Apoptosis Regulation in Skeletal Muscles: Effects of Physical Exercise and Bioactive Compounds
- Authors: Marzhanova A.B.1, Lapitskaya E.K.2, Sungurova A.3, Marzoeva M.A.4, Balagutdinova R.I.5, Nasyrova A.R.5, Khasukhanova T.A.4, Kutlubaev A.I.2, Ivanova K.S.3, Ispieva D.S.4, Nalivaiko A.S.6, Sukasyan E.A.6, Bulgakova P.A.6, Fedotova E.A.7, Sattarov D.D.5
-
Affiliations:
- Rostov State Medical University
- Orenburg State Medical University
- The First Sechenov Moscow State Medical University
- Pirogov Russian National Research Medical University
- Bashkir State Medical University
- Vernadsky Crimean Federal University
- Volgograd State Medical University
- Issue: Vol 24, No 4 (2025)
- Pages: 220-234
- Section: Review
- Published: 16.08.2025
- URL: https://rjpbr.com/1681-3456/article/view/676882
- DOI: https://doi.org/10.17816/rjpbr676882
- EDN: https://elibrary.ru/VJHWLF
- ID: 676882
Cite item
Abstract
Apoptosis is crucial for maintaining tissue homeostasis in skeletal muscles. However, its dysregulation due to obesity, type 2 diabetes mellitus, or aging can result in increased muscle degeneration, decreased functional capacity, and metabolic disorders. This article reviews the regulatory mechanisms of apoptosis in skeletal muscles and examines the effects of two key factors: physical exercise and natural bioactive compounds. Scientific data analysis confirms that both physical activity and bioactive compounds such as resveratrol, curcumin, and quercetin exert a pronounced anti-apoptotic effect by reducing oxidative stress, improving mitochondrial function, and modulating signaling pathways such as Bcl-2 and AMPK/SIRT1. When combined, these interventions demonstrate a synergistic effect, offering a promising approach to the prevention and treatment of sarcopenia, obesity, and associated metabolic diseases. Despite encouraging experimental findings, further clinical trials are needed to optimize physical activity protocols and identify the most effective combinations of natural compounds for preventing muscle atrophy and improving patients’ metabolic status.
Full Text

About the authors
Alina B. Marzhanova
Rostov State Medical University
Author for correspondence.
Email: murkudda@mail.ru
ORCID iD: 0009-0006-5910-8739
Russian Federation, Rostov-On-Don
Elizaveta K. Lapitskaya
Orenburg State Medical University
Email: liza.lapickaya@mail.ru
ORCID iD: 0009-0004-4535-4184
Russian Federation, Orenburg
Aminat Sungurova
The First Sechenov Moscow State Medical University
Email: Aammiiinnnkkaa@mail.ru
ORCID iD: 0009-0005-8692-4777
Russian Federation, Moscow
Marina A. Marzoeva
Pirogov Russian National Research Medical University
Email: marzoeva_m99@mail.ru
ORCID iD: 0000-0003-4391-0218
SPIN-code: 2365-8824
Russian Federation, Moscow
Regina I. Balagutdinova
Bashkir State Medical University
Email: regina.balagutdinova@inbox.ru
ORCID iD: 0009-0008-3398-2721
Russian Federation, Ufa
Aigul R. Nasyrova
Bashkir State Medical University
Email: Shoning228@mail.ru
ORCID iD: 0009-0005-2164-044X
Russian Federation, Ufa
Taisa A. Khasukhanova
Pirogov Russian National Research Medical University
Email: borealis.k@mail.ru
ORCID iD: 0009-0001-2124-6064
Russian Federation, Moscow
Azat I. Kutlubaev
Orenburg State Medical University
Email: kutlubaev_2015@mail.ru
ORCID iD: 0009-0009-6636-533X
Russian Federation, Orenburg
Kristina S. Ivanova
The First Sechenov Moscow State Medical University
Email: christina_ivanova01@mail.ru
ORCID iD: 0009-0009-6699-3432
Russian Federation, Moscow
Diana S. Ispieva
Pirogov Russian National Research Medical University
Email: ispievadiana@yandex.ru
ORCID iD: 0009-0005-4863-1957
Russian Federation, Moscow
Anastasia S. Nalivaiko
Vernadsky Crimean Federal University
Email: Anastasia.Nalivaiko01@mail.ru
ORCID iD: 0009-0009-2220-5174
Russian Federation, Simferopol
Eduard A. Sukasyan
Vernadsky Crimean Federal University
Email: sukasyan1999@bk.ru
ORCID iD: 0009-0007-0054-5747
SPIN-code: 7667-1390
Russian Federation, Simferopol
Polina A. Bulgakova
Vernadsky Crimean Federal University
Email: pbulgakova75@gmail.com
ORCID iD: 0009-0002-6314-6093
Russian Federation, Simferopol
Elizaveta A. Fedotova
Volgograd State Medical University
Email: crosszery2610200143@mail.ru
ORCID iD: 0009-0009-8382-6345
Russian Federation, Volgograd
Danila D. Sattarov
Bashkir State Medical University
Email: danila.sattarov@gmail.com
ORCID iD: 0009-0001-4784-5997
Russian Federation, Ufa
References
- Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines “management of obesity and its comorbidities”. Obesity and metabolism. 2021;18(1):5–99. doi: 10.14341/omet12714 EDN: AHSBSE
- Dalili D, Bazzocchi A, Dalili DE, et al. The role of body composition assessment in obesity and eating disorders. Eur J Radiol. 2020;131:109227. doi: 10.1016/j.ejrad.2020.109227
- Lingvay I, Cohen RV, Roux CWL, Sumithran P. Obesity in adults. Lancet. 2024;404(10456):972–987. doi: 10.1016/S0140-6736(24)01210-8
- Bondareva EA, Troshina EA. Obesity. Reasons, features and prospects. Obesity and metabolism. 2024;21(2):174–187. doi: 10.14341/omet13055 EDN: BRPHRR
- Razina AO, Achkasov EE, Runenko SD. Obesity: the modern approach to the problem. Obesity and metabolism. 2016;13(1):3–8. doi: 10.14341/omet201613-8
- Anekwe CV, Jarrell AR, Townsend MJ, Gaudier GI, Hiserodt JM, Stanford FC. Socioeconomics of Obesity. Curr Obes Rep. 2020;9(3):272–279. doi: 10.1007/s13679-020-00398-7
- Mustafina SV, Vinter DA, Alferova VI. Influence of obesity on the formation and development of cancer. Obesity and metabolism. 2024;21(2):205–214. doi: 10.14341/omet13025 EDN: HGLCXT
- Anekwe CV, Jarrell AR, Townsend MJ, et al. Socioeconomics of Obesity. Curr Obes Rep. 2020;9(3):272–279. doi: 10.1007/s13679-020-00398-7
- Keane KN, Cruzat VF, Carlessi R, et al. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. Oxid Med Cell Longev. 2015;2015:181643. doi: 10.1155/2015/181643
- Röszer T. Adipose Tissue Immunometabolism and Apoptotic Cell Clearance. Cells. 2021;10(9):2288. doi: 10.3390/cells10092288
- Wondmkun YT. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab Syndr Obes. 2020;13:3611–3616. doi: 10.2147/DMSO.S275898
- Kyazimova ND, Kornyakova VV. Influence of polyphenolic compounds on human health and the course of a number of diseases. Scientific Bulletin of the Omsk State Medical University. 2024;4(1):87–91. doi: 10.61634/2782-3024-2024-13-87-91 EDN: AWFBBA
- de Oliveira MR, Nabavi SF, Manayi A, et al. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta. 2016;1860(4):727–45. doi: 10.1016/j.bbagen.2016.01.017
- Liu X, Zhao H, Jin Q, et al. Resveratrol induces apoptosis and inhibits adipogenesis by stimulating the SIRT1-AMPKα-FOXO1 signalling pathway in bovine intramuscular adipocytes. Mol Cell Biochem. 2018;439(1–2):213–223. doi: 10.1007/s11010-017-3149-z
- Shirinsky IV, Shirinsky VS, Filatova KYu. Efficacy and safety of curcumin in patients with metabolic phenotype of osteoarthritis: A pilot study. Medical Immunology. 2023;25(5):1099–1102. doi: 10.15789/1563-0625-EAS-2771 EDN: SGZLDD
- Xia ZH, Zhang SY, Chen YS, et al. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol. 2020;146:111803. doi: 10.1016/j.fct.2020.111803
- Accattato F, Greco M, Pullano SA, et al. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS One. 2017;12(6):e0178900. doi: 10.1371/journal.pone.0178900
- Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med. 2021;177:347–359. doi: 10.1016/j.freeradbiomed.2021.11.002
- Ghoweba RE, Khowailed AA, Aboulhoda BE, et al. Synergistic role of resveratrol and exercise training in management of diabetic neuropathy and myopathy via SIRT1/NGF/GAP43 linkage. Tissue Cell. 2023;81:102014. doi: 10.1016/j.tice.2023.102014
- Liao ZY, Chen JL, Xiao MH, et al. The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol. 2017;98:177–183. doi: 10.1016/j.exger.2017.08.032
- Nagata I, Kawashima M, Miyazaki A, et al. Icing after skeletal muscle injury with necrosis in a small fraction of myofibers limits inducible nitric oxide synthase-expressing macrophage invasion and facilitates muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2023;324(4):R574–R588. doi: 10.1152/ajpregu.00258.2022
- Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr Opin Pharmacol. 2015;22:100–6. doi: 10.1016/j.coph.2015.04.003
- Chen TH, Koh KY, Lin KM, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci. 2022;23(21):12926. doi: 10.3390/ijms232112926
- Li W, Sang H, Xu X, et al. Protective effect of dihydromyricetin on vascular smooth muscle cell apoptosis induced by hydrogen peroxide in rats. Perfusion. 2023;38(3):491–500. doi: 10.1177/02676591211059901
- Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol. 2023;60(10):5805–5837. doi: 10.1007/s12035-023-03433-5.
- Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J. 2022;289(22):7075–7112. doi: 10.1111/febs.16241
- Mailloux RJ. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants (Basel). 2020;9(6):472. doi: 10.3390/antiox9060472
- Napolitano G, Fasciolo G, Venditti P. Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel). 2021;10(11):1824. doi: 10.3390/antiox10111824
- Collins KH, Herzog W, MacDonald GZ, et al. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front Physiol. 2018;9:112. doi: 10.3389/fphys.2018.00112
- Jin JY, Wei XX, Zhi XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2021;42(5):655–664. doi: 10.1038/s41401-020-00518-y
- Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett. 2021;595(8):1184–1204. doi: 10.1002/1873-3468.14077
- Berns SA, Sheptulina AF, Mamutova EM, et al. Sarcopenic obesity: epidemiology, pathogenesis and diagnostic criteria. Cardiovascular Therapy and Prevention. 2023;22(6):3576. (In Russ.) doi: 10.15829/1728-8800-2023-3576 EDN: OWOAYO
- Abrigo J, Rivera JC, Aravena J, et al. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis. Oxid Med Cell Longev. 2016;2016:9047821. doi: 10.1155/2016/9047821
- Reynaud O, Wang J, Ayoub MB, et al. The impact of high-fat feeding and parkin overexpression on skeletal muscle mass, mitochondrial respiration, and H2O2 emission. Am J Physiol Cell Physiol. 2023;324(2):C366–C376. doi: 10.1152/ajpcell.00388.2022
- Larsson L, Degens H, Li M, et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019;99(1):427–511. doi: 10.1152/physrev.00061.2017
- Merz KE, Thurmond DC. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr Physiol. 2020;10(3):785–809. doi: 10.1002/cphy.c190029
- Ou MY, Zhang H, Tan PC, et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4):300. doi: 10.1038/s41419-022-04752-6
- Dungan CM, Li J, Williamson DL. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids. 2016;51(8):905–12. doi: 10.1007/s11745-016-4168-3
- Sishi B, Loos B, Ellis B, et al. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol. 2011;96(2):179–93. doi: 10.1113/expphysiol.2010.054189
- Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8(1):e54059. doi: 10.1371/journal.pone.0054059
- Turpin SM, Lancaster GI, Darby I, et al. Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab. 2006;291(6):E1341–50. doi: 10.1152/ajpendo.00095.2006
- Peterson JM, Bryner RW, Alway SE. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading. Am J Physiol Cell Physiol. 2008;295(2):C521–8. doi: 10.1152/ajpcell.00073.2008
- Peterson JM, Bryner RW, Sindler A, et al. Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise. J Appl Physiol (1985). 2008;105(6):1934–43. doi: 10.1152/japplphysiol.00037.2008
- Romantsova TR, Sych YuP. Immunometabolism and metainflammation in obesity. Obesity and metabolism. 2019;16(4):3–17. doi: 10.14341/omet12218 EDN: GIFRWJ
- Vazeille E, Slimani L, Claustre A, et al. Curcumin treatment prevents increased proteasome and apoptosome activities in rat skeletal muscle during reloading and improves subsequent recovery. J Nutr Biochem. 2012;23(3):245–51. doi: 10.1016/j.jnutbio.2010.11.021
- Lee DY, Chun YS, Kim JK, et al. Curcumin Attenuates Sarcopenia in Chronic Forced Exercise Executed Aged Mice by Regulating Muscle Degradation and Protein Synthesis with Antioxidant and Anti-inflammatory Effects. J Agric Food Chem. 2021;69(22):6214–6228. doi: 10.1021/acs.jafc.1c00699
- Sin TK, Yu AP, Yung BY, et al. Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle. Acta Diabetol. 2015;52(6):1063–75. doi: 10.1007/s00592-015-0767-3
- Wu J-P. Resveratrol attenuates obesity- and aging-induced sarcopenia mitochondrial dysfunction in mice skeletal muscle. FASEB J. 2020;34(S1):1–1. doi: 10.1096/fasebj.2020.34.s1.00044
- Wang D, Sun H, Song G, et al. Resveratrol Improves Muscle Atrophy by Modulating Mitochondrial Quality Control in STZ-Induced Diabetic Mice. Mol Nutr Food Res. 2018;62(9):e1700941. doi: 10.1002/mnfr.201700941
- Aslan A, Beyaz S, Gok O, Erman O. The effect of ellagic acid on caspase-3/bcl-2/Nrf-2/NF-kB/TNF-α /COX-2 gene expression product apoptosis pathway: a new approach for muscle damage therapy. Mol Biol Rep. 2020;47(4):2573–2582. doi: 10.1007/s11033-020-05340-7
- Wang D, Yang Y, Zou X, et al. Antioxidant Apigenin Relieves Age-Related Muscle Atrophy by Inhibiting Oxidative Stress and Hyperactive Mitophagy and Apoptosis in Skeletal Muscle of Mice. J Gerontol A Biol Sci Med Sci. 2020;75(11):2081–2088. doi: 10.1093/gerona/glaa214
- Le NH, Kim CS, Park T, et al. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm. 2014;2014:834294. doi: 10.1155/2014/834294
- Chen C, Yang JS, Lu CC, et al. Effect of Quercetin on Dexamethasone-Induced C2C12 Skeletal Muscle Cell Injury. Molecules. 2020;25(14):3267. doi: 10.3390/molecules25143267
- Tabata S, Aizawa M, Kinoshita M, et al. The influence of isoflavone for denervation-induced muscle atrophy. Eur J Nutr. 2019;58(1):291–300. doi: 10.1007/s00394-017-1593-x
- Mallardo M, Daniele A, Musumeci G, Nigro E. A Narrative Review on Adipose Tissue and Overtraining: Shedding Light on the Interplay among Adipokines, Exercise and Overtraining. Int J Mol Sci. 2024;25(7):4089. doi: 10.3390/ijms25074089
- Taherkhani S, Valaei K, Arazi H, Suzuki K. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel). 2021;10(10):1528. doi: 10.3390/antiox10101528
- Nikawa T, Ulla A, Sakakibara I. Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules. 2021;26(16):4887. doi: 10.3390/molecules26164887
- Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32. doi: 10.3390/ijms12053117
- Heo JW, No MH, Cho J, et al. Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice. FASEB J. 2021;35(2):e21340. doi: 10.1096/fj.202002394R
- Kim HJ, Kwon O. Aerobic exercise prevents apoptosis in skeletal muscles of high-fat-fed ovariectomized rats. Phys Act Nutr. 2022;26(2):1–7. doi: 10.20463/pan.2022.0007
- Cho DK, Choi DH, Cho JY. Effect of treadmill exercise on skeletal muscle autophagy in rats with obesity induced by a high-fat diet. J Exerc Nutrition Biochem. 2017;21(3):26–34. doi: 10.20463/jenb.2017.0013
- Lee SD, Shyu WC, Cheng IS, et al. Effects of exercise training on cardiac apoptosis in obese rats. Nutr Metab Cardiovasc Dis. 2013;23(6):566–73. doi: 10.1016/j.numecd.2011.11.002
- Pattanakuhar S, Sutham W, Sripetchwandee J, et al. Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese-insulin resistant rats. Nutrition. 2019;62:74–84. doi: 10.1016/j.nut.2018.11.031
- Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol. 2010;45(2):138–48. doi: 10.1016/j.exger.2009.11.002
- Di Meo S, Napolitano G, Venditti P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int J Mol Sci. 2019;20(12):3024. doi: 10.3390/ijms20123024
- Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential. Neurochem Res. 2021;46(12):3103–3122. doi: 10.1007/s11064-021-03418-7
- Veras ASC, Correia RR, Batista VRG, et al. Aerobic physical exercise modifies the prostate tumoral environment. Life Sci. 2023;332:122097. doi: 10.1016/j.lfs.2023.122097
- Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci. 2019;20(10):2451. doi: 10.3390/ijms20102451
- Yan Z, Lira VA, Greene NP. Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev. 2012;40(3):159–64. doi: 10.1097/JES.0b013e3182575599
- Forbes-Hernández TY, Giampieri F, Gasparrini M, et al. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol. 2014;68:154–82. doi: 10.1016/j.fct.2014.03.017
- Slavin MB, Khemraj P, Hood DA. Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomed J. 2024;47(1):100636. doi: 10.1016/j.bj.2023.100636
- Shehata AH, Anter AF, Ahmed AF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci. 2023;58(10):4211–4235. doi: 10.1111/ejn.16167
- Yang L, Liu D, Jiang S, et al. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed Pharmacother. 2024;177:116917. doi: 10.1016/j.biopha.2024.116917
- Zhang T, Xu L, Guo X, et al. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal. 2024;14(2):157–176. doi: 10.1016/j.jpha.2023.09.001
Supplementary files
