja SR, Sharma A, Hof PR, Pereira AC. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimers Dement. 2022;18(9):1602–1615. doi: 10.1002/alz.12518
  45. Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68(1):1–14. doi: 10.1097/NEN.0b013e3181919a48
  46. Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord. 2021;90:142–154. doi: 10.1016/j.parkreldis.2021.09.008
  47. Sharma K, Pradhan S, Duffy LK, et al. Role of Receptors in Relation to Plaques and Tangles in Alzheimer’s Disease Pathology. Int J Mol Sci. 2021;22(23):12987. doi: 10.3390/ijms222312987
  48. Kuzmin EA, Shamitko ZV, Piavchenko GA, et al. Biomarkers of neuroinflammation in the diagnosis of traumatic brain injury and neurodegenerative diseases: a literature review. Sechenov Medical Journal. 2024;15(1):20–35. doi: 10.47093/2218-7332.2024.15.1.20-35 EDN: PWFHHW
  49. Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598. doi: 10.1136/jnnp-2018-319148
  50. Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol. 2020 ;98(1):28–41. doi: 10.1111/imcb.12301
  51. Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. doi: 10.1089/ars.2012.5149
  52. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136. doi: 10.3978/j.issn.2305-5839.2015.03.49
  53. Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8(4):824–39. doi: 10.1007/s11481-013-9480-6
  54. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2
  55. Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res. 2013;38(10):2148–59. doi: 10.1007/s11064-013-1123-z
  56. Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014;18:29–40. doi: 10.1016/j.arr.2014.07.004
  57. Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1321–5. doi: 10.1042/BST20140155
  58. Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. doi: 10.1111/cns.13569
  59. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172. doi: 10.1038/s41582-020-00435-y
  60. Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci. 2020;262:118401. doi: 10.1016/j.lfs.2020.118401
  61. Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, et al. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne). 2020;11:560375. doi: 10.3389/fendo.2020.560375
  62. Ochiai T, Sano T, Nagayama T, et al. Differential involvement of insulin receptor substrate (IRS)-1 and IRS-2 in brain insulin signaling is associated with the effects on amyloid pathology in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;159:105510. doi: 10.1016/j.nbd.2021.105510
  63. Smailovic U, Koenig T, Savitcheva I, et al. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism. Brain Connect. 2020;10(10):555–565. doi: 10.1089/brain.2020.0785
  64. Gratuze M, Joly-Amado A, Vieau D, Buée L, Blum D. Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? Neuroendocrinology. 2018;107(2):181–195. doi: 10.1159/000487641
  65. Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging. 2015;10:549–60. doi: 10.2147/CIA.S74042
  66. Neth BJ, Craft S. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages. Front Aging Neurosci. 2017;9:345. doi: 10.3389/fnagi.2017.00345
  67. Luchsinger JA, Patel B, Tang MX, et al. Measures of adiposity and dementia risk in elderly persons. Arch Neurol. 2007;64(3):392–8. doi: 10.1001/archneur.64.3.392
  68. Bosco D, Fava A, Plastino M, et al. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15(9):1807–21. doi: 10.1111/j.1582-4934.2011.01318.x
  69. Tsoriev TT, White ZhE, Rozhinskaya LYa. The role of myokines interstitial interaction and regulation of metabolism: a review of literature. Osteoporosis and Bone Diseases. 2016;19(1):28–34. doi: 10.14341/osteo2016128-34 EDN: XQVZDL
  70. Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci. 2021;22(17):9136. doi: 10.3390/ijms22179136
  71. Liu S, Cui F, Ning K, et al. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne). 2022;13:962968. doi: 10.3389/fendo.2022.962968
  72. Dinas PC, Lahart IM, Timmons JA, et al. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Res. 2017;6:286. doi: 10.12688/f1000research.11107.2
  73. Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides. 2014;54:89–100. doi: 10.1016/j.peptides.2014.01.016
  74. Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514–25. doi: 10.2337/db13-1106
  75. Kim SH, Plutzky J. Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes Metab J. 2016;40(1):12–21. doi: 10.4093/dmj.2016.40.1.12
  76. Duan H, Ma B, Ma X, et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int J Biol Macromol. 2016;84:457–63. doi: 10.1016/j.ijbiomac.2015.12.049
  77. Dong J, Dong Y, Dong Y, et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond). 2016;40(3):434–442. doi: 10.1038/ijo.2015.200
  78. Ozcan S, Ulker N, Bulmus O, et al. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol Biochem. 2022;128(3):724–731. doi: 10.1080/13813455.2020.1722706
  79. Flori L, Testai L, Calderone V. The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sci. 2021;267:118954. doi: 10.1016/j.lfs.2020.118954
  80. Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324–337. doi: 10.1038/nrendo.2016.221
  81. Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–175. doi: 10.1038/s41591-018-0275-4
  82. Waseem R, Shamsi A, Mohammad T, et al. Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer’s Disease. ACS Omega. 2021;6(11):7910–7921. doi: 10.1021/acsomega.1c00517
  83. Lourenco MV, Ribeiro FC, Sudo FK, et al. Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12(1):e12034. doi: 10.1002/dad2.12034
  84. Huang X, Wang J, Zhang S, et al. Plasma BDNF/Irisin Ratio Associates with Cognitive Function in Older People. J Alzheimers Dis. 2024;99(4):1261–1271. doi: 10.3233/JAD-231347
  85. Bretland KA, Lin L, Bretland KM, et al. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre-symptomatic female but not male htau mice. Neuropathol Appl Neurobiol. 2021;47(7):967–978. doi: 10.1111/nan.12711
  86. Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci. 2021;54(10):7422–7441. doi: 10.1111/ejn.15493
  87. Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol. 2022;552:111676. doi: 10.1016/j.mce.2022.111676
  88. Korta P, Pocheć E, Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina (Kaunas). 2019;55(8):485. doi: 10.3390/medicina55080485
  89. Sale A, Berardi N, Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol Rev. 2014;94(1):189–234. doi: 10.1152/physrev.00036.2012
  90. Ng TKS, Ho CSH, Tam WWS, et al. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci. 2019;20(2):257. doi: 10.3390/ijms20020257
  91. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50. doi: 10.1007/978-3-642-45106-5_9
  92. Yuan C, Guo X, Zhou Q, et al. OAB-14, a bexarotene derivative, improves Alzheimer’s disease-related pathologies and cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis. 2019;1865(1):161–180. doi: 10.1016/j.bbadis.2018.10.028
  93. Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9–30. doi: 10.1515/revneuro-2018-0008
  94. Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci. 2021;13:649929. doi: 10.3389/fnagi.2021.649929
  95. Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–59. doi: 10.1016/j.cmet.2013.09.008
  96. Aimone JB, Li Y, Lee SW, et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026. doi: 10.1152/physrev.00004.2014
  97. Jurkowski MP, Bettio L, K Woo E, et al. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
  98. Winner B, Regensburger M, Schreglmann S, et al. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci. 2012;32(47):16906–16. doi: 10.1523/JNEUROSCI.2723-12.2012
  99. Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, et al. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis. 2014;42(4):1229–38. doi: 10.3233/JAD-140204
  100. Rodríguez JJ, Jones VC, Tabuchi M, et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 2008;3(8):e2935. doi: 10.1371/journal.pone.0002935
  101. Kim OY, Song J. The Role of Irisin in Alzheimer’s Disease. J Clin Med. 2018;7(11):407. doi: 10.3390/jcm7110407
  102. Sadier NS, El Hajjar F, Al Sabouri AAK, et al. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci. 2024;339:122393. doi: 10.1016/j.lfs.2023.122393
  103. Choi JW, Jo SW, Kim DE, et al. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 2024;71:103101. doi: 10.1016/j.redox.2024.103101
  104. Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, Lemaire S, Garnier P, Prigent-Tessier A. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int J Mol Sci. 2024; 25(2):1213. doi: 10.3390/ijms25021213
  105. de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, et al. The Role of PGC-1α/UCP2 Signaling in the Beneficial Effects of Physical Exercise on the Brain. Front Neurosci. 2019;13:292. doi: 10.3389/fnins.2019.00292
  106. Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med. 2016;18(1):1–15. doi: 10.1007/s12017-015-8370-x
  107. Akhtar A, Sah SP. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem Int. 2020;135:104707. doi: 10.1016/j.neuint.2020.104707
  108. Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–972. doi: 10.1002/jnr.23777
  109. Kyrtata N, Emsley HCA, Sparasci O, et al. A Systematic Review of Glucose Transport Alterations in Alzheimer’s Disease. Front Neurosci. 2021;15:626636. doi: 10.3389/fnins.2021.626636
  110. Tang H, Yu R, Liu S, et al. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine. 2016;6:139–148. doi: 10.1016/j.ebiom.2016.02.041
  111. Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592(5):1091–107. doi: 10.1113/jphysiol.2013.264655
  112. Shen S, Liao Q, Chen X, et al. The role of irisin in metabolic flexibility: Beyond adipose tissue browning. Drug Discov Today. 2022;27(8):2261–2267. doi: 10.1016/j.drudis.2022.03.019
  113. Lee HJ, Lee JO, Kim N, et al. Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Mol Endocrinol. 2015;29(6):873–81. doi: 10.1210/me.2014-1353
  114. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–272. doi: 10.1038/s41580-022-00547-x
  115. Qi JY, Yang LK, Wang XS, et al. Irisin: A promising treatment for neurodegenerative diseases. Neuroscience. 2022;498:289–299. doi: 10.1016/j.neuroscience.2022.07.018
  116. Madhu LN, Somayaji Y, Shetty AK. Promise of irisin to attenuate cognitive dysfunction in aging and Alzheimer’s disease. Ageing Res Rev. 2022;78:101637. doi: 10.1016/j.arr.2022.101637
  117. Mohammadi S, Oryan S, Komaki A, et al. Effects of intra-dentate gyrus microinjection of myokine irisin on long-term potentiation in male rats. Arq Neuropsiquiatr. 2019;77(12):881–887. doi: 10.1590/0004-282X20190184
  118. Landry T, Huang H. Mini review: The relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett. 2021;765:136261. doi: 10.1016/j.neulet.2021.136261
  119. Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, et al. Adipose tissue as a therapeutic target for vascular damage in Alzheimer’s disease. Br J Pharmacol. 2024;181(6):840–878. doi: 10.1111/bph.16243
  120. Wang Y, Tian M, Tan J, et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2022;19(1):82. doi: 10.1186/s12974-022-02438-6
  121. Zhang X, Xu S, Hu Y, et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):13. doi: 10.1038/s41531-023-00453-9
  122. Zhang F, Hou G, Hou G, et al. Serum Irisin as a Potential Biomarker for Cognitive Decline in Vascular Dementia. Front Neurol. 2021;12:755046. doi: 10.3389/fneur.2021.755046
  123. Jin Z, Zhang Z, Ke J, Wang Y, Wu H. Exercise-Linked Irisin Prevents Mortality and Enhances Cognition in a Mice Model of Cerebral Ischemia by Regulating Klotho Expression. Oxid Med Cell Longev. 2021;2021:1697070. doi: 10.1155/2021/1697070
  124. Çalık M, Sengul Y, Mail GZ, et al. Association between serum irisin concentration and ischemic stroke: From etiology to clinic. J Med Biochem. 2022;41(4):534–539. doi: 10.5937/jomb0-36681
  125. Waseem R, Shamsi A, Khan T, et al. Characterization of advanced glycation end products and aggregates of irisin: Multispectroscopic and microscopic approaches. J Cell Biochem. 2023;124(1):156–168. doi: 10.1002/jcb.30353
  126. Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci. 2022;14:965190. doi: 10.3389/fnagi.2022.965190
  127. Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr. 2019;31(1):83–90. doi: 10.1017/S1041610218000534
  128. Posadzki P, Pieper D, Bajpai R, et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020;20(1):1724. doi: 10.1186/s12889-020-09855-3
  129. Kaloğlu HA, Örsel S, Erzin G. Evaluation of the Relationships between Irisin Levels and Cognitive Functions in Individuals with Schizophrenia. Clin Psychopharmacol Neurosci. 2023;21(4):724–731. doi: 10.9758/cpn.22.1030
  130. Zong B, Yu F, Zhang X, et al. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci. 2022;14:869507. doi: 10.3389/fnagi.2022.869507
  131. Morelli C, Avolio E, Galluccio A, et al. Impact of Vigorous-Intensity Physical Activity on Body Composition Parameters, Lipid Profile Markers, and Irisin Levels in Adolescents: A Cross-Sectional Study. Nutrients. 2020;12(3):742. doi: 10.3390/nu12030742
  132. Chen K, Wang K, Wang T. Protective effect of irisin against Alzheimer’s disease. Front Psychiatry. 2022;13:967683. doi: 10.3389/fpsyt.2022.967683

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.