Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells


Cite item

Full Text

Abstract

Background:Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases.

Objectives:The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis

Methods:Methods: AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression.

Results:Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis via activating the SIX1/HBO1 signaling pathway.

Conclusion:The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.

About the authors

Xiangyu Zhang

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Xin Zhang

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Lu Chen

Department of Nephrology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Jiaqi Zhao

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Ashok Raj

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Yanping Wang

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Shulin Li

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Chi Zhang

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Email: info@benthamscience.net

Jing Yang

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Author for correspondence.
Email: info@benthamscience.net

Dong Sun

Department of Nephrology, Affiliated Hospital of Xuzhou Medical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5(1): 70. doi: 10.1038/s41572-019-0118-8 PMID: 31601801
  2. Wu R, Tang S, Wang M, Li Z, Yao C, Wang S. Drug-eluting balloon versus standard percutaneous transluminal angioplasty in infrapopliteal arterial disease: A meta-analysis of randomized trials. Int J Surg 2016; 35: 88-94. doi: 10.1016/j.ijsu.2016.09.014 PMID: 27664555
  3. Xu J, Chen J, Li W, et al. Additive therapeutic effects of mesenchymal stem cells and IL-37 for systemic lupus erythematosus. J Am Soc Nephrol 2020; 31(1): 54-65. doi: 10.1681/ASN.2019050545 PMID: 31604808
  4. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25. doi: 10.3892/ijmm.2015.2413 PMID: 26719857
  5. Li Y, Zhao J, Yu S, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem 2019; 65(6): 798-808. doi: 10.1373/clinchem.2018.301291 PMID: 30914410
  6. Roefs MT, Sluijter JPG, Vader P. Extracellular vesicle-associated proteins in tissue repair. Trends Cell Biol 2020; 30(12): 990-1013. doi: 10.1016/j.tcb.2020.09.009 PMID: 33069512
  7. Gao F, Zuo B, Wang Y, Li S, Yang J, Sun D. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci 2020; 255: 117719. doi: 10.1016/j.lfs.2020.117719 PMID: 32428599
  8. Chen L, Wang Y, Li S, et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 2020; 10(20): 9425-42. doi: 10.7150/thno.43315 PMID: 32802201
  9. Sun J, Shen H, Shao L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 2020; 11(1): 373. doi: 10.1186/s13287-020-01881-7 PMID: 32859268
  10. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial cell metabolism. Physiol Rev 2018; 98(1): 3-58. doi: 10.1152/physrev.00001.2017 PMID: 29167330
  11. Cruys B, Wong BW, Kuchnio A, et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun 2016; 7(1): 12240. doi: 10.1038/ncomms12240 PMID: 27436424
  12. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977. doi: 10.1126/science.aau6977 PMID: 32029601
  13. Wang B, Wang X, Hou D, et al. Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling. J Cell Physiol 2019; 234(7): 10602-14. doi: 10.1002/jcp.27735 PMID: 30417360
  14. Kumar JP. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 2009; 66(4): 565-83. doi: 10.1007/s00018-008-8335-4 PMID: 18989625
  15. Li L, Liang Y, Kang L, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell 2018; 33(3): 368-385.e367. doi: 10.1016/j.ccell.2018.01.010 PMID: 29455928
  16. Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res Ther 2020; 11(1): 206. doi: 10.1186/s13287-020-01719-2 PMID: 32460853
  17. Teuwen LA, Geldhof V, Carmeliet P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev Biol 2019; 447(1): 90-102. doi: 10.1016/j.ydbio.2017.12.001 PMID: 29224892
  18. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176(6): 1248-64. doi: 10.1016/j.cell.2019.01.021 PMID: 30849371
  19. Tanabe K, Wada J, Sato Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 2020; 16(5): 289-303. doi: 10.1038/s41581-020-0260-2 PMID: 32144398
  20. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146(6): 873-87. doi: 10.1016/j.cell.2011.08.039 PMID: 21925313
  21. Zhang S, Kim B, Zhu X, et al. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun 2020; 11(1): 2027. doi: 10.1038/s41467-020-15656-4 PMID: 32332719
  22. Bikfalvi A. History and conceptual developments in vascular biology and angiogenesis research: A personal view. Angiogenesis 2017; 20(4): 463-78. doi: 10.1007/s10456-017-9569-2 PMID: 28741165
  23. Teuwen LA, Draoui N, Dubois C, Carmeliet P. Endothelial cell metabolism. Curr Opin Hematol 2017; 24(3): 240-7. doi: 10.1097/MOH.0000000000000335 PMID: 28212191
  24. Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005; 6(12): 893-904. doi: 10.1038/nrg1726 PMID: 16341070
  25. Jin Y, Zhang M, Li M, et al. SIX1 Activation is involved in cell proliferation, migration, and anti-inflammation of acute ischemia/reperfusion injury in mice. Front Mol Biosci 2021; 8: 725319. doi: 10.3389/fmolb.2021.725319 PMID: 34513929
  26. McCarthy N. SIX1 of the best. Nat Rev Cancer 2012; 12(5): 316. doi: 10.1038/nrc3272 PMID: 22525572
  27. Wang CA, Jedlicka P, Patrick AN, et al. SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Invest 2012; 122(5): 1895-906. doi: 10.1172/JCI59858 PMID: 22466647
  28. Xu H, Zhang Y, Peña MM, Pirisi L, Creek KE. Six1 promotes colorectal cancer growth and metastasis by stimulating angiogenesis and recruiting tumor-associated macrophages. Carcinogenesis 2017; 38(3): 281-92. doi: 10.1093/carcin/bgw121 PMID: 28199476
  29. Nie ZY, Liu XJ, Zhan Y, et al. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep 2019; 39(4): BSR20190150. doi: 10.1042/BSR20190150 PMID: 30962263
  30. Yang X, Zhao H, Yang J, et al. MiR-150-5p regulates melanoma proliferation, invasion and metastasis via SIX1-mediated Warburg Effect. Biochem Biophys Res Commun 2019; 515(1): 85-91. doi: 10.1016/j.bbrc.2019.05.111 PMID: 31128917
  31. Wang C, Li Y, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun 2020; 11(1): 3162. doi: 10.1038/s41467-020-16966-3 PMID: 32572027
  32. Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular VESICLE-ASSOCIATED long NONCODING RNA. Bioeng Transl Med 2020; 5(3): e10172. doi: 10.1002/btm2.10172 PMID: 33005738
  33. Wilhelm K, Happel K, Eelen G, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 2016; 529(7585): 216-20. doi: 10.1038/nature16498 PMID: 26735015
  34. Yetkin-Arik B, Vogels IMC, Neyazi N, et al. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci Rep 2019; 9(1): 10414. doi: 10.1038/s41598-019-46503-2 PMID: 31320669
  35. Dagher Z, Ruderman N, Tornheim K, Ido Y. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ Res 2001; 88(12): 1276-82. doi: 10.1161/hh1201.092998 PMID: 11420304
  36. Fisslthaler B, Fleming I. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 2009; 105(2): 114-27. doi: 10.1161/CIRCRESAHA.109.201590 PMID: 19608989

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers