Physical Activity and the Myokine Irisin in Non-pharmacological Treatment of Alzheimer Disease
- Authors: Gibizov Y.A.1, Vagapova L.B.2, Aguzarova A.O.1, Nazarova J.V.3, Zotkina Y.A.4, Atamanyuk E.A.5, Rodikova M.M.6, Timergaleev R.N.7, Kupriyanov A.M.8, Chuprina A.A.9, Aslakhanov A.I.2, Veremiychuk V.Y.4, Maryin A.O.10
-
Affiliations:
- North Ossetian State Medical Academy
- Stavropol State Medical University
- Ryazan State Medical University named after I.P. Pavlov
- Pavlov First Saint Petersburg State Medical University
- Privolzhsky Research Medical University
- Sechenov First Moscow State Medical University
- Kazan Federal University
- Krasnoyarsk State Medical University
- Vernadsky Crimean Federal University
- Ulyanovsk State University
- Issue: Vol 24, No 4 (2025)
- Pages: 235-253
- Section: Review
- Published: 16.08.2025
- URL: https://rjpbr.com/1681-3456/article/view/677844
- DOI: https://doi.org/10.17816/rjpbr677844
- EDN: https://elibrary.ru/AGYEDK
- ID: 677844
Cite item
Abstract
Alzheimer disease (AD) is the most common form of dementia, characterized by progressive cognitive decline, memory impairment, synaptic dysfunction, and neurodegeneration. The available treatment options primarily aim to temporarily alleviate symptoms without addressing the underlying pathogenetic mechanisms. In recent years, there has been an increased focus on non-pharmacological approaches that may slow the progression of AD and improve cognitive function. One promising area is the investigation of irisin, a myokine released in response to physical activity that has been shown in recent studies to exert multifaceted neuroprotective effects. Irisin regulates brain-derived neurotrophic factor expression, activates neurogenesis, improves insulin sensitivity and energy metabolism, and reduces neuroinflammation and oxidative stress. Preclinical studies have demonstrated that irisin improves memory performance, spatial learning, and synaptic plasticity in animal models of AD. Moreover, physical activity that promotes irisin secretion has been shown to improve cognitive function and overall well-being in patients with AD. This review summarizes current data on the mechanisms of irisin action and its role in the pathogenesis and treatment of AD. The review emphasizes the need for further research, particularly studies on pharmacological modulation of irisin and the integration of physical exercise into comprehensive treatment strategies. Irisin is considered a promising target for developing novel prevention and treatment strategies in AD.
Full Text

About the authors
Yuriy A. Gibizov
North Ossetian State Medical Academy
Email: sadreit@rambler.ru
ORCID iD: 0009-0004-2126-1813
Russian Federation, Vladikavkaz
Liza B. Vagapova
Stavropol State Medical University
Email: vagapova.li@mail.ru
ORCID iD: 0009-0006-5148-6794
Russian Federation, Stavropol
Alina O. Aguzarova
North Ossetian State Medical Academy
Email: aguzarova20021410@gmail.com
ORCID iD: 0009-0009-5879-7570
Russian Federation, Vladikavkaz
Julia V. Nazarova
Ryazan State Medical University named after I.P. Pavlov
Email: nazar-yulia2015@yandex.ru
ORCID iD: 0009-0003-2589-3538
Russian Federation, Ryazan
Yana A. Zotkina
Pavlov First Saint Petersburg State Medical University
Email: zotckina.yana@yandex.ru
ORCID iD: 0009-0008-5204-4386
Russian Federation, Saint Petersburg
Ekaterina A. Atamanyuk
Privolzhsky Research Medical University
Email: ekaterina_ataman@mail.ru
ORCID iD: 0009-0006-2719-664X
Russian Federation, Nizhny Novgorod
Mariia M. Rodikova
Sechenov First Moscow State Medical University
Email: rodikova_00@mail.ru
ORCID iD: 0009-0008-9183-6888
Russian Federation, Moscow
Rafael N. Timergaleev
Kazan Federal University
Email: rafa-el99@mail.ru
ORCID iD: 0009-0001-5632-1394
Russian Federation, Kazan
Aleksandr M. Kupriyanov
Krasnoyarsk State Medical University
Email: mgaine@mail.ru
ORCID iD: 0009-0003-4931-0261
Russian Federation, Krasnoyarsk
Anastasiia A. Chuprina
Vernadsky Crimean Federal University
Email: Chuprinik5@gmail.com
ORCID iD: 0009-0009-8268-2511
Russian Federation, Simferopol
Azamat I. Aslakhanov
Stavropol State Medical University
Email: azamat.aslakhanov@mail.ru
ORCID iD: 0009-0001-1878-2739
Russian Federation, Stavropol
Victoria Yu. Veremiychuk
Pavlov First Saint Petersburg State Medical University
Email: dr.veremiychuk_vu@mail.ru
ORCID iD: 0009-0005-4056-346X
Russian Federation, Saint Petersburg
Anton O. Maryin
Ulyanovsk State University
Author for correspondence.
Email: antonmarin241@mail.ru
ORCID iD: 0009-0004-2472-4828
Russian Federation, Ulyanovsk
References
- Tappakhov AA, Nikolaeva TYa, Popova TE, Shnayder NA. Difficulties in diagnosing atypical variants of Alzheimer’s disease. Russian neurological journal. 2021;26(5):16–23. doi: 10.30629/2658-7947-2021-26-5-16-23 EDN: FNJALQ
- Odinak MM, Litvinenko IV, Emelin AIu, et al. Pathomorphological changes in dementia: a priority of domestic researchers. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6-2):28–34. doi: 10.17116/jnevro20161166228-34 EDN: WMWLST
- Kolykhalov IV. Current approaches to optimize treatment of dementia and Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6):87–92. doi: 10.17116/jnevro20161166187-92 EDN: WDCPQV
- Khasanova GR, Muzaffarova MSh. Risk factors for the alzheimer’s disease. Systematic review and meta-analysis. Fundamental and Clinical Medicine. 2023;8(4):101–114. doi: 10.23946/2500-0764-2023-8-4-101-114 EDN: HFNWXA
- Ishmuratova AN, Abramov MA, Kuznetsov KO, et al. The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review. Problems of Endocrinology. 2023;69(5):73–83. doi: 10.14341/probl13183 EDN: RHLRQI
- Vorobev SV, Emelin AYu, Yanishevskij SN. The evolution of ideas about the treatment of Alzheimer’s disease: from the past to the present day. Russian neurological journal. 2022;27(1):5–15. doi: 10.30629/2658-7947-2022-27-1-5-15 EDN: FHDDKL
- Rivers-Auty J, Mather AE, Peters R, et al. Anti-inflammatories in Alzheimer’s disease-potential therapy or spurious correlate? Brain Commun. 2020;2(2):fcaa109. doi: 10.1093/braincomms/fcaa109
- Ratne N, Jari S, Tadas M, et al. Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer’s disease management. Ageing Res Rev. 2025;105:102687. doi: 10.1016/j.arr.2025.102687
- Bykov NA. The effect of physical activity on the human brain. Innovative science. 2024;7(2):26–29. EDN: EFPLEG
- Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43(11):1095–1104. doi: 10.1139/apnm-2018-0192
- Mamutova EM, Sheptulina AF, Timofeev YuS, et al. Serum concentrations of irisin, erythroferrone, myostatin and interleukin-6 in obese patients depending on the presence of sarcopenia. Russian Journal of Preventive Medicine. 2025;28(2):67–73. doi: 10.17116/profmed20252802167 EDN: YJNAVC
- Yardimci A, Ertugrul NU, Ozgen A, et al. Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: An HPLC-ECD study. Neurosci Lett. 2023;806:137245. doi: 10.1016/j.neulet.2023.137245
- Tan ZX, Dong F, Wu LY, et al. The Beneficial Role of Exercise on Treating Alzheimer’s Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol. 2021;58(11):5890–5906. doi: 10.1007/s12035-021-02514-7
- Andyarzhanova EA, Voronina TA. Irisin at the Crossroad of Autophagy and BNDF Signaling for Neuroplasticity Regulation. Nejrohimiâ. 2023;40(2):132–145 doi: 10.31857/S1027813323020036 EDN: UCLCIM
- Zhang H, Jiang X, Ma L, et al. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol. 2022;10:964075. doi: 10.3389/fcell.2022.964075
- Kuznetsov KO, Khaidarova RR, Khabibullina RH, et al. Testosterone and Alzheimer’s disease. Problems of Endocrinology. 2022;68(5):97–107. doi: 10.14341/probl13136 EDN: RWUZOC
- Vasenina EE, Levin OS, Sonin AG. Modern trends in epidemiology of dementia and management of patients with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6–2): 87–95. doi: 10.17116/jnevro20171176287-95 EDN: ZGYWOX
- Pless A, Ware D, Saggu S, et al. Understanding neuropsychiatric symptoms in Alzheimer’s disease: challenges and advances in diagnosis and treatment. Front Neurosci. 2023;17:1263771. doi: 10.3389/fnins.2023.1263771
- Giau VV, Senanarong V, Bagyinszky E, et al. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer’s Disease. Int J Mol Sci. 2019;20(6):1514. doi: 10.3390/ijms20061514
- Volobuev AN, Pyatin VF, Romanchuk NP, Aleksandrova NN. Genotypes and phenotypes of Alzheimer’s disease. Science and Innovations in Medicine. 2018;3(3):17–20. doi: 10.35693/2500-1388-2018-0-3-17-20 EDN: YPEKJN
- Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124. doi: 10.3389/fncel.2015.00124
- Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer’s disease. Arch Biochem Biophys. 2024;758:110065. doi: 10.1016/j.abb.2024.110065
- Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
- Onyango IG, Jauregui GV, Čarná M, et al. Neuroinflammation in Alzheimer’s Disease. Biomedicines. 2021;9(5):524. doi: 10.3390/biomedicines9050524
- Ahmad SR, Zeyaullah M, AlShahrani AM, et al. Deciphering the Enigma of Neuron-Glial Interactions in Neurological Disorders. Front Biosci (Landmark Ed). 2024;29(4):142. doi: 10.31083/j.fbl2904142
- Sirisi S, Sánchez-Aced É, Belbin O, Lleó A. APP dyshomeostasis in the pathogenesis of Alzheimer’s disease: implications for current drug targets. Alzheimers Res Ther. 2024;16(1):144. doi: 10.1186/s13195-024-01504-w
- Kukharskiĭ MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(6):103–114. doi: 10.17116/jnevro20151156103-114 EDN: UKQWIN
- Penke B, Bogár F, Fülöp L. β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View. Molecules. 2017;22(10):1692. doi: 10.3390/molecules22101692
- Wang R, Zhang Y, Li J, Zhang C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience. 2017;344:39–47. doi: 10.1016/j.neuroscience.2016.08.051
- Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221. doi: 10.3389/fphar.2015.00221
- Hussain T, Tan B, Yin Y, et al. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797
- Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci. 2019;59:6–11. doi: 10.1016/j.jocn.2018.10.034
- Kempuraj D, Thangavel R, Natteru PA, et al. Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003.
- Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease. J Neurochem. 2016;136(3):475–91. doi: 10.1111/jnc.13424
- de Oliveira J, Kucharska E, Garcez ML, et al. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells. 2021;10(10):2581. doi: 10.3390/cells10102581
- Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016;11(10):1579–1581. doi: 10.4103/1673-5374.193234
- Zhang M, Ganz AB, Rohde S, et al. Resilience and resistance to the accumulation of amyloid plaques and neurofibrillary tangles in centenarians: An age-continuous perspective. Alzheimers Dement. 2023;19(7):2831–2841. doi: 10.1002/alz.12899
- Richter-Landsberg C. Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration. Biol Chem. 2016;397(3):185–94. doi: 10.1515/hsz-2015-0157
- Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
- Cai Q, Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1087–1103. doi: 10.3233/JAD-160726
- de Calignon A, Spires-Jones TL, Pitstick R, et al. Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J Neuropathol Exp Neurol. 2009;68(7):757–61. doi: 10.1097/NEN.0b013e3181a9fc66
- Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–677. doi: 10.1007/s10787-019-00580-x
- Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J. 2018;41(1):21–33. doi: 10.1016/j.bj.2018.01.003
- Saroja SR, Sharma A, Hof PR, Pereira AC. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimers Dement. 2022;18(9):1602–1615. doi: 10.1002/alz.12518
- Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68(1):1–14. doi: 10.1097/NEN.0b013e3181919a48
- Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord. 2021;90:142–154. doi: 10.1016/j.parkreldis.2021.09.008
- Sharma K, Pradhan S, Duffy LK, et al. Role of Receptors in Relation to Plaques and Tangles in Alzheimer’s Disease Pathology. Int J Mol Sci. 2021;22(23):12987. doi: 10.3390/ijms222312987
- Kuzmin EA, Shamitko ZV, Piavchenko GA, et al. Biomarkers of neuroinflammation in the diagnosis of traumatic brain injury and neurodegenerative diseases: a literature review. Sechenov Medical Journal. 2024;15(1):20–35. doi: 10.47093/2218-7332.2024.15.1.20-35 EDN: PWFHHW
- Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598. doi: 10.1136/jnnp-2018-319148
- Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol. 2020 ;98(1):28–41. doi: 10.1111/imcb.12301
- Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. doi: 10.1089/ars.2012.5149
- Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136. doi: 10.3978/j.issn.2305-5839.2015.03.49
- Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8(4):824–39. doi: 10.1007/s11481-013-9480-6
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2
- Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res. 2013;38(10):2148–59. doi: 10.1007/s11064-013-1123-z
- Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014;18:29–40. doi: 10.1016/j.arr.2014.07.004
- Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1321–5. doi: 10.1042/BST20140155
- Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. doi: 10.1111/cns.13569
- Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172. doi: 10.1038/s41582-020-00435-y
- Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci. 2020;262:118401. doi: 10.1016/j.lfs.2020.118401
- Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, et al. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne). 2020;11:560375. doi: 10.3389/fendo.2020.560375
- Ochiai T, Sano T, Nagayama T, et al. Differential involvement of insulin receptor substrate (IRS)-1 and IRS-2 in brain insulin signaling is associated with the effects on amyloid pathology in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;159:105510. doi: 10.1016/j.nbd.2021.105510
- Smailovic U, Koenig T, Savitcheva I, et al. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism. Brain Connect. 2020;10(10):555–565. doi: 10.1089/brain.2020.0785
- Gratuze M, Joly-Amado A, Vieau D, Buée L, Blum D. Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? Neuroendocrinology. 2018;107(2):181–195. doi: 10.1159/000487641
- Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging. 2015;10:549–60. doi: 10.2147/CIA.S74042
- Neth BJ, Craft S. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages. Front Aging Neurosci. 2017;9:345. doi: 10.3389/fnagi.2017.00345
- Luchsinger JA, Patel B, Tang MX, et al. Measures of adiposity and dementia risk in elderly persons. Arch Neurol. 2007;64(3):392–8. doi: 10.1001/archneur.64.3.392
- Bosco D, Fava A, Plastino M, et al. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15(9):1807–21. doi: 10.1111/j.1582-4934.2011.01318.x
- Tsoriev TT, White ZhE, Rozhinskaya LYa. The role of myokines interstitial interaction and regulation of metabolism: a review of literature. Osteoporosis and Bone Diseases. 2016;19(1):28–34. doi: 10.14341/osteo2016128-34 EDN: XQVZDL
- Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci. 2021;22(17):9136. doi: 10.3390/ijms22179136
- Liu S, Cui F, Ning K, et al. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne). 2022;13:962968. doi: 10.3389/fendo.2022.962968
- Dinas PC, Lahart IM, Timmons JA, et al. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Res. 2017;6:286. doi: 10.12688/f1000research.11107.2
- Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides. 2014;54:89–100. doi: 10.1016/j.peptides.2014.01.016
- Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514–25. doi: 10.2337/db13-1106
- Kim SH, Plutzky J. Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes Metab J. 2016;40(1):12–21. doi: 10.4093/dmj.2016.40.1.12
- Duan H, Ma B, Ma X, et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int J Biol Macromol. 2016;84:457–63. doi: 10.1016/j.ijbiomac.2015.12.049
- Dong J, Dong Y, Dong Y, et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond). 2016;40(3):434–442. doi: 10.1038/ijo.2015.200
- Ozcan S, Ulker N, Bulmus O, et al. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol Biochem. 2022;128(3):724–731. doi: 10.1080/13813455.2020.1722706
- Flori L, Testai L, Calderone V. The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sci. 2021;267:118954. doi: 10.1016/j.lfs.2020.118954
- Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324–337. doi: 10.1038/nrendo.2016.221
- Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–175. doi: 10.1038/s41591-018-0275-4
- Waseem R, Shamsi A, Mohammad T, et al. Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer’s Disease. ACS Omega. 2021;6(11):7910–7921. doi: 10.1021/acsomega.1c00517
- Lourenco MV, Ribeiro FC, Sudo FK, et al. Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12(1):e12034. doi: 10.1002/dad2.12034
- Huang X, Wang J, Zhang S, et al. Plasma BDNF/Irisin Ratio Associates with Cognitive Function in Older People. J Alzheimers Dis. 2024;99(4):1261–1271. doi: 10.3233/JAD-231347
- Bretland KA, Lin L, Bretland KM, et al. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre-symptomatic female but not male htau mice. Neuropathol Appl Neurobiol. 2021;47(7):967–978. doi: 10.1111/nan.12711
- Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci. 2021;54(10):7422–7441. doi: 10.1111/ejn.15493
- Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol. 2022;552:111676. doi: 10.1016/j.mce.2022.111676
- Korta P, Pocheć E, Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina (Kaunas). 2019;55(8):485. doi: 10.3390/medicina55080485
- Sale A, Berardi N, Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol Rev. 2014;94(1):189–234. doi: 10.1152/physrev.00036.2012
- Ng TKS, Ho CSH, Tam WWS, et al. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci. 2019;20(2):257. doi: 10.3390/ijms20020257
- Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50. doi: 10.1007/978-3-642-45106-5_9
- Yuan C, Guo X, Zhou Q, et al. OAB-14, a bexarotene derivative, improves Alzheimer’s disease-related pathologies and cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis. 2019;1865(1):161–180. doi: 10.1016/j.bbadis.2018.10.028
- Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9–30. doi: 10.1515/revneuro-2018-0008
- Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci. 2021;13:649929. doi: 10.3389/fnagi.2021.649929
- Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–59. doi: 10.1016/j.cmet.2013.09.008
- Aimone JB, Li Y, Lee SW, et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026. doi: 10.1152/physrev.00004.2014
- Jurkowski MP, Bettio L, K Woo E, et al. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
- Winner B, Regensburger M, Schreglmann S, et al. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci. 2012;32(47):16906–16. doi: 10.1523/JNEUROSCI.2723-12.2012
- Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, et al. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis. 2014;42(4):1229–38. doi: 10.3233/JAD-140204
- Rodríguez JJ, Jones VC, Tabuchi M, et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 2008;3(8):e2935. doi: 10.1371/journal.pone.0002935
- Kim OY, Song J. The Role of Irisin in Alzheimer’s Disease. J Clin Med. 2018;7(11):407. doi: 10.3390/jcm7110407
- Sadier NS, El Hajjar F, Al Sabouri AAK, et al. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci. 2024;339:122393. doi: 10.1016/j.lfs.2023.122393
- Choi JW, Jo SW, Kim DE, et al. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 2024;71:103101. doi: 10.1016/j.redox.2024.103101
- Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, Lemaire S, Garnier P, Prigent-Tessier A. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int J Mol Sci. 2024; 25(2):1213. doi: 10.3390/ijms25021213
- de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, et al. The Role of PGC-1α/UCP2 Signaling in the Beneficial Effects of Physical Exercise on the Brain. Front Neurosci. 2019;13:292. doi: 10.3389/fnins.2019.00292
- Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med. 2016;18(1):1–15. doi: 10.1007/s12017-015-8370-x
- Akhtar A, Sah SP. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem Int. 2020;135:104707. doi: 10.1016/j.neuint.2020.104707
- Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–972. doi: 10.1002/jnr.23777
- Kyrtata N, Emsley HCA, Sparasci O, et al. A Systematic Review of Glucose Transport Alterations in Alzheimer’s Disease. Front Neurosci. 2021;15:626636. doi: 10.3389/fnins.2021.626636
- Tang H, Yu R, Liu S, et al. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine. 2016;6:139–148. doi: 10.1016/j.ebiom.2016.02.041
- Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592(5):1091–107. doi: 10.1113/jphysiol.2013.264655
- Shen S, Liao Q, Chen X, et al. The role of irisin in metabolic flexibility: Beyond adipose tissue browning. Drug Discov Today. 2022;27(8):2261–2267. doi: 10.1016/j.drudis.2022.03.019
- Lee HJ, Lee JO, Kim N, et al. Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Mol Endocrinol. 2015;29(6):873–81. doi: 10.1210/me.2014-1353
- Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–272. doi: 10.1038/s41580-022-00547-x
- Qi JY, Yang LK, Wang XS, et al. Irisin: A promising treatment for neurodegenerative diseases. Neuroscience. 2022;498:289–299. doi: 10.1016/j.neuroscience.2022.07.018
- Madhu LN, Somayaji Y, Shetty AK. Promise of irisin to attenuate cognitive dysfunction in aging and Alzheimer’s disease. Ageing Res Rev. 2022;78:101637. doi: 10.1016/j.arr.2022.101637
- Mohammadi S, Oryan S, Komaki A, et al. Effects of intra-dentate gyrus microinjection of myokine irisin on long-term potentiation in male rats. Arq Neuropsiquiatr. 2019;77(12):881–887. doi: 10.1590/0004-282X20190184
- Landry T, Huang H. Mini review: The relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett. 2021;765:136261. doi: 10.1016/j.neulet.2021.136261
- Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, et al. Adipose tissue as a therapeutic target for vascular damage in Alzheimer’s disease. Br J Pharmacol. 2024;181(6):840–878. doi: 10.1111/bph.16243
- Wang Y, Tian M, Tan J, et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2022;19(1):82. doi: 10.1186/s12974-022-02438-6
- Zhang X, Xu S, Hu Y, et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):13. doi: 10.1038/s41531-023-00453-9
- Zhang F, Hou G, Hou G, et al. Serum Irisin as a Potential Biomarker for Cognitive Decline in Vascular Dementia. Front Neurol. 2021;12:755046. doi: 10.3389/fneur.2021.755046
- Jin Z, Zhang Z, Ke J, Wang Y, Wu H. Exercise-Linked Irisin Prevents Mortality and Enhances Cognition in a Mice Model of Cerebral Ischemia by Regulating Klotho Expression. Oxid Med Cell Longev. 2021;2021:1697070. doi: 10.1155/2021/1697070
- Çalık M, Sengul Y, Mail GZ, et al. Association between serum irisin concentration and ischemic stroke: From etiology to clinic. J Med Biochem. 2022;41(4):534–539. doi: 10.5937/jomb0-36681
- Waseem R, Shamsi A, Khan T, et al. Characterization of advanced glycation end products and aggregates of irisin: Multispectroscopic and microscopic approaches. J Cell Biochem. 2023;124(1):156–168. doi: 10.1002/jcb.30353
- Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci. 2022;14:965190. doi: 10.3389/fnagi.2022.965190
- Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr. 2019;31(1):83–90. doi: 10.1017/S1041610218000534
- Posadzki P, Pieper D, Bajpai R, et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020;20(1):1724. doi: 10.1186/s12889-020-09855-3
- Kaloğlu HA, Örsel S, Erzin G. Evaluation of the Relationships between Irisin Levels and Cognitive Functions in Individuals with Schizophrenia. Clin Psychopharmacol Neurosci. 2023;21(4):724–731. doi: 10.9758/cpn.22.1030
- Zong B, Yu F, Zhang X, et al. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci. 2022;14:869507. doi: 10.3389/fnagi.2022.869507
- Morelli C, Avolio E, Galluccio A, et al. Impact of Vigorous-Intensity Physical Activity on Body Composition Parameters, Lipid Profile Markers, and Irisin Levels in Adolescents: A Cross-Sectional Study. Nutrients. 2020;12(3):742. doi: 10.3390/nu12030742
- Chen K, Wang K, Wang T. Protective effect of irisin against Alzheimer’s disease. Front Psychiatry. 2022;13:967683. doi: 10.3389/fpsyt.2022.967683
Supplementary files
