Cancer Stem Cells in Carcinogenesis and Potential Role in Pancreatic Cancer


Citar

Texto integral

Resumo

:A poor prognosis is associated with pancreatic cancer because of resistance during treatment and early distant metastases. The discovery of cancer stem cells has opened up novel avenues for research into the biology and treatment of cancer. Many investigations have pointed out the role of these types of stem cells in the oncogenesis and progression of hematologic and solid malignancies, specifically. Due to the existence of cancer stem cells in the proliferation and preservation of pancreatic tumors, such malignancies could be difficult to eradicate using conventional treatment techniques like chemotherapy and radiotherapy. It is hypothesized that pancreatic malignancies originate from a limited population of aberrant cancer stem cells to promote carcinogenesis, tumour metastasis, and therapeutic resistance. This review examines the role of pancreatic cancer stem cells in this disease and their significance in carcinogenesis, as well as the signals which modulate them, and also examines the ongoing clinical studies that are now being conducted with pancreatic stem cells.

Sobre autores

Rishav Sharma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Philip PA, Mooney M, Jaffe D, et al. Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J Clin Oncol 2009; 27(33): 5660-9. doi: 10.1200/JCO.2009.21.9022 PMID: 19858397
  2. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22(44): 9694-705. doi: 10.3748/wjg.v22.i44.9694 PMID: 27956793
  3. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J 2021; 134(7): 783-91. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
  4. Khalaf N, El-Serag HB, Abrams HR, Thrift AP. Burden of pancreatic cancer: From epidemiology to practice. Clin Gastroenterol Hepatol 2021; 19(5): 876-84. doi: 10.1016/j.cgh.2020.02.054 PMID: 32147593
  5. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  6. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 2011; 378(9791): 607-20. doi: 10.1016/S0140-6736(10)62307-0 PMID: 21620466
  7. Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012; 10(6): 717-28. doi: 10.1016/j.stem.2012.05.007 PMID: 22704512
  8. Fessler E, Dijkgraaf FE, De Sousa E Melo F, Medema JP. Cancer stem cell dynamics in tumor progression and metastasis: Is the microenvironment to blame? Cancer Lett 2013; 341(1): 97-104. doi: 10.1016/j.canlet.2012.10.015 PMID: 23089245
  9. Wang X, Zhu Y, Ma Y, et al. The role of cancer stem cells in cancer metastasis: New perspective and progress. Cancer Epidemiol 2013; 37(1): 60-3. doi: 10.1016/j.canep.2012.07.007 PMID: 22884170
  10. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7. doi: 10.1158/0008-5472.CAN-06-2030 PMID: 17283135
  11. Castellanos JA, Merchant NB, Nagathihalli NS. Emerging targets in pancreatic cancer: Epithelial-mesenchymal transition and cancer stem cells. OncoTargets Ther 2013; 6: 1261-7. PMID: 24049451
  12. Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochimica et BiophysicaActa (BBA)-. Rev Can 2012; 1826(2): 385-99.
  13. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. nature 2001; 414(6859): 105-11.
  14. McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med 2005; 11(10): 1026-8. doi: 10.1038/nm1005-1026 PMID: 16211027
  15. Gilbertson RJ, Graham TA. Resolving the stem-cell debate. Nature 2012; 488(7412): 462-3. doi: 10.1038/nature11480 PMID: 22919708
  16. Garcia-Mayea Y, Mir C, Masson F, Paciucci R. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60: 166-80.
  17. Marcu LG. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2020; 34(2): 200-1. doi: 10.1111/fcp.12536 PMID: 31944386
  18. Das PK, Pillai S, Rakib MA, et al. Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev Rep 2020; 16: 397-412. doi: 10.1007/s12015-019-09942-y
  19. Hsieh MJ, Chiu TJ, Lin YC, et al. Inactivation of APC Induces CD34 upregulation to promote epithelial-mesenchymal transition and cancer stem cell traits in pancreatic cancer. Int J Mol Sci 2020; 21(12): 4473. doi: 10.3390/ijms21124473 PMID: 32586050
  20. Cioffi M, D’Alterio C, Camerlingo R, et al. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer. Sci Rep 2015; 5(1): 10357. doi: 10.1038/srep10357 PMID: 26020117
  21. Bocci F, Gearhart-Serna L, Boareto M, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA 2019; 116(1): 148-57. doi: 10.1073/pnas.1815345116 PMID: 30587589
  22. Lonardo E, Hermann PC, Mueller MT, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011; 9(5): 433-46. doi: 10.1016/j.stem.2011.10.001 PMID: 22056140
  23. Cohen MM Jr. The hedgehog signaling network. Am J Med Genet 2003; 123A(1): 5-28. doi: 10.1002/ajmg.a.20495 PMID: 14556242
  24. Li K, Lv XX, Hua F, et al. Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a toll-like receptor 2-mediated cell-penetrating peptide. Int J Cancer 2014; 134(3): 692-702. doi: 10.1002/ijc.28382 PMID: 23852533
  25. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2012; 131(1): 30-40. doi: 10.1002/ijc.26323 PMID: 21796625
  26. Chen YJ, Huang YC, Tsai TH, Liao HF. Effect of wasabi component 6-(methylsulfinyl) hexyl isothiocyanate and derivatives on human pancreatic cancer cells. Evid Based Complement Alternat Med 2014; 2014: 1-6. doi: 10.1155/2014/494739 PMID: 24575144
  27. Apelqvist Å, Li H, Sommer L, et al. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400(6747): 877-81. doi: 10.1038/23716 PMID: 10476967
  28. Vaz AP. Multifunctional Role of Pancreatic Differentiation 2 (PD2) in Pancreatic Cancer. University of Nebraska Medical Center 2015.
  29. Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene 2008; 27(37): 5075-80. doi: 10.1038/onc.2008.140 PMID: 18469861
  30. Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 2014; 20(9): 2335-42. doi: 10.3748/wjg.v20.i9.2335 PMID: 24605030
  31. Xie J, Bartels CM, Gu D, Barton SW. Targeting hedgehog signaling in cancer: Research and clinical developments. OncoTargets Ther 2013; 6: 1425-35. doi: 10.2147/OTT.S34678 PMID: 24143114
  32. Abel EV, Kim EJ, Wu J, et al. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One 2014; 9(3): e91983. doi: 10.1371/journal.pone.0091983 PMID: 24647545
  33. Hage C, Rausch V, Giese N, et al. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis 2013; 4(5): e627-7. doi: 10.1038/cddis.2013.158 PMID: 23661005
  34. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55(1): 10-30.
  35. Matano E, Tagliaferri P, Libroia A, et al. Gemcitabine combined with continuous infusion 5-fluorouracil in advanced and symptomatic pancreatic cancer: A clinical benefit-oriented phase II study. Br J Cancer 2000; 82(11): 1772-5. doi: 10.1054/bjoc.1999.1139 PMID: 10839289
  36. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8. doi: 10.1073/pnas.0530291100 PMID: 12629218
  37. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3): 973-8. doi: 10.1073/pnas.0610117104 PMID: 17210912
  38. Rodrigues AC, Curi R, Genvigir FDV, Hirata MH, Hirata RDC. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and HepG2 cells. Acta Pharmacol Sin 2009; 30(7): 956-64. doi: 10.1038/aps.2009.85 PMID: 19543298
  39. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. nature 2006; 444(7120): 756-60.
  40. Jimeno A, Feldmann G, Suárez-Gauthier A, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009; 8(2): 310-4. doi: 10.1158/1535-7163.MCT-08-0924 PMID: 19174553
  41. Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 2009; 106(1): 268-73. doi: 10.1073/pnas.0810956106 PMID: 19116269
  42. Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7(5): 593-605. doi: 10.1016/j.stem.2010.09.015 PMID: 21040901
  43. Mueller MT, Hermann PC, Witthauer J, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137(3): 1102-13. doi: 10.1053/j.gastro.2009.05.053 PMID: 19501590
  44. Li C, Wu JJ, Hynes M, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 2011; 141(6): 2218-2227.e5. doi: 10.1053/j.gastro.2011.08.009 PMID: 21864475
  45. Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12(1): 159. doi: 10.1186/1476-4598-12-159 PMID: 24325450
  46. Zhan H, Xu J, Wu D, Zhang T, Hu S. Pancreatic cancer stem cells: New insight into a stubborn disease. Cancer Lett 2015; 357(2): 429-37. doi: 10.1016/j.canlet.2014.12.004 PMID: 25499079
  47. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913-21. doi: 10.1158/0008-5472.CAN-14-0155 PMID: 24840647
  48. Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016; 2(1): 16022. doi: 10.1038/nrdp.2016.22 PMID: 27158978
  49. Rebelo A, Molpeceres J, Rijo P, Pinto Reis C. Pancreatic cancer therapy review: From classic therapeutic agents to modern nanotechnologies. Curr Drug Metab 2017; 18(4): 346-59. doi: 10.2174/1389200218666170201151135 PMID: 28155623
  50. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin North Am 2007; 36(4): 831-849, vi. doi: 10.1016/j.gtc.2007.08.012 PMID: 17996793
  51. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536(7617): 479-83. doi: 10.1038/nature19084 PMID: 27509858
  52. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1(3): 313-23. doi: 10.1016/j.stem.2007.06.002 PMID: 18371365
  53. Hutcheson J, Balaji U, Porembka MR, et al. Immunologic and metabolic features of pancreatic ductal adenocarcinoma define prognostic subtypes of disease. Clin Cancer Res 2016; 22(14): 3606-17. doi: 10.1158/1078-0432.CCR-15-1883 PMID: 26858311
  54. Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010; 102(5): 340-51. doi: 10.1093/jnci/djp535 PMID: 20164446
  55. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68. doi: 10.1038/nrc2499 PMID: 18784658
  56. Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: Problems for therapy? J Pathol 2011; 223(2): 148-62. doi: 10.1002/path.2793 PMID: 21125672
  57. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84. doi: 10.1038/nrc1590 PMID: 15803154
  58. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328-33. doi: 10.1038/nature13038 PMID: 24522528
  59. Auffinger B, Tobias AL, Han Y, et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 2014; 21(7): 1119-31. doi: 10.1038/cdd.2014.31 PMID: 24608791
  60. Hamerlik P, Lathia JD, Rasmussen R, et al. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209(3): 507-20. doi: 10.1084/jem.20111424 PMID: 22393126
  61. Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell 2014; 14(3): 306-21. doi: 10.1016/j.stem.2014.02.002 PMID: 24607405
  62. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16(6): 488-94. doi: 10.1038/ncb2976 PMID: 24875735
  63. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15. doi: 10.1016/j.cell.2008.03.027 PMID: 18485877
  64. Meidhof S, Brabletz S, Lehmann W, et al. ZEB 1‐associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med 2015; 7(6): 831-47. doi: 10.15252/emmm.201404396 PMID: 25872941
  65. Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res 2010; 30(7): 2513-7. PMID: 20682976
  66. Black PC, Brown GA, Inamoto T, et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res 2008; 14(5): 1478-86. doi: 10.1158/1078-0432.CCR-07-1593 PMID: 18316572
  67. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 2008; 68(7): 2391-9. doi: 10.1158/0008-5472.CAN-07-2460 PMID: 18381447
  68. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265-73. doi: 10.1038/nrc2620 PMID: 19262571
  69. Hovinga KE, Shimizu F, Wang R, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 2010; 28(6): 1019-29. doi: 10.1002/stem.429 PMID: 20506127
  70. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11(1): 69-82. doi: 10.1016/j.ccr.2006.11.020 PMID: 17222791
  71. Krishnamurthy S, Dong Z, Vodopyanov D, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 2010; 70(23): 9969-78. doi: 10.1158/0008-5472.CAN-10-1712 PMID: 21098716
  72. Krishnamurthy S, Warner KA, Dong Z, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells 2014; 32(11): 2845-57. doi: 10.1002/stem.1793 PMID: 25078284
  73. Zhang Z, Dong Z, Lauxen IS, Filho MSA, Nör JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 2014; 74(10): 2869-81. doi: 10.1158/0008-5472.CAN-13-2032 PMID: 24686166
  74. Kise K, Kinugasa-Katayama Y, Takakura N. Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 2016; 99(Pt B): 197-205. doi: 10.1016/j.addr.2015.08.005 PMID: 26362921
  75. Lau EYT, Ho NPY, Lee TKW. Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int 2017; 2017: 1-11. doi: 10.1155/2017/3714190 PMID: 28337221
  76. Turdo A, Todaro M, Stassi G. Targeting cancer stem cells and the tumor microenvironment. Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Cham: Springer 2015; pp. 445-76.
  77. Lu J, Ye X, Fan F, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 2013; 23(2): 171-85. doi: 10.1016/j.ccr.2012.12.021 PMID: 23375636
  78. Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell- like properties. Cell 2013; 152(1-2): 25-38. doi: 10.1016/j.cell.2012.12.012 PMID: 23273993
  79. Bao B, Azmi AS, Ali S, et al. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 2012; 1826(2): 272-96. PMID: 22579961
  80. Bao B, Ali S, Ahmad A, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 2012; 7(12): e50165. doi: 10.1371/journal.pone.0050165 PMID: 23272057
  81. Ng KP, Manjeri A, Lee KL, et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 2014; 123(21): 3316-26. doi: 10.1182/blood-2013-07-511907 PMID: 24705490
  82. Murakami A, Takahashi F, Nurwidya F, et al. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One 2014; 9(1): e86459. doi: 10.1371/journal.pone.0086459 PMID: 24489728
  83. Zheng Y, Cai Z, Wang S, et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis. Blood 2009; 114(17): 3625-8. doi: 10.1182/blood-2009-05-220285 PMID: 19710503
  84. Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013; 73(3): 1128-41. doi: 10.1158/0008-5472.CAN-12-2731 PMID: 23221383
  85. Amit M, Gil Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. OncoImmunology 2013; 2(12): e27231. doi: 10.4161/onci.27231 PMID: 24498570
  86. Sumbly V, Landry I. Understanding pancreatic cancer stem cells and their role in carcinogenesis: A narrative review. Stem Cell Investig 2022; 9: 1. doi: 10.21037/sci-2021-067 PMID: 35242873

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024