Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Osteoporosis is a common musculoskeletal disease with significant complications that can become a global public health problem and a major cause of death and morbidity.

AIM: The present study aimed to determine the effect of pulsed magnetotherapy, aerobic exercise, and a combination of both methods on postmenopausal women with osteoporosis.

MATERIALS AND METHODS: The randomized clinical trial included 45 patients with osteoporosis aged 60 to 65 years who had menopause at least 6 months ago and had been sedentary for at least 6 months. Patients were randomly divided into 3 equal groups. Group A (magnetic therapy group): received standard treatment (bisphosphonates, calcium and vitamin D) in addition to pulsed magnetic therapy in the hip area for 12 weeks (3 sessions per week). Group B (exercise group): received conventional treatment plus moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Group C (combined magnetic therapy and exercise therapy group): received standard medical treatment plus pulsed magnetic therapy and moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Bone mineral density was assessed in three groups at baseline by dual-energy X-ray absorptiometry and after 12 weeks of treatment.

RESULTS: The results showed that intragroup analysis revealed a statistically significant increase (p <0.05) in bone mineral density in the 3 study groups. Comparison of the results among the 3 tested groups revealed a significant increase (p <0.05) in mean post-test bone mineral density values in group C compared to group A and group B. There was no significant statistical difference in mean bone mineral density between the two groups A and B after testing.

CONCLUSION: The combination of pulsed magnetotherapy and moderate-intensity aerobic exercise showed a significant improvement in hip bone mineral density compared with either method alone.

Full Text

Restricted Access

About the authors

Yury Y. Byalovsky

Ryazan State Medical University

Author for correspondence.
Email: b_uu@mail.ru
ORCID iD: 0000-0002-6769-8277
SPIN-code: 6389-6643

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

Aleksey V. Ivanov

Yelatma Instrument Making Enterprise

Email: ivanov@elamed.com
ORCID iD: 0000-0001-5961-892X
SPIN-code: 4597-8537
Russian Federation, Yelatma

Irina S. Rakitina

Ryazan State Medical University

Email: rakitina62@gmail.com
ORCID iD: 0000-0002-9406-1765
SPIN-code: 8427-9471

MD, Cand. Sci. (Med.), Associated Professor

Russian Federation, Ryazan

References

  1. Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85–102. doi: 10.1007/s11739-018-1874-2
  2. Harvey NC, Dennison E, Cooper C. Osteoporosis: Impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105. doi: 10.1038/nrrheum.2009.260
  3. Legrand MA, Chapurlat R. Imminent fracture risk. Joint Bone Spine. 2021;88(3):105105. doi: 10.1016/j.jbspin.2020.105105
  4. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. WHO; 1994. Available from: https://apps.who.int/iris/handle/10665/39142. Accessed: 15.12.2022.
  5. Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–445. doi: 10.1016/j.jsams.2016.10.001
  6. Khosla S, Shane EA. Crisis in the treatment of osteoporosis. J Bone Miner Res. 2016;31(8):1485–1487. doi: 10.1002/jbmr.2888
  7. Sallis R. Exercise is medicine: A call to action for physicians to assess and prescribe exercise. Phys Sportsmed. 2015;43(1):22–26. doi: 10.1080/00913847.2015.1001938
  8. Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local production with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113–119. doi: 10.1002/bem.20535
  9. Duncan R, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57(5):344–358. doi: 10.1007/BF00302070
  10. Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;(24):278–291. doi: 10.22203/ecm.v024a20
  11. McMillan LB, Zengin A, Ebeling PR, Scott D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare (Basel). 2017;5(4):85. doi: 10.3390/healthcare5040085
  12. Wu S, Yu Q, Lai A, Tian J. Pulsed electromagnetic field induces Ca2+ dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway. Biochem Biophys Res Commun. 2018;503(2):715–721. doi: 10.1016/j.bbrc.2018.06.066
  13. Jansen JH, van der Jagt OP, Punt BJ, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskelet Disord. 2010;(11):188. doi: 10.1186/1471-2474-11-188
  14. Mirkovic VB, Banjac L, Dasic Z, Dapcevic M. Non-pharmacological treatment of diabetic polyneuropathy by pulse electromagnetic field. Health Med. 2012;6(4):1291–1295.
  15. Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014;35(6):396–405. doi: 10.1002/bem.21855
  16. Tu KN, Lie JD, Wan CK, et al. Osteoporosis: A review of treatment options. Pharm Ther. 2018;43(2):92.
  17. Watts NB, Camacho PM, Lewiecki EM, Petak SM. American Association of Clinical Endocrinologists / American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;27(4):379–380. doi: 10.1016/j.eprac.2021.02.001
  18. Doroudinia A, Colletti PM. Bone mineral measurements. Clin Nucl Med. 2015;40(8):647–657. doi: 10.1097/RLU.0000000000000860
  19. Byalovsky YY, Ivanov AV, Rakitina IS. Effects of a pulsed electromagnetic field on the course of osteoporosis in postmenopausal women. Russ J Physial Therapy, Balneotherapy Rehabilitation. 2021;20(5):385–395. (In Russ). doi: 10.17816/rjpbr107453
  20. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: A longitudinal study. Ann Med Exp Bil Fenn. 1957;35(3):307–315.
  21. Alghadir AH, Aly FA, Gabr SA. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pak J Med Sci. 2014;30(4):840–844. doi: 10.12669/pjms.304.4624
  22. Zhu S, He H, Zhang C, et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 2017;38(6):406–624. doi: 10.1002/bem.22065
  23. Petecchia L, Sbrana F, Utzeri R, et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+ related mechanisms. Sci Rep. 2015;(5):13856. doi: 10.1038/srep13856
  24. Vincenzi F, Targa M, Corciulo C, et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8(5):e65561. doi: 10.1371/journal.pone.0065561
  25. Carpenter D, Ayrapntyan S. Biological effects of electric and magnetic fields. San Diego, CA: Academic Press; 2004. Р. 3–7.
  26. Fitzsimmans R, Baylink J. Growth factors and electromagnetic fields in bone. Clin Plast Surg. 1994;21(3):401–406.
  27. Ongaro A, Pellati A, Bagheri L, et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 2014;35(6):426–436. doi: 10.1002/bem.21862
  28. Jing D, Cai J, Shen G, et al. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int. 2011;22(6):1885–1895. doi: 10.1007/s00198-010-1447-3
  29. Fu YC, Lin CC, Chang JK, et al. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS One. 2014;9(4):e91581. doi: 10.1371/journal.pone.0091581
  30. Van der Jagt OP, van der Linden JC, Schaden W, et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis. J Orthop Res. 2009;27(11):1528–1533. doi: 10.1002/jor.20910
  31. Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;(56):1–54. doi: 10.1016/b978-0-12-394317-0.00015-7
  32. Gonzalez-Aguero A, Vicente-Rodriguez G, Gomez-Cabello A, et al. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome. Dev Med Child Neurol. 2012;54(6):552–556. doi: 10.1111/j.1469-8749.2012.04262.x
  33. Rossouw J, Anderson G, Prentice R, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. doi: 10.1001/jama.288.3.321
  34. Neil D, Ronald C. Resistance training and type 2 diabetes considerations for implementation at the population level. Diabetes Care. 2006;29(8):1933–1941. doi: 10.2337/dc05-1981
  35. Beekley MD, Sato Y, Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men. Int J KAATSU Train Res. 2005;1(2):77–81. doi: 10.3806/ijktr.1.77
  36. Pourvaghar MJ. The effect of 2 month-regular aerobic training on students’ rest time serum calcium, phosphorus and magnesium variations. Gazzeta Medica Italiana. 2008;167(3):105–108.
  37. Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporos Int. 2006;17(8):1225–1240. doi: 10.1007/s00198-006-0083-4
  38. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521–531. doi: 10.1016/j.bone.2008.05.012
  39. Chodzko-Zajko W, Proctor D, Fiatarone Singh M, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c
  40. Marques E, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age. 2012;34(6):1493–1515. doi: 10.1007/s11357-011-9311-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies