Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming

  • Authors: Zhang K.1, Cai W.2, Hu L.1, Chen S.3
  • Affiliations:
    1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science
    2. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center,, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,
    3. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center,, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science
  • Issue: Vol 19, No 9 (2024)
  • Pages: 1251-1262
  • Section: Medicine
  • URL: https://rjpbr.com/1574-888X/article/view/645930
  • DOI: https://doi.org/10.2174/011574888X255496230923164547
  • ID: 645930

Cite item

Full Text

Abstract

:Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.

About the authors

Ke Zhang

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science

Email: info@benthamscience.net

Wenwen Cai

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center,, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,

Email: info@benthamscience.net

Leyi Hu

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science

Email: info@benthamscience.net

Shuyi Chen

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center,, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science

Author for correspondence.
Email: info@benthamscience.net

References

  1. Assi L, Chamseddine F, Ibrahim P, et al. A global assessment of eye health and quality of life. JAMA Ophthalmol 2021; 139(5): 526-41. doi: 10.1001/jamaophthalmol.2021.0146 PMID: 33576772
  2. Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: Vision beyond 2020. Lancet Glob Health 2021; 9(4): e489-551. doi: 10.1016/S2214-109X(20)30488-5 PMID: 33607016
  3. Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7(1): 31. doi: 10.1038/s41572-021-00265-2 PMID: 33958600
  4. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet 2017; 390(10108): 2183-93. doi: 10.1016/S0140-6736(17)31469-1 PMID: 28577860
  5. German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13(10): 1446-79. doi: 10.4252/wjsc.v13.i10.1446 PMID: 34786153
  6. Jeon S, Oh IH. Regeneration of the retina: Toward stem cell therapy for degenerative retinal diseases. BMB Rep 2015; 48(4): 193-9. doi: 10.5483/BMBRep.2015.48.4.276 PMID: 25560700
  7. Ramsden CM, Powner MB, Carr AJF, Smart MJK, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: Past, present and future. Development 2013; 140(12): 2576-85. doi: 10.1242/dev.092270 PMID: 23715550
  8. Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75: 100779. doi: 10.1016/j.preteyeres.2019.100779 PMID: 31494256
  9. Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron 2010; 66(1): 15-36. doi: 10.1016/j.neuron.2010.01.018 PMID: 20399726
  10. Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol 2001; 17(1): 255-96. doi: 10.1146/annurev.cellbio.17.1.255 PMID: 11687490
  11. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 2010; 93: 61-84. doi: 10.1016/B978-0-12-385044-7.00003-5 PMID: 20959163
  12. Martinez-Morales JR, Wittbrodt J. Shaping the vertebrate eye. Curr Opin Genet Dev 2009; 19(5): 511-7. doi: 10.1016/j.gde.2009.08.003 PMID: 19819125
  13. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci 1996; 93(2): 589-95. doi: 10.1073/pnas.93.2.589 PMID: 8570600
  14. Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol 2012; 4(12): a008391. doi: 10.1101/cshperspect.a008391 PMID: 23071378
  15. Adler R, Canto-Soler MV. Molecular mechanisms of optic vesicle development: Complexities, ambiguities and controversies. Dev Biol 2007; 305(1): 1-13. doi: 10.1016/j.ydbio.2007.01.045 PMID: 17335797
  16. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001; 105(1): 43-55. doi: 10.1016/S0092-8674(01)00295-1 PMID: 11301001
  17. Horsford DJ, Nguyen MTT, Sellar GC, Kothary R, Arnheiter H, McInnes RR. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 2005; 132(1): 177-87. doi: 10.1242/dev.01571 PMID: 15576400
  18. Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 2004; 15(1): 83-9. doi: 10.1016/j.semcdb.2003.09.005 PMID: 15036211
  19. Harada T, Harada C, Parada LF. Molecular regulation of visual system development: More than meets the eye. Genes Dev 2007; 21(4): 367-78. doi: 10.1101/gad.1504307 PMID: 17322396
  20. Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010; 11(8): 563-76. doi: 10.1038/nrn2880 PMID: 20648062
  21. Mu X, Klein WH. A gene regulatory hierarchy for retinal ganglion cell specification and differentiation. Semin Cell Dev Biol 2004; 15(1): 115-23. doi: 10.1016/j.semcdb.2003.09.009 PMID: 15036214
  22. Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and specification of retinal ganglion cells. Int J Mol Sci 2020; 21(2): 451. doi: 10.3390/ijms21020451 PMID: 31936811
  23. Yang XJ. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol 2004; 15(1): 91-103. doi: 10.1016/j.semcdb.2003.09.004 PMID: 15036212
  24. Kumar JP. Signalling pathways in Drosophila and vertebrate retinal development. Nat Rev Genet 2001; 2(11): 846-57. doi: 10.1038/35098564 PMID: 11715040
  25. Esteve P, Bovolenta P. Secreted inducers in vertebrate eye development: More functions for old morphogens. Curr Opin Neurobiol 2006; 16(1): 13-9. doi: 10.1016/j.conb.2006.01.001 PMID: 16413771
  26. Pittack C, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 1997; 124(4): 805-16. doi: 10.1242/dev.124.4.805 PMID: 9043062
  27. Neumann CJ, Nuesslein-Volhard C. Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000; 289(5487): 2137-9. doi: 10.1126/science.289.5487.2137
  28. Jadhav AP, Cho SH, Cepko CL. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci 2006; 103(50): 18998-9003. doi: 10.1073/pnas.0608155103 PMID: 17148603
  29. Jadhav AP, Mason HA, Cepko CL. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 2006; 133(5): 913-23. doi: 10.1242/dev.02245 PMID: 16452096
  30. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 1981; 78(12): 7634-8. doi: 10.1073/pnas.78.12.7634 PMID: 6950406
  31. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6. doi: 10.1038/292154a0 PMID: 7242681
  32. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7. doi: 10.1126/science.282.5391.1145
  33. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  34. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72. doi: 10.1016/j.cell.2007.11.019 PMID: 18035408
  35. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells Science 2007; 318(5858): 1917-20. doi: 10.1126/science.1151526
  36. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17(3): 183-93. doi: 10.1038/nrm.2016.8
  37. Mertens J, Marchetto MC, Bardy C, Gage FH. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 2016; 17(7): 424-37. doi: 10.1038/nrn.2016.46 PMID: 27194476
  38. Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 2002; 3(4): 271-80. doi: 10.1038/nrn786 PMID: 11967557
  39. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28(1): 31-40. doi: 10.1016/S0896-6273(00)00083-0 PMID: 11086981
  40. Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D. Direct neural fate specification from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001; 30(1): 65-78. doi: 10.1016/S0896-6273(01)00263-X PMID: 11343645
  41. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21(2): 183-6. doi: 10.1038/nbt780 PMID: 12524553
  42. Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19(12): 1134-40. doi: 10.1038/nbt1201-1134 PMID: 11731782
  43. Watanabe K, Kamiya D, Nishiyama A, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005; 8(3): 288-96. doi: 10.1038/nn1402 PMID: 15696161
  44. Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx +/Pax6 + neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci 2005; 102(32): 11331-6. doi: 10.1073/pnas.0500010102 PMID: 16076961
  45. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci 2006; 103(34): 12769-74. doi: 10.1073/pnas.0601990103 PMID: 16908856
  46. Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 2008; 26(2): 215-24. doi: 10.1038/nbt1384 PMID: 18246062
  47. Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 2009; 4(6): 811-24. doi: 10.1038/nprot.2009.51 PMID: 19444239
  48. Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 2009; 122(17): 3169-79. doi: 10.1242/jcs.050393 PMID: 19671662
  49. Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 2009; 458(3): 126-31. doi: 10.1016/j.neulet.2009.04.035 PMID: 19379795
  50. Zhou S, Flamier A, Abdouh M, et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142(19): 3294-306. doi: 10.1242/dev.125385 PMID: 26443633
  51. Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DHW, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 2012; 30(4): 673-86. doi: 10.1002/stem.1037 PMID: 22267304
  52. Hirano M, Yamamoto A, Yoshimura N, et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 2003; 228(4): 664-71. doi: 10.1002/dvdy.10425 PMID: 14648843
  53. Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci 2009; 106(39): 16698-703. doi: 10.1073/pnas.0905245106 PMID: 19706890
  54. Tucker BA, Mullins RF, Streb LM, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. eLife 2013; 2: e00824. doi: 10.7554/eLife.00824 PMID: 23991284
  55. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008; 3(5): 519-32. doi: 10.1016/j.stem.2008.09.002 PMID: 18983967
  56. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472(7341): 51-6. doi: 10.1038/nature09941 PMID: 21475194
  57. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012; 10(6): 771-85. doi: 10.1016/j.stem.2012.05.009 PMID: 22704518
  58. Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014; 345(6194): 1247125.
  59. Schutgens F, Clevers H. Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol 2020; 15(1): 211-34. doi: 10.1146/annurev-pathmechdis-012419-032611 PMID: 31550983
  60. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014; 5(1): 4047. doi: 10.1038/ncomms5047 PMID: 24915161
  61. Capowski EE, Samimi K, Mayerl SJ, et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 2019; 146(1): dev171686. PMID: 30567931
  62. Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular adhesion-dependent cell survival and rock-regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports 2016; 6(5): 743-56. doi: 10.1016/j.stemcr.2016.03.011 PMID: 27132890
  63. Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci 2014; 111(23): 8518-23. doi: 10.1073/pnas.1324212111 PMID: 24912154
  64. Li J, Chen Y, Ouyang S, et al. Generation and staging of human retinal organoids based on self-formed ectodermal autonomous multi-zone system. Front Cell Dev Biol 2021; 9: 732382. doi: 10.3389/fcell.2021.732382 PMID: 34631711
  65. Li G, Xie B, He L, et al. Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells. Stem Cells Int 2018; 2018: 1-12. doi: 10.1155/2018/4968658 PMID: 30008752
  66. Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci 2019; 116(22): 10824-33. doi: 10.1073/pnas.1901572116 PMID: 31072937
  67. Hiler D, Chen X, Hazen J, et al. Quantification of retinogenesis in 3d cultures reveals epigenetic memory and higher efficiency in ipscs derived from rod photoreceptors. Cell Stem Cell 2015; 17(1): 101-15. doi: 10.1016/j.stem.2015.05.015 PMID: 26140606
  68. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85(3): 845-81. doi: 10.1152/physrev.00021.2004 PMID: 15987797
  69. Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci 2002; 99(3): 1580-5. doi: 10.1073/pnas.032662199 PMID: 11818560
  70. Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res 2006; 82(2): 265-74. doi: 10.1016/j.exer.2005.06.021 PMID: 16150443
  71. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004; 6(3): 217-45. doi: 10.1089/clo.2004.6.217 PMID: 15671670
  72. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 2009; 5(4): 396-408. doi: 10.1016/j.stem.2009.07.002 PMID: 19796620
  73. Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 2009; 27(10): 2427-34. doi: 10.1002/stem.189 PMID: 19658190
  74. Leach LL, Buchholz DE, Nadar VP, Lowenstein SE, Clegg DO. Canonical/β-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Invest Ophthalmol Vis Sci 2015; 56(2): 1002-13. doi: 10.1167/iovs.14-15835 PMID: 25604686
  75. Maruotti J, Sripathi SR, Bharti K, et al. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci 2015; 112(35): 10950-5. doi: 10.1073/pnas.1422818112 PMID: 26269569
  76. Luo Z, Chang KC, Wu S, et al. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Reports 2022; 17(12): 2690-703. doi: 10.1016/j.stemcr.2022.10.011 PMID: 36368332
  77. Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: Approaches, mechanisms and progress. Nature rev 2021; 22(6): 410-24. doi: 10.1038/s41580-021-00335-z
  78. Xu J, Du Y, Deng H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell 2015; 16(2): 119-34. doi: 10.1016/j.stem.2015.01.013 PMID: 25658369
  79. Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol 2011; 29(10): 892-907. doi: 10.1038/nbt.1946 PMID: 21997635
  80. Wapinski OL, Vierbuchen T, Qu K, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013; 155(3): 621-35. doi: 10.1016/j.cell.2013.09.028 PMID: 24243019
  81. Meng F, Wang X, Gu P, Wang Z, Guo W. Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience 2013; 250: 381-93. doi: 10.1016/j.neuroscience.2013.07.001 PMID: 23856066
  82. Wang J, He Q, Zhang K, et al. Quick commitment and efficient reprogramming route of direct induction of retinal ganglion cell-like neurons. Stem Cell Reports 2020; 15(5): 1095-110. doi: 10.1016/j.stemcr.2020.09.008 PMID: 33096050
  83. Mahato B, Kaya KD, Fan Y, et al. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 2020; 581(7806): 83-8. doi: 10.1038/s41586-020-2201-4 PMID: 32376950
  84. Zhang K, Liu GH, Yi F, et al. Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein Cell 2014; 5(1): 48-58. doi: 10.1007/s13238-013-0011-2 PMID: 24474194
  85. Woogeng IN, Kaczkowski B, Abugessaisa I, et al. Inducing human retinal pigment epithelium-like cells from somatic tissue. Stem Cell Reports 2022; 17(2): 289-306. doi: 10.1016/j.stemcr.2021.12.008 PMID: 35030321
  86. Zhu X, Chen Z, Wang L, et al. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death Dis 2022; 13(9): 785. doi: 10.1038/s41419-022-05199-5 PMID: 36096985
  87. Takata N, Miska JM, Morgan MA, et al. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14(1): 4129. doi: 10.1038/s41467-023-39672-2 PMID: 37452018
  88. Prameela Bharathan S, Ferrario A, Stepanian K, et al. Characterization and staging of outer plexiform layer development in human retina and retinal organoids. Development 2021; 148(23): dev199551. doi: 10.1242/dev.199551 PMID: 34738615
  89. Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 2020; 182(6): 1623-1640.e34. doi: 10.1016/j.cell.2020.08.013 PMID: 32946783
  90. Finkbeiner C, Ortuño-Lizarán I, Sridhar A, Hooper M, Petter S, Reh TA. Single-cell ATAC-seq of fetal human retina and stem-cell-derived retinal organoids shows changing chromatin landscapes during cell fate acquisition. Cell Rep 2022; 38(4): 110294. doi: 10.1016/j.celrep.2021.110294 PMID: 35081356
  91. Sridhar A, Hoshino A, Finkbeiner CR, et al. Single-cell transcriptomic comparison of human fetal retina, hpsc-derived retinal organoids, and long-term retinal cultures. Cell Rep 2020; 30(5): 1644-1659.e4. doi: 10.1016/j.celrep.2020.01.007 PMID: 32023475
  92. Xie H, Zhang W, Zhang M, et al. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Sci Adv 2020; 6(6): eaay5247. doi: 10.1126/sciadv.aay5247 PMID: 32083182
  93. Lu Y, Shiau F, Yi W, et al. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev Cell 2020; 53(4): 473-491.e9. doi: 10.1016/j.devcel.2020.04.009 PMID: 32386599
  94. Thomas ED, Timms AE, Giles S, et al. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57(6): 820-836.e6. doi: 10.1016/j.devcel.2022.02.018 PMID: 35303433
  95. Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Hussain R, et al. Deciphering the spatio-temporal transcriptional and chromatin accessibility of human retinal organoid development at the single cell level. biorxiv 2023. doi: 10.1101/2023.07.19.549507
  96. Phillips MJ, Perez ET, Martin JM, et al. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2014; 32(6): 1480-92. doi: 10.1002/stem.1667 PMID: 24532057
  97. Ferda Percin E, Ploder LA, Yu JJ, et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000; 25(4): 397-401. doi: 10.1038/78071 PMID: 10932181
  98. Eldred KC, Hadyniak SE, Hussey KA, Brenerman B, Zhang PW, Chamling X, et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 2018; 362(6411): eaau6348. doi: 10.1126/science.aau6348
  99. Schwarz N, Carr AJ, Lane A, et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 2015; 24(4): 972-86. doi: 10.1093/hmg/ddu509 PMID: 25292197
  100. Parfitt DA, Lane A, Ramsden CM, et al. Identification and correction of mechanisms underlying inherited blindness in human ipsc-derived optic cups. Cell Stem Cell 2016; 18(6): 769-81. doi: 10.1016/j.stem.2016.03.021 PMID: 27151457
  101. Dulla K, Aguila M, Lane A, et al. Splice-modulating oligonucleotide qr-110 restores cep290 mrna and function in human c.2991+1655A>G LCA10 Models. Mol Ther Nucleic Acids 2018; 12: 730-40. doi: 10.1016/j.omtn.2018.07.010 PMID: 30114557
  102. Khan M, Arno G, Fakin A, et al. Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in stargardt disease. Mol Ther Nucleic Acids 2020; 21: 412-27. doi: 10.1016/j.omtn.2020.06.007 PMID: 32653833
  103. Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc Natl Acad Sci 2020; 117(52): 33628-38. doi: 10.1073/pnas.2011780117 PMID: 33318192
  104. Mullin NK, Bohrer LR, Voigt AP, Lozano LP, Wright A, Mullins RF, et al. Loss of NR2E3 disrupts rod photoreceptor cell maturation causing a fate switch late in human retinal development. biorxiv 2023. doi: 10.1101/2023.06.30.547279
  105. Völkner M, Wagner F, Steinheuer LM, et al. HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids. Nat Commun 2022; 13(1): 6183. doi: 10.1038/s41467-022-33848-y PMID: 36261438
  106. MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444(7116): 203-7. doi: 10.1038/nature05161 PMID: 17093405
  107. Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature 2012; 485(7396): 99-103. doi: 10.1038/nature10997 PMID: 22522934
  108. Zhu J, Cifuentes H, Reynolds J, Lamba DA. Immunosuppression via Loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 2017; 20(3): 374-384.e5. doi: 10.1016/j.stem.2016.11.019 PMID: 28089909
  109. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 2009; 4(1): 73-9. doi: 10.1016/j.stem.2008.10.015 PMID: 19128794
  110. Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013; 31(8): 741-7. doi: 10.1038/nbt.2643 PMID: 23873086
  111. McLelland BT, Lin B, Mathur A, et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci 2018; 59(6): 2586-603. doi: 10.1167/iovs.17-23646 PMID: 29847666
  112. Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci 2016; 113(1): E81-90. doi: 10.1073/pnas.1512590113 PMID: 26699487
  113. Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov 2018; 4(1): 50. doi: 10.1038/s41421-018-0053-y PMID: 30245845
  114. Wang L, Wu W, Gu Q, et al. The effect of clinical-grade retinal pigment epithelium derived from human embryonic stem cells using different transplantation strategies. Protein Cell 2019; 10(6): 455-60. doi: 10.1007/s13238-018-0606-8 PMID: 30673951
  115. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015; 385(9967): 509-16. doi: 10.1016/S0140-6736(14)61376-3 PMID: 25458728
  116. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012; 379(9817): 713-20. doi: 10.1016/S0140-6736(12)60028-2 PMID: 22281388
  117. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports 2015; 4(5): 860-72. doi: 10.1016/j.stemcr.2015.04.005 PMID: 25937371
  118. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37. doi: 10.1038/nbt.4114 PMID: 29553577
  119. Li SY, Liu Y, Wang L, et al. A phase I clinical trial of human embryonic stem cell‐derived retinal pigment epithelial cells for early‐stage Stargardt macular degeneration: 5‐years’ follow‐up. Cell Prolif 2021; 54(9): e13100. doi: 10.1111/cpr.13100 PMID: 34347352
  120. Silverman SM, Wong WT. Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci 2018; 4(1): 45-77. doi: 10.1146/annurev-vision-091517-034425 PMID: 29852094
  121. Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res 2018; 63: 1-19. doi: 10.1016/j.preteyeres.2017.11.001 PMID: 29129724
  122. Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 2016; 531(7594): 376-80. doi: 10.1038/nature17000 PMID: 26958835
  123. Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 2019; 8: e46188. doi: 10.7554/eLife.46188 PMID: 31451149
  124. Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020; 18(5): e3000705. doi: 10.1371/journal.pbio.3000705 PMID: 32401820
  125. Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 2019; 16(11): 1169-75. doi: 10.1038/s41592-019-0586-5 PMID: 31591580
  126. Cakir B, Tanaka Y, Kiral FR, et al. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nat Commun 2022; 13(1): 430. doi: 10.1038/s41467-022-28043-y PMID: 35058453
  127. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: Network biology applied to stem cell engineering. Cell 2014; 158(4): 903-15. doi: 10.1016/j.cell.2014.07.020 PMID: 25126793
  128. Morris SA, Cahan P, Li H, et al. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 2014; 158(4): 889-902. doi: 10.1016/j.cell.2014.07.021 PMID: 25126792
  129. Joung J, Ma S, Tay T, et al. A transcription factor atlas of directed differentiation. Cell 2023; 186(1): 209-229.e26. doi: 10.1016/j.cell.2022.11.026 PMID: 36608654

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers