Effectiveness of application of therapeutic physical factors in osteoarthritis from the perspective of evidence-based medicine (scientific review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Osteoarthritis is a widespread and devastating disease that leads to pain, reduced quality of life and high healthcare costs. Much practical experience has been accumulated in the use of physical factors for osteoarthritis. A large number of publications, including randomized clinical trials, systematic reviews, and meta-analyses, have been devoted to analyzing the evidence for the effectiveness of physical therapy in osteoarthritis.

We analyzed scientific and technical literature sources, including randomized clinical trials, meta-analyses and systematic reviews (search depth 20 years) on the issues of evaluating the efficacy of physical therapy (ultrasound therapy, laser therapy, electrical stimulation, cryotherapy, balneotherapy and mud treatment) in patients with osteoarthritis.

In 4 systematic reviews with meta-analysis (51 studies, 2772 patients), 1 Cochrane review (341 patients) and 3 randomized clinical trials (250 patients) it was shown that the use of ultrasound therapy in both continuous and pulsed modes in patients with osteoarthritis of the knee joint can significantly reduce the severity of pain and increase the range of active movements in the diseased joint. According to the results of systematic reviews, including meta-analysis (122 studies) and 9 randomized clinical trials (369 patients), the use of percutaneous electroneuromyostimulation in patients with osteoarthritis of the knee joint can be considered as an optimal method of non-drug therapy in terms of achieving significant analgesia in the short term. Data from 4 randomized clinical trials (414 patients) and 1 Cochrane review (3 randomized clinical trials, 179 patients) proved that the use of cryotherapy in patients with osteoarthritis of the knee joint leads to a significant reduction in the intensity of pain sensations in the affected joint, while the achieved analgesic effect is maintained for the next 3 months. The use of sulfur-containing and sodium chloride mineral waters (4 randomized clinical trials, 325 patients and systematic reviews, including meta-analysis (42 randomized clinical trials, 1766 patients), as well as peloid therapy (5 randomized clinical trials, 370 patients) in patients with osteoarthritis of the knee joint contributes to a decrease in the severity of pain, increases the functional activity of knee joints, as well as the quality of life of patients.

Full Text

Restricted Access

About the authors

Elena V. Titskaya

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology

Author for correspondence.
Email: doctor.tizkaya@gmail.com
ORCID iD: 0000-0001-9830-6144

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Natalia F. Miryutova

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology

Email: miryutovanf@niikf.tomsk.ru
ORCID iD: 0000-0002-4046-4008

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Nazim G. Badalov

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology

Email: prof.badalov@gmail.com
ORCID iD: 0000-0002-1407-3038

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Elena V. Gameeva

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology

Email: gameeva@yandex.ru
ORCID iD: 0000-0002-8509-4338

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Aleksandra M. Stepanova

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology

Email: stepanovas@list.ru
ORCID iD: 0000-0001-8085-8645

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293-311. doi: 10.1016/j.mcna.2019.10.007
  2. Hall M, van der Esch M, Hinman RS, et al. How does hip osteoarthritis differ from knee osteoarthritis? Osteoarthritis Cartilage. 2022;30(1):32-41. doi: 10.1016/j.joca.2021.09.010
  3. Molnar V, Matišić V, Kodvanj I, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 2021;22(17):9208. doi: 10.3390/ijms22179208
  4. Bliddal H. Definition, pathology and pathogenesis of osteoarthritis. (Danish). Ugeskr Laeger. 2020;182(42):V06200477.
  5. Wang LJ, Zeng N, Yan ZP, et al. Post-traumatic osteoarthritis following ACL injury. Arthritis Res Ther. 2020;22(1):57. doi: 10.1186/s13075-020-02156-5
  6. Sacitharan PK. Ageing and osteoarthritis. Subcell Biochem. 2019;(91):123-159. doi: 10.1007/978-981-13-3681-2_6
  7. Van den Bosch MH. Osteoarthritis year in review 2020: Biology. Osteoarthritis Cartilage. 2021;29(2):143-150. doi: 10.1016/j.joca.2020.10.006
  8. Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 2022;(13):907750. doi: 10.3389/fimmu.2022.907750
  9. Jiang Y. Osteoarthritis year in review 2021: Biology. Osteoarthritis Cartilage. 2022;30(2):207-215. doi: 10.1016/j.joca.2021.11.009
  10. Uryasiev OM, Zaigrova NK. Osteoarthritis: Pathogenesis, diagnostics, therapy. Zemsky doctor. 2016;(1-2):27-35. EDN: VWGTPB
  11. Draper DO, Klyve D, Ortiz R, Best TM. Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: A randomized, placebo-controlled double-blind study. J Orthop Surg Res. 2018;13(1):257. doi: 10.1186/s13018-018-0965-0
  12. Philadelphia Panel. Philadelphia Panel evidence-based clinical practice guidelines on selected rehabilitation interventions for knee pain. Phys Ther. 2001;81(10):1675-1700.
  13. Maraver F, Armijo F, Fernandez-Toran MA, et al. Peloids as thermotherapeutic agents. Int J Environ Res Public Health. 2021;18(4):1965. doi: 10.3390/ijerph18041965
  14. Antonelli M, Donelli D, Fioravanti A. Effects of balneotherapy and SPA therapy on quality of life of patients with knee osteoarthritis: A systematic review and meta-analysis. Rheumatol Int. 2018;38(10):1807-1824. doi: 10.1007/s00296-018-4081-6
  15. Vaca-González JJ, Guevara JM, Moncayo MA, et al. Biophysical stimuli: A review of electrical and mechanical stimulation in hyaline cartilage. Cartilage. 2019;10(2):157-172. doi: 10.1177/1947603517730637
  16. Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: A systematic review. J Athl Train. 2014;49(3):411-421. doi: 10.4085/1062-6050-49.1.04
  17. Kunkle BF, Kothandaraman V, Goodloe JB, et al. Orthopaedic application of cryotherapy: A comprehensive review of the history, basic science, methods, and clinical effectiveness. JBJS Rev. 2021;9(1):e20.00016. doi: 10.2106/JBJS.RVW.20.00016
  18. Wu Y, Zhu S, Lv Z, et al. Effects of therapeutic ultrasound for knee osteoarthritis: A systematic review and meta-analysis. Clin Rehabil. 2019;33(12):1863-1875. doi: 10.1177/0269215519866494
  19. Liu Y, Wang Y, Wang Y, Jia X. A meta-analysis of analgesic effect of ultrasound therapy for patients with knee osteoarthritis. J Ultrasound Med. 2022;41(8):1861-1872. doi: 10.1002/jum.15866
  20. Zeng C, Li H, Yang T, et al. Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: A systematic review and network meta-analysis. Osteoarthritis Cartilage. 2014;22(8):1090-1099. doi: 10.1016/j.joca.2014.06.028
  21. Cakir S, Hepguler S, Ozturk C, et al. Efficacy of therapeutic ultrasound for the management of knee osteoarthritis: A randomized, controlled, and double-blind study. Am J Phys Med Rehabil. 2014;93(5):405-412. doi: 10.1097/PHM.0000000000000033
  22. Zhou XY, Zhang XX, Yu GY, et al. Effects of low-intensity pulsed ultrasound on knee osteoarthritis: A meta-analysis of randomized clinical trials. Biomed Res Int. 2018;2018:7469197. doi: 10.1155/2018/7469197
  23. Alfredo PP, Junior WS, Casarotto RA. Efficacy of continuous and pulsed therapeutic ultrasound combined with exercises for knee osteoarthritis: A randomized controlled trial. Clin Rehabil. 2020;34(4):480-490. doi: 10.1177/0269215520903786
  24. Rutjes AW, Nüesch E, Sterchi R, Jüni P. Therapeutic ultrasonography of knee or hip osteoarthritis. Cochrane Database System Rev. 2010;(1):CD003132. doi: 10.1002/14651858.CD003132.pub2
  25. Yang FA, Chen HL, Peng CW, et al. A systematic review and meta-analysis of the effect of phonophoresis on patients with knee osteoarthritis. Sci Rep. 2022;12(1):12877. doi: 10.1038/s41598-022-16084-8
  26. Kozanoglu E, Basaran S, Guzel R, Guler-Uysal F. Short term efficacy of ibuprofen phonophoresis versus continuous ultrasound therapy in knee osteoarthritis. Swiss Med Wkly. 2003;133(23-24):333-338. doi: 10.4414/smw.2003.10210
  27. Martin-Vega FJ, Lucena-Anton D, Galán-Mercant A, et al. Phonophoresis through nonsteroidal anti-inflammatory drugs for knee osteoarthritis treatment: Systematic review and meta-analysis. Biomedicines. 2022;10(12):3254. doi: 10.3390/biomedicines10123254
  28. Luksurapan W, Boonhong J. Effects of phonophoresis of piroxicam and ultrasound on symptomatic knee osteoarthritis. Arch Phys Med Rehabil. 2013;94(2):250-255. doi: 10.1016/j.apmr.2012.09.025
  29. Zeng C, Li H, Yang T, et al. Electrical stimulation for pain relief in knee osteoarthritis: Systematic review and network meta-analysis. Osteoarthritis Cartilage. 2015;23(2):189-202. doi: 10.1016/j.joca.2014.11.014
  30. Wu Y, Zhu F, Chen W, Zhang M. Effects of transcutaneous electrical nerve stimulation (TENS) in people with knee osteoarthritis: A systematic review and meta-analysis. Clin Rehabil. 2022;36(4):472-485. doi: 10.1177/02692155211065636
  31. Novak S, Guerron G, Zou Z, et al. New guidelines for electrical stimulation parameters in adult patients with knee osteoarthritis based on a systematic review of the current literature. Am J Phys Med Rehabil. 2020;99(8):682-688. doi: 10.1097/PHM.0000000000001409
  32. Shi X, Yu W, Zhang W, et al. A comparison of the effects of electroacupuncture versus transcutaneous electrical nerve stimulation for pain control in knee osteoarthritis: A Bayesian network meta-analysis of randomized controlled trials. Acupunct Med. 2021;39(3):163-174. doi: 10.1177/096452842092119
  33. Chen LX, Zhou ZR, Li YL, et al. Transcutaneous electrical nerve stimulation in patients with knee osteoarthritis: Evidence from randomized-controlled trials. Clin J Pain. 2016;32(2):146-154. doi: 10.1097/AJP.0000000000000233
  34. Cherian JJ, Jauregui JJ, Leichliter AK, et al. The effects of various physical non-operative modalities on the pain in osteoarthritis of the knee. Bone Joint J. 2016;98-B(1, Suppl A):89-94. doi: 10.1302/0301-620X.98B1.36353
  35. Iijima H, Eguchi R, Shimoura K, et al. Transcutaneous electrical nerve stimulation improves stair climbing capacity in people with knee osteoarthritis. Sci Rep. 2020;10(1):7294. doi: 10.1038/s41598-020-64176-0
  36. Shimoura K, Iijima H, Suzuki Y, Aoyama T. Immediate effects of transcutaneous electrical nerve stimulation on pain and physical performance in individuals with preradiographic knee osteoarthritis: A randomized controlled trial. Arch Phys Med Rehabil. 2019;100(2):300-306.e1. doi: 10.1016/j.apmr.2018.08.189
  37. Sajadi S, Karimi M, Forogh B, et al. Randomized clinical trial comparing of transcranial direct current stimulation (tDCS) and transcutaneous electrical nerve stimulation (TENS) in knee osteoarthritis. Neurophysiol Clin. 2020;50(5):367-374. doi: 10.1016/j.neucli.2020.08.005
  38. Cherian JJ, Kapadia BH, Bhave A, et al. Use of transcutaneous electrical nerve stimulation device in early osteoarthritis of the knee. J Knee Surg. 2015;28(4):321-327. doi: 10.1055/s-0034-1389160
  39. Dasa V, Skrepnik NV, Petersen D, Delanois RE. A novel mobile app-based neuromuscular electrical stimulation therapy for the management of knee osteoarthritis: Results from an extension study of a randomized, double-blind, sham-controlled, multicenter trial. J Am Acad Orthop Surg Glob Res Rev. 2022;6(9):e22.00115. doi: 10.5435/JAAOSGlobal-D-22-00115
  40. Cherian JJ, Harrison PE, Benjamin SA, et al. Do the effects of transcutaneous electrical nerve stimulation on knee osteoarthritis pain and function last? J Knee Surg. 2016;29(6):497-501. doi: 10.1055/s-0035-1566735
  41. De Oliveira Melo M, Pompeo KD, Baroni BM, Vaz MA. Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: A randomized trial. J Rehabil Med. 2016;48(3):293-299. doi: 10.2340/16501977-2062
  42. Laufer Y, Shtraker H, Elboim Gabyzon M. The effects of exercise and neuromuscular electrical stimulation in subjects with knee osteoarthritis: A 3-month follow-up study. Clin Interv Aging. 2014;(9):1153-1161. doi: 10.2147/CIA.S64104
  43. Chen WL, Hsu WC, Lin YJ, Hsieh LF. Comparison of intra-articular hyaluronic acid injections with transcutaneous electric nerve stimulation for the management of knee osteoarthritis: A randomized controlled trial. Arch Phys Med Rehabil. 2013;94(8):1482-1489. doi: 10.1016/j.apmr.2013.04.009
  44. Devrimsel G, Metin Y, Serdaroglu Beyazal M. Short-term effects of neuromuscular electrical stimulation and ultrasound therapies on muscle architecture and functional capacity in knee osteoarthritis: A randomized study. Clin Rehabil. 2019;33(3):418-427. doi: 10.1177/0269215518817807
  45. Woods B, Manca A, Weatherly H, et al. Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee. PLoS One. 2017;12(3):e0172749. doi: 10.1371/journal.pone.0172749
  46. Zhang Q, Zhang JH, Tong PJ. [Application of transcutaneous electrical nerve stimulation to multimodal analgesia after total knee arthroplasty. (Chinese)]. Zhongguo Gu Shang. 2014;27(4):283-286.
  47. Peng L, Wang K, Zeng Y, et al. Effect of neuromuscular electrical stimulation after total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne). 2021;(8):779019. doi: 10.3389/fmed.2021.779019
  48. Klika AK, Yakubek G, Piuzzi N, et al. Neuromuscular electrical stimulation use after total knee arthroplasty improves early return to function: A randomized trial. J Knee Surg. 2022;35(1):104-111. doi: 10.1055/s-0040-1713420
  49. Kim B, Lohman E, Yim J. Acupuncture-like transcutaneous electrical nerve stimulation for pain, function, and biochemical inflammation after total knee arthroplasty. Altern Ther Health Med. 2021;27(1):28-34.
  50. Yoshida Y, Ikuno K, Shomoto K. Comparison of the effect of sensory-level and conventional motor-level neuromuscular electrical stimulations on quadriceps strength after total knee arthroplasty: A prospective randomized single-blind trial. Arch Phys Med Rehabil. 2017;98(12):2364-2370. doi: 10.1016/j.apmr.2017.05.005
  51. Stevens-Lapsley JE, Balter JE, Wolfe P, et al. Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: A randomized controlled trial. Phys Ther. 2012;92(2):210-226. doi: 10.2522/ptj.20110124
  52. Radnovich R, Scott D, Patel AT, et al. Cryoneurolysis to treat the pain and symptoms of knee osteoarthritis: A multicenter, randomized, double-blind, sham-controlled trial. Osteoarthritis Cartilage. 2017;25(8):1247-1256. doi: 10.1016/j.joca.2017.03.006
  53. Brosseau L, Yonge KA, Welch V, et al. Thermotherapy for the treatment of osteoarthritis. Cochrane Database of Systematic Reviews. 2003;(4):CD004522. doi: 10.1002/14651858
  54. Aciksoz S, Akyuz A, Tunay S. The effect of self-administered superficial local hot and cold application methods on pain, functional status and quality of life in primary knee osteoarthritis patients. J Clin Nurs. 2017;26(23-24):5179-5190. doi: 10.1111/jocn.14070
  55. Sari Z, Aydoğdu O, Demirbüken İ, et al. A better way to decrease knee swelling in patients with knee osteoarthritis: A single-blind randomised controlled trial. Pain Res Manag. 2019;2019:8514808. doi: 10.1155/2019/8514808
  56. Mohammed Sadiq HA, Rasool MT. Effectiveness of home-based conventional exercise and cryotherapy on daily living activities in patients with knee osteoarthritis: A randomized controlled clinical trial. Medicine (Baltimore). 2023;102(18):e33678. doi: 10.1097/MD.0000000000033678
  57. Wyatt PB, Nelson CT, Cyrus JW, et al. The role of cryotherapy after total knee arthroplasty: A systematic review. J Arthroplasty. 2023;38(5):950-956. doi: 10.1016/j.arth.2022.12.004
  58. Brouwers HF, de Vries AJ, van Zuilen M, et al. The role of computer-assisted cryotherapy in the postoperative treatment after total knee arthroplasty: Positive effects on pain and opioid consumption. Knee Surg Sports Traumatol Arthrosc. 2022;30(8):2698-2706. doi: 10.1007/s00167-021-06568-x
  59. Thijs E, Schotanus MG, Bemelmans YF, Kort NP. Reduced opiate use after total knee arthroplasty using computer-assisted cryotherapy. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1204-1212. doi: 10.1007/s00167-018-4962-y
  60. Chen MC, Lin CC, Ko JY, Kuo FC. The effects of immediate programmed cryotherapy and continuous passive motion in patients after computer-assisted total knee arthroplasty: A prospective, randomized controlled trial. J Orthop Surg Res. 2020;15(1):379. doi: 10.1186/s13018-020-01924-y
  61. Branco M, Rêgo NN, Silva PH, et al. Bath thermal waters in the treatment of knee osteoarthritis: A randomized controlled clinical trial. Eur J Phys Rehabil Med. 2016;52(4):422-430.
  62. Kulisch Á, Benkö Á, Bergmann A, et al. Evaluation of the effect of Lake Hévíz thermal mineral water in patients with osteoarthritis of the knee: A randomized, controlled, single-blind, follow-up study. Eur J Phys Rehabil Med. 2014;50(4):373-381.
  63. Horváth K, Kulisch Á, Németh A, Bender T. Evaluation of the effect of balneotherapy in patients with osteoarthritis of the hands: A randomized controlled single-blind follow-up study. Clin Rehabil. 2012;26(5):431-441. doi: 10.1177/0269215511425961
  64. Varzaityte L, Kubilius R, Rapoliene L, et al. The effect of balneotherapy and peloid therapy on changes in the functional state of patients with knee joint osteoarthritis: A randomized, controlled, single-blind pilot study. Int J Biometeorol. 2020;64(6):955-964. doi: 10.1007/s00484-019-01785-z
  65. Ma T, Song X, Ma Y, et al. The effect of thermal mineral waters on pain relief, physical function and quality of life in patients with osteoarthritis: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(4):e24488. doi: 10.1097/MD.0000000000024488
  66. Harzy T, Ghani N, Akasbi N, et al. Short- and long-term therapeutic effects of thermal mineral waters in knee osteoarthritis: A systematic review of randomized controlled trials. Clin Rheumatol. 2009;28(5):501-507. doi: 10.1007/s10067-009-1114-2
  67. Pascarelli NA, Cheleschi S, Bacaro G, et al. Effect of mud-bath therapy on serum biomarkers in patients with knee osteoarthritis: Results from a randomized controlled trial. Isr Med Assoc J. 2016;18(3-4):232-237.
  68. Fioravanti A, Bacaro G, Giannitti C, et al. One-year follow-up of mud-bath therapy in patients with bilateral knee osteoarthritis: A randomized, single-blind controlled trial. Int J Biometeorol. 2015;59(9):1333-1343. doi: 10.1007/s00484-014-0943-0
  69. Aksoy KM, Altan L, Eröksüz R, Ökmen MB. The efficacy of peloid therapy in management of hand osteoarthritis: A pilot study. Int J Biometeorol. 2017;61(12):2145-2152. doi: 10.1007/s00484-017-1419-9
  70. Gouvêa PF, Britschka ZM, Gomes CO, et al. Evaluation of the use of sterilized and non-sterilized peruibe black mud in patients with knee osteoarthritis. Int J Environ Res Public Health. 2021;18(4):1666. doi: 10.3390/ijerph18041666
  71. Király M, Kővári E, Hodosi K, et al. The effects of tiszasüly and kolop mud pack therapy on knee osteoarthritis: A double-blind, randomised, non-inferiority controlled study. Int J Biometeorol. 2020;64(6):943-950. doi: 10.1007/s00484-019-01764-4
  72. Ciani O, Pascarelli NA, Giannitti C, et al. Mud-bath therapy in addition to usual care in bilateral knee osteoarthritis: An economic evaluation alongside a randomized controlled trial. Arthritis Care Res (Hoboken). 2017;69(7):966-972. doi: 10.1002/acr.23116
  73. Liu H, Zeng C, Gao SG, et al. The effect of mud therapy on pain relief in patients with knee osteoarthritis: A meta-analysis of randomized controlled trials. J Int Med Res. 2013;41(5):1418-1425. doi: 10.1177/0300060513488509
  74. Hou C, Liang L, Chu X, et al. The short-term efficacy of mud therapy for knee osteoarthritis: A meta-analysis. Medicine (Baltimore). 2020;99(17):e19761. doi: 10.1097/MD.0000000000019761
  75. Espejo-Antúnez L, Cardero-Durán MA, Garrido-Ardila EM, et al. Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology (Oxford). 2013;52(4):659-668. doi: 10.1093/rheumatology/kes322
  76. Morer C, Roques CF, Françon A, et al. The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int J Biometeorol. 2017;61(12):2159-2173. doi: 10.1007/s00484-017-1421-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies