Физическая активность и миокин иризин как немедикаментозный подход к лечению болезни Альцгеймера
- Авторы: Гибизов Ю.А.1, Вагапова Л.Б.2, Агузарова А.О.1, Назарова Ю.В.3, Зоткина Я.А.4, Атаманюк Е.А.5, Родикова М.М.6, Тимергалеев Р.Н.7, Куприянов А.М.8, Чуприна А.А.9, Аслаханов А.И.2, Веремийчук В.Ю.4, Марьин А.О.10
-
Учреждения:
- Северо-Осетинская государственная медицинская академия
- Ставропольский государственный медицинский университет
- Рязанский государственный медицинский университет им. И.П. Павлова
- Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова
- Приволжский исследовательский медицинский университет
- Первый Московский государственный медицинский университет им. И.М. Сеченова
- Казанский федеральный университет
- Красноярский государственный медицинский университет
- Крымский федеральный университет им. В.И. Вернадского
- Ульяновский государственный университет
- Выпуск: Том 24, № 4 (2025)
- Страницы: 235-253
- Раздел: Обзоры
- Статья опубликована: 16.08.2025
- URL: https://rjpbr.com/1681-3456/article/view/677844
- DOI: https://doi.org/10.17816/rjpbr677844
- EDN: https://elibrary.ru/AGYEDK
- ID: 677844
Цитировать
Полный текст



Аннотация
Болезнь Альцгеймера (БА) — это наиболее распространённая форма деменции, характеризующаяся прогрессирующей потерей когнитивных функций, ухудшением памяти, синаптической дисфункцией и нейродегенерацией. В настоящее время существующие методы лечения в основном направлены на временное облегчение симптомов, не влияя на ключевые механизмы патогенеза заболевания. В последние годы особое внимание уделяется поиску немедикаментозных подходов, способных замедлить прогрессирование БА и улучшить когнитивное функционирование. Одним из таких перспективных направлений является изучение роли иризина — миокина, выделяемого в ответ на физическую активность, который, как показали недавние исследования, обладает многоуровневым нейропротекторным действием. Иризин участвует в регуляции экспрессии нейротрофического фактора мозга, активирует нейрогенез, улучшает инсулиновую чувствительность и энергетический метаболизм, снижает уровень нейровоспаления и окислительного стресса. Доклинические исследования демонстрируют, что введение иризина улучшает показатели памяти, пространственного обучения и синаптической пластичности у животных с моделью БА. Кроме того, физическая активность, стимулирующая секрецию иризина, показала положительное влияние на когнитивные функции и общее самочувствие пациентов с БА. Обзор обобщает современные данные о механизмах действия иризина и его роли в патогенезе и терапии БА. Обоснована необходимость дальнейших клинических исследований, направленных на изучение фармакологической модуляции иризина, а также интеграции физических упражнений в комплексные лечебные программы. Иризин рассматривается как многообещающая мишень для создания новых стратегий профилактики и лечения БА.
Полный текст

Об авторах
Юрий Аланович Гибизов
Северо-Осетинская государственная медицинская академия
Email: sadreit@rambler.ru
ORCID iD: 0009-0004-2126-1813
Россия, Владикавказ
Лиза Беслановна Вагапова
Ставропольский государственный медицинский университет
Email: vagapova.li@mail.ru
ORCID iD: 0009-0006-5148-6794
Россия, Ставрополь
Алина Олеговна Агузарова
Северо-Осетинская государственная медицинская академия
Email: aguzarova20021410@gmail.com
ORCID iD: 0009-0009-5879-7570
Россия, Владикавказ
Юлия Валерьевна Назарова
Рязанский государственный медицинский университет им. И.П. Павлова
Email: nazar-yulia2015@yandex.ru
ORCID iD: 0009-0003-2589-3538
Россия, Рязань
Яна Андреевна Зоткина
Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова
Email: zotckina.yana@yandex.ru
ORCID iD: 0009-0008-5204-4386
Россия, Санкт-Петербург
Екатерина Алексеевна Атаманюк
Приволжский исследовательский медицинский университет
Email: ekaterina_ataman@mail.ru
ORCID iD: 0009-0006-2719-664X
Россия, Нижний Новгород
Мария Максимовна Родикова
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: rodikova_00@mail.ru
ORCID iD: 0009-0008-9183-6888
Россия, Москва
Рафаэль Наилевич Тимергалеев
Казанский федеральный университет
Email: rafa-el99@mail.ru
ORCID iD: 0009-0001-5632-1394
Россия, Казань
Александр Михайлович Куприянов
Красноярский государственный медицинский университет
Email: mgaine@mail.ru
ORCID iD: 0009-0003-4931-0261
Россия, Красноярск
Анастасия Александровна Чуприна
Крымский федеральный университет им. В.И. Вернадского
Email: Chuprinik5@gmail.com
ORCID iD: 0009-0009-8268-2511
Россия, Симферополь
Азамат Ибрагимович Аслаханов
Ставропольский государственный медицинский университет
Email: azamat.aslakhanov@mail.ru
ORCID iD: 0009-0001-1878-2739
Россия, Ставрополь
Виктория Юрьевна Веремийчук
Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова
Email: dr.veremiychuk_vu@mail.ru
ORCID iD: 0009-0005-4056-346X
Россия, Санкт-Петербург
Антон Олегович Марьин
Ульяновский государственный университет
Автор, ответственный за переписку.
Email: antonmarin241@mail.ru
ORCID iD: 0009-0004-2472-4828
Россия, Ульяновск
Список литературы
- Tappakhov AA, Nikolaeva TYa, Popova TE, Shnayder NA. Difficulties in diagnosing atypical variants of Alzheimer’s disease. Russian neurological journal. 2021;26(5):16–23. doi: 10.30629/2658-7947-2021-26-5-16-23 EDN: FNJALQ
- Odinak MM, Litvinenko IV, Emelin AIu, et al. Pathomorphological changes in dementia: a priority of domestic researchers. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6-2):28–34. doi: 10.17116/jnevro20161166228-34 EDN: WMWLST
- Kolykhalov IV. Current approaches to optimize treatment of dementia and Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(6):87–92. doi: 10.17116/jnevro20161166187-92 EDN: WDCPQV
- Khasanova GR, Muzaffarova MSh. Risk factors for the alzheimer’s disease. Systematic review and meta-analysis. Fundamental and Clinical Medicine. 2023;8(4):101–114. doi: 10.23946/2500-0764-2023-8-4-101-114 EDN: HFNWXA
- Ishmuratova AN, Abramov MA, Kuznetsov KO, et al. The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review. Problems of Endocrinology. 2023;69(5):73–83. doi: 10.14341/probl13183 EDN: RHLRQI
- Vorobev SV, Emelin AYu, Yanishevskij SN. The evolution of ideas about the treatment of Alzheimer’s disease: from the past to the present day. Russian neurological journal. 2022;27(1):5–15. doi: 10.30629/2658-7947-2022-27-1-5-15 EDN: FHDDKL
- Rivers-Auty J, Mather AE, Peters R, et al. Anti-inflammatories in Alzheimer’s disease-potential therapy or spurious correlate? Brain Commun. 2020;2(2):fcaa109. doi: 10.1093/braincomms/fcaa109
- Ratne N, Jari S, Tadas M, et al. Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer’s disease management. Ageing Res Rev. 2025;105:102687. doi: 10.1016/j.arr.2025.102687
- Bykov NA. The effect of physical activity on the human brain. Innovative science. 2024;7(2):26–29. EDN: EFPLEG
- Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43(11):1095–1104. doi: 10.1139/apnm-2018-0192
- Mamutova EM, Sheptulina AF, Timofeev YuS, et al. Serum concentrations of irisin, erythroferrone, myostatin and interleukin-6 in obese patients depending on the presence of sarcopenia. Russian Journal of Preventive Medicine. 2025;28(2):67–73. doi: 10.17116/profmed20252802167 EDN: YJNAVC
- Yardimci A, Ertugrul NU, Ozgen A, et al. Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: An HPLC-ECD study. Neurosci Lett. 2023;806:137245. doi: 10.1016/j.neulet.2023.137245
- Tan ZX, Dong F, Wu LY, et al. The Beneficial Role of Exercise on Treating Alzheimer’s Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol. 2021;58(11):5890–5906. doi: 10.1007/s12035-021-02514-7
- Andyarzhanova EA, Voronina TA. Irisin at the Crossroad of Autophagy and BNDF Signaling for Neuroplasticity Regulation. Nejrohimiâ. 2023;40(2):132–145 doi: 10.31857/S1027813323020036 EDN: UCLCIM
- Zhang H, Jiang X, Ma L, et al. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol. 2022;10:964075. doi: 10.3389/fcell.2022.964075
- Kuznetsov KO, Khaidarova RR, Khabibullina RH, et al. Testosterone and Alzheimer’s disease. Problems of Endocrinology. 2022;68(5):97–107. doi: 10.14341/probl13136 EDN: RWUZOC
- Vasenina EE, Levin OS, Sonin AG. Modern trends in epidemiology of dementia and management of patients with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6–2): 87–95. doi: 10.17116/jnevro20171176287-95 EDN: ZGYWOX
- Pless A, Ware D, Saggu S, et al. Understanding neuropsychiatric symptoms in Alzheimer’s disease: challenges and advances in diagnosis and treatment. Front Neurosci. 2023;17:1263771. doi: 10.3389/fnins.2023.1263771
- Giau VV, Senanarong V, Bagyinszky E, et al. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer’s Disease. Int J Mol Sci. 2019;20(6):1514. doi: 10.3390/ijms20061514
- Volobuev AN, Pyatin VF, Romanchuk NP, Aleksandrova NN. Genotypes and phenotypes of Alzheimer’s disease. Science and Innovations in Medicine. 2018;3(3):17–20. doi: 10.35693/2500-1388-2018-0-3-17-20 EDN: YPEKJN
- Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124. doi: 10.3389/fncel.2015.00124
- Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer’s disease. Arch Biochem Biophys. 2024;758:110065. doi: 10.1016/j.abb.2024.110065
- Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
- Onyango IG, Jauregui GV, Čarná M, et al. Neuroinflammation in Alzheimer’s Disease. Biomedicines. 2021;9(5):524. doi: 10.3390/biomedicines9050524
- Ahmad SR, Zeyaullah M, AlShahrani AM, et al. Deciphering the Enigma of Neuron-Glial Interactions in Neurological Disorders. Front Biosci (Landmark Ed). 2024;29(4):142. doi: 10.31083/j.fbl2904142
- Sirisi S, Sánchez-Aced É, Belbin O, Lleó A. APP dyshomeostasis in the pathogenesis of Alzheimer’s disease: implications for current drug targets. Alzheimers Res Ther. 2024;16(1):144. doi: 10.1186/s13195-024-01504-w
- Kukharskiĭ MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(6):103–114. doi: 10.17116/jnevro20151156103-114 EDN: UKQWIN
- Penke B, Bogár F, Fülöp L. β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View. Molecules. 2017;22(10):1692. doi: 10.3390/molecules22101692
- Wang R, Zhang Y, Li J, Zhang C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience. 2017;344:39–47. doi: 10.1016/j.neuroscience.2016.08.051
- Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221. doi: 10.3389/fphar.2015.00221
- Hussain T, Tan B, Yin Y, et al. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797
- Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci. 2019;59:6–11. doi: 10.1016/j.jocn.2018.10.034
- Kempuraj D, Thangavel R, Natteru PA, et al. Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003.
- Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer’s disease. J Neurochem. 2016;136(3):475–91. doi: 10.1111/jnc.13424
- de Oliveira J, Kucharska E, Garcez ML, et al. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells. 2021;10(10):2581. doi: 10.3390/cells10102581
- Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016;11(10):1579–1581. doi: 10.4103/1673-5374.193234
- Zhang M, Ganz AB, Rohde S, et al. Resilience and resistance to the accumulation of amyloid plaques and neurofibrillary tangles in centenarians: An age-continuous perspective. Alzheimers Dement. 2023;19(7):2831–2841. doi: 10.1002/alz.12899
- Richter-Landsberg C. Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration. Biol Chem. 2016;397(3):185–94. doi: 10.1515/hsz-2015-0157
- Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res. 2018;15(3):283–300. doi: 10.2174/1567205014666170417111859
- Cai Q, Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1087–1103. doi: 10.3233/JAD-160726
- de Calignon A, Spires-Jones TL, Pitstick R, et al. Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J Neuropathol Exp Neurol. 2009;68(7):757–61. doi: 10.1097/NEN.0b013e3181a9fc66
- Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–677. doi: 10.1007/s10787-019-00580-x
- Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed J. 2018;41(1):21–33. doi: 10.1016/j.bj.2018.01.003
- Saroja SR, Sharma A, Hof PR, Pereira AC. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimers Dement. 2022;18(9):1602–1615. doi: 10.1002/alz.12518
- Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68(1):1–14. doi: 10.1097/NEN.0b013e3181919a48
- Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord. 2021;90:142–154. doi: 10.1016/j.parkreldis.2021.09.008
- Sharma K, Pradhan S, Duffy LK, et al. Role of Receptors in Relation to Plaques and Tangles in Alzheimer’s Disease Pathology. Int J Mol Sci. 2021;22(23):12987. doi: 10.3390/ijms222312987
- Kuzmin EA, Shamitko ZV, Piavchenko GA, et al. Biomarkers of neuroinflammation in the diagnosis of traumatic brain injury and neurodegenerative diseases: a literature review. Sechenov Medical Journal. 2024;15(1):20–35. doi: 10.47093/2218-7332.2024.15.1.20-35 EDN: PWFHHW
- Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598. doi: 10.1136/jnnp-2018-319148
- Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol. 2020 ;98(1):28–41. doi: 10.1111/imcb.12301
- Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. doi: 10.1089/ars.2012.5149
- Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136. doi: 10.3978/j.issn.2305-5839.2015.03.49
- Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8(4):824–39. doi: 10.1007/s11481-013-9480-6
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2
- Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res. 2013;38(10):2148–59. doi: 10.1007/s11064-013-1123-z
- Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014;18:29–40. doi: 10.1016/j.arr.2014.07.004
- Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1321–5. doi: 10.1042/BST20140155
- Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. doi: 10.1111/cns.13569
- Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172. doi: 10.1038/s41582-020-00435-y
- Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci. 2020;262:118401. doi: 10.1016/j.lfs.2020.118401
- Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, et al. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne). 2020;11:560375. doi: 10.3389/fendo.2020.560375
- Ochiai T, Sano T, Nagayama T, et al. Differential involvement of insulin receptor substrate (IRS)-1 and IRS-2 in brain insulin signaling is associated with the effects on amyloid pathology in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;159:105510. doi: 10.1016/j.nbd.2021.105510
- Smailovic U, Koenig T, Savitcheva I, et al. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism. Brain Connect. 2020;10(10):555–565. doi: 10.1089/brain.2020.0785
- Gratuze M, Joly-Amado A, Vieau D, Buée L, Blum D. Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? Neuroendocrinology. 2018;107(2):181–195. doi: 10.1159/000487641
- Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging. 2015;10:549–60. doi: 10.2147/CIA.S74042
- Neth BJ, Craft S. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages. Front Aging Neurosci. 2017;9:345. doi: 10.3389/fnagi.2017.00345
- Luchsinger JA, Patel B, Tang MX, et al. Measures of adiposity and dementia risk in elderly persons. Arch Neurol. 2007;64(3):392–8. doi: 10.1001/archneur.64.3.392
- Bosco D, Fava A, Plastino M, et al. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med. 2011;15(9):1807–21. doi: 10.1111/j.1582-4934.2011.01318.x
- Tsoriev TT, White ZhE, Rozhinskaya LYa. The role of myokines interstitial interaction and regulation of metabolism: a review of literature. Osteoporosis and Bone Diseases. 2016;19(1):28–34. doi: 10.14341/osteo2016128-34 EDN: XQVZDL
- Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci. 2021;22(17):9136. doi: 10.3390/ijms22179136
- Liu S, Cui F, Ning K, et al. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne). 2022;13:962968. doi: 10.3389/fendo.2022.962968
- Dinas PC, Lahart IM, Timmons JA, et al. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Res. 2017;6:286. doi: 10.12688/f1000research.11107.2
- Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides. 2014;54:89–100. doi: 10.1016/j.peptides.2014.01.016
- Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514–25. doi: 10.2337/db13-1106
- Kim SH, Plutzky J. Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes Metab J. 2016;40(1):12–21. doi: 10.4093/dmj.2016.40.1.12
- Duan H, Ma B, Ma X, et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int J Biol Macromol. 2016;84:457–63. doi: 10.1016/j.ijbiomac.2015.12.049
- Dong J, Dong Y, Dong Y, et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond). 2016;40(3):434–442. doi: 10.1038/ijo.2015.200
- Ozcan S, Ulker N, Bulmus O, et al. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol Biochem. 2022;128(3):724–731. doi: 10.1080/13813455.2020.1722706
- Flori L, Testai L, Calderone V. The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sci. 2021;267:118954. doi: 10.1016/j.lfs.2020.118954
- Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324–337. doi: 10.1038/nrendo.2016.221
- Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–175. doi: 10.1038/s41591-018-0275-4
- Waseem R, Shamsi A, Mohammad T, et al. Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer’s Disease. ACS Omega. 2021;6(11):7910–7921. doi: 10.1021/acsomega.1c00517
- Lourenco MV, Ribeiro FC, Sudo FK, et al. Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12(1):e12034. doi: 10.1002/dad2.12034
- Huang X, Wang J, Zhang S, et al. Plasma BDNF/Irisin Ratio Associates with Cognitive Function in Older People. J Alzheimers Dis. 2024;99(4):1261–1271. doi: 10.3233/JAD-231347
- Bretland KA, Lin L, Bretland KM, et al. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre-symptomatic female but not male htau mice. Neuropathol Appl Neurobiol. 2021;47(7):967–978. doi: 10.1111/nan.12711
- Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci. 2021;54(10):7422–7441. doi: 10.1111/ejn.15493
- Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol. 2022;552:111676. doi: 10.1016/j.mce.2022.111676
- Korta P, Pocheć E, Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina (Kaunas). 2019;55(8):485. doi: 10.3390/medicina55080485
- Sale A, Berardi N, Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol Rev. 2014;94(1):189–234. doi: 10.1152/physrev.00036.2012
- Ng TKS, Ho CSH, Tam WWS, et al. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci. 2019;20(2):257. doi: 10.3390/ijms20020257
- Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50. doi: 10.1007/978-3-642-45106-5_9
- Yuan C, Guo X, Zhou Q, et al. OAB-14, a bexarotene derivative, improves Alzheimer’s disease-related pathologies and cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis. 2019;1865(1):161–180. doi: 10.1016/j.bbadis.2018.10.028
- Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9–30. doi: 10.1515/revneuro-2018-0008
- Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci. 2021;13:649929. doi: 10.3389/fnagi.2021.649929
- Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–59. doi: 10.1016/j.cmet.2013.09.008
- Aimone JB, Li Y, Lee SW, et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026. doi: 10.1152/physrev.00004.2014
- Jurkowski MP, Bettio L, K Woo E, et al. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
- Winner B, Regensburger M, Schreglmann S, et al. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci. 2012;32(47):16906–16. doi: 10.1523/JNEUROSCI.2723-12.2012
- Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, et al. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis. 2014;42(4):1229–38. doi: 10.3233/JAD-140204
- Rodríguez JJ, Jones VC, Tabuchi M, et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 2008;3(8):e2935. doi: 10.1371/journal.pone.0002935
- Kim OY, Song J. The Role of Irisin in Alzheimer’s Disease. J Clin Med. 2018;7(11):407. doi: 10.3390/jcm7110407
- Sadier NS, El Hajjar F, Al Sabouri AAK, et al. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci. 2024;339:122393. doi: 10.1016/j.lfs.2023.122393
- Choi JW, Jo SW, Kim DE, et al. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 2024;71:103101. doi: 10.1016/j.redox.2024.103101
- Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, Lemaire S, Garnier P, Prigent-Tessier A. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int J Mol Sci. 2024; 25(2):1213. doi: 10.3390/ijms25021213
- de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, et al. The Role of PGC-1α/UCP2 Signaling in the Beneficial Effects of Physical Exercise on the Brain. Front Neurosci. 2019;13:292. doi: 10.3389/fnins.2019.00292
- Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med. 2016;18(1):1–15. doi: 10.1007/s12017-015-8370-x
- Akhtar A, Sah SP. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem Int. 2020;135:104707. doi: 10.1016/j.neuint.2020.104707
- Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–972. doi: 10.1002/jnr.23777
- Kyrtata N, Emsley HCA, Sparasci O, et al. A Systematic Review of Glucose Transport Alterations in Alzheimer’s Disease. Front Neurosci. 2021;15:626636. doi: 10.3389/fnins.2021.626636
- Tang H, Yu R, Liu S, et al. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine. 2016;6:139–148. doi: 10.1016/j.ebiom.2016.02.041
- Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592(5):1091–107. doi: 10.1113/jphysiol.2013.264655
- Shen S, Liao Q, Chen X, et al. The role of irisin in metabolic flexibility: Beyond adipose tissue browning. Drug Discov Today. 2022;27(8):2261–2267. doi: 10.1016/j.drudis.2022.03.019
- Lee HJ, Lee JO, Kim N, et al. Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Mol Endocrinol. 2015;29(6):873–81. doi: 10.1210/me.2014-1353
- Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–272. doi: 10.1038/s41580-022-00547-x
- Qi JY, Yang LK, Wang XS, et al. Irisin: A promising treatment for neurodegenerative diseases. Neuroscience. 2022;498:289–299. doi: 10.1016/j.neuroscience.2022.07.018
- Madhu LN, Somayaji Y, Shetty AK. Promise of irisin to attenuate cognitive dysfunction in aging and Alzheimer’s disease. Ageing Res Rev. 2022;78:101637. doi: 10.1016/j.arr.2022.101637
- Mohammadi S, Oryan S, Komaki A, et al. Effects of intra-dentate gyrus microinjection of myokine irisin on long-term potentiation in male rats. Arq Neuropsiquiatr. 2019;77(12):881–887. doi: 10.1590/0004-282X20190184
- Landry T, Huang H. Mini review: The relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett. 2021;765:136261. doi: 10.1016/j.neulet.2021.136261
- Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, et al. Adipose tissue as a therapeutic target for vascular damage in Alzheimer’s disease. Br J Pharmacol. 2024;181(6):840–878. doi: 10.1111/bph.16243
- Wang Y, Tian M, Tan J, et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2022;19(1):82. doi: 10.1186/s12974-022-02438-6
- Zhang X, Xu S, Hu Y, et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):13. doi: 10.1038/s41531-023-00453-9
- Zhang F, Hou G, Hou G, et al. Serum Irisin as a Potential Biomarker for Cognitive Decline in Vascular Dementia. Front Neurol. 2021;12:755046. doi: 10.3389/fneur.2021.755046
- Jin Z, Zhang Z, Ke J, Wang Y, Wu H. Exercise-Linked Irisin Prevents Mortality and Enhances Cognition in a Mice Model of Cerebral Ischemia by Regulating Klotho Expression. Oxid Med Cell Longev. 2021;2021:1697070. doi: 10.1155/2021/1697070
- Çalık M, Sengul Y, Mail GZ, et al. Association between serum irisin concentration and ischemic stroke: From etiology to clinic. J Med Biochem. 2022;41(4):534–539. doi: 10.5937/jomb0-36681
- Waseem R, Shamsi A, Khan T, et al. Characterization of advanced glycation end products and aggregates of irisin: Multispectroscopic and microscopic approaches. J Cell Biochem. 2023;124(1):156–168. doi: 10.1002/jcb.30353
- Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci. 2022;14:965190. doi: 10.3389/fnagi.2022.965190
- Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr. 2019;31(1):83–90. doi: 10.1017/S1041610218000534
- Posadzki P, Pieper D, Bajpai R, et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020;20(1):1724. doi: 10.1186/s12889-020-09855-3
- Kaloğlu HA, Örsel S, Erzin G. Evaluation of the Relationships between Irisin Levels and Cognitive Functions in Individuals with Schizophrenia. Clin Psychopharmacol Neurosci. 2023;21(4):724–731. doi: 10.9758/cpn.22.1030
- Zong B, Yu F, Zhang X, et al. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci. 2022;14:869507. doi: 10.3389/fnagi.2022.869507
- Morelli C, Avolio E, Galluccio A, et al. Impact of Vigorous-Intensity Physical Activity on Body Composition Parameters, Lipid Profile Markers, and Irisin Levels in Adolescents: A Cross-Sectional Study. Nutrients. 2020;12(3):742. doi: 10.3390/nu12030742
- Chen K, Wang K, Wang T. Protective effect of irisin against Alzheimer’s disease. Front Psychiatry. 2022;13:967683. doi: 10.3389/fpsyt.2022.967683
Дополнительные файлы
