Evaluation of the Composite Skin Patch Loaded with Bioactive Functional Factors Derived from Multicellular Spheres of EMSCs for Regeneration of Full-thickness Skin Defects in Rats


Cite item

Full Text

Abstract

Background:Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine.

Methods:Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch.

Results:The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats.

Conclusion:In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.

About the authors

Xuan Zhang

Science Center for Future Foods, Jiangnan University

Email: info@benthamscience.net

Wentao Shi

Science Center for Future Foods, Jiangnan University

Email: info@benthamscience.net

Xun Wang

Department of Pulmonary and Critical Care Medicine, The Affiliated Central Hospital of Jiangnan University

Email: info@benthamscience.net

Yin Zou

, The Affiliated Children Hospital of Jiangnan University

Email: info@benthamscience.net

Wen Xiang

School of Medicine, Nankai University

Author for correspondence.
Email: info@benthamscience.net

Naiyan Lu

Science Center for Future Foods, Jiangnan University

Email: info@benthamscience.net

References

  1. Lim KM. Skin epidermis and barrier function. Int J Mol Sci 2021; 22(6): 3035. doi: 10.3390/ijms22063035 PMID: 33809733
  2. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111. doi: 10.1186/s13287-019-1212-2 PMID: 30922387
  3. Huang C, Dong L, Zhao B, et al. Anti‐inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12(11): e1094. doi: 10.1002/ctm2.1094 PMID: 36354147
  4. Wang L, Li L, Lou W. Repair of a cervical skin defect using xenogeneic acellular dermal matrix in a patient with advanced laryngeal carcinoma. J Laryngol Otol 2015; 129(7): 715-7. doi: 10.1017/S0022215115001413 PMID: 26080657
  5. Han C, Zhang L, Sun J, Shi H, Zhou J, Gao C. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 2010; 11(7): 524-30. doi: 10.1631/jzus.B0900400 PMID: 20593518
  6. Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: Can we reconstruct functional skin tissue in vitro? Cells 2020; 9(7): 1622. doi: 10.3390/cells9071622 PMID: 32640572
  7. Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013; 6(6): e26631. doi: 10.4161/cib.26631 PMID: 24567776
  8. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852. doi: 10.3390/ijms18091852 PMID: 28841158
  9. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12(1): 260. doi: 10.1186/s12967-014-0260-8 PMID: 25304688
  10. Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. Int J Mol Sci 2019; 20(7): 1656. doi: 10.3390/ijms20071656 PMID: 30987106
  11. Deng W, Shao F, He Q, et al. EMSCs build an all-in-one niche via cell-cell lipid raft assembly for promoted neuronal but suppressed astroglial differentiation of neural stem cells. Adv Mater 2019; 31(10): 1806861. doi: 10.1002/adma.201806861 PMID: 30633831
  12. Forni PE, Wray S. Neural crest and olfactory system: New prospective. Mol Neurobiol 2012; 46(2): 349-60. doi: 10.1007/s12035-012-8286-5 PMID: 22773137
  13. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180(4): 2581-7. doi: 10.4049/jimmunol.180.4.2581 PMID: 18250469
  14. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25(10): 2648-59. doi: 10.1634/stemcells.2007-0226 PMID: 17615264
  15. Xiang W, Wang X, Yu X, et al. Therapeutic efficiency of nasal mucosa-derived ectodermal mesenchymal stem cells in rats with acute hepatic failure. Stem Cells Int 2023; 2023: 1-13. doi: 10.1155/2023/6890299 PMID: 36655034
  16. Lu N, Wang X, Li X, et al. EMSCs-seeded micro-stripe patterned polycaprolactone promoting sciatic nerve regeneration. Advanced Materials Interfaces 2023; 10(5): 2201929. doi: 10.1002/admi.202201929
  17. Baer PC, Griesche N, Luttmann W, Schubert R, Luttmann A, Geiger H. Human adipose-derived mesenchymal stem cells in vitro: Evaluation of an optimal expansion medium preserving stemness. Cytotherapy 2010; 12(1): 96-106. doi: 10.3109/14653240903377045 PMID: 19929458
  18. Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6(6): e20526. doi: 10.1371/journal.pone.0020526 PMID: 21694780
  19. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159: 62-77. doi: 10.1016/j.colsurfb.2017.07.051 PMID: 28780462
  20. Li M, Fu T, Yang S, et al. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro. In Vitro Cell Dev Biol Anim 2021; 57(6): 620-30. doi: 10.1007/s11626-021-00591-5 PMID: 34212339
  21. Zhang Z, He Q, Deng W, et al. Nasal ectomesenchymal stem cells: Multi-lineage differentiation and transformation effects on fibrin gels. Biomaterials 2015; 49: 57-67. doi: 10.1016/j.biomaterials.2015.01.057 PMID: 25725555
  22. Shi W, Que Y, Zhang X, et al. Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair. NPG Asia Mater 2021; 13(1): 28. doi: 10.1038/s41427-021-00297-w
  23. Xiao S, Huang G, Wei Z, et al. IL-10 Gene-Modified Human Amniotic Mesenchymal Stem Cells Augment Regenerative Wound Healing by Multiple Synergistic Effects. Stem Cells Int 2019; 2019: 1-13. doi: 10.1155/2019/9158016 PMID: 31281390
  24. Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 2000; 20(3): 173-7. doi: 10.1076/0271-3683(200003)2031-9FT173 PMID: 10694891
  25. Romano RA, Smalley K, Magraw C, et al. Δ Np63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139(4): 772-82. doi: 10.1242/dev.071191 PMID: 22274697
  26. Sen CK. Human wounds and its burden: An updated compendium of estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39-48. doi: 10.1089/wound.2019.0946 PMID: 30809421
  27. Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on skin: Mechanisms, recent advances and drug reviewing issues. Yao Wu Shi Pin Fen Xi 2018; 26(1): 14-20. PMID: 29389549
  28. Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2019; 843: 307-15. doi: 10.1016/j.ejphar.2018.12.012 PMID: 30537490
  29. Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial constructs for wound healing and skin regeneration. Drug Metab Rev 2022; 54(1): 63-94. doi: 10.1080/03602532.2021.2025387 PMID: 35129408
  30. Fang Z, Chen P, Tang S, et al. Will mesenchymal stem cells be future directions for treating radiation-induced skin injury? Stem Cell Res Ther 2021; 12(1): 179. doi: 10.1186/s13287-021-02261-5 PMID: 33712078
  31. Litvinov RI, Pieters M, de Lange-Loots Z, Weisel JW. Fibrinogen and Fibrin. Subcell Biochem 2021; 96: 471-501. doi: 10.1007/978-3-030-58971-4_15 PMID: 33252741
  32. Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2020; 20(1): 1900283. doi: 10.1002/mabi.201900283 PMID: 31769933
  33. Weisel JW, Litvinov RI. Fibrin Formation, Structure and Properties. Subcell Biochem 2017; 82: 405-56. doi: 10.1007/978-3-319-49674-0_13 PMID: 28101869
  34. Lai E, Bao B, Zhu Y, Lin H. Transglutaminase-catalyzed bottom-up synthesis of polymer hydrogel. Front Bioeng Biotechnol 2022; 10: 824747. doi: 10.3389/fbioe.2022.824747 PMID: 35392400
  35. Coffin ST, Gaudette GR. Aprotinin extends mechanical integrity time of cell-seeded fibrin sutures. J Biomed Mater Res A 2016; 104(9): 2271-9. doi: 10.1002/jbm.a.35754 PMID: 27101153
  36. Maiz-Fernández S, Pérez-Álvarez L, Silván U, Vilas-Vilela JL, Lanceros-Mendez S. Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. Int J Biol Macromol 2022; 216: 291-302. doi: 10.1016/j.ijbiomac.2022.07.004 PMID: 35798076
  37. Jiao Y, Pang X, Zhai G. Advances in hyaluronic acid-based drug delivery systems. Curr Drug Targets 2016; 17(6): 720-30. doi: 10.2174/1389450116666150531155200 PMID: 26028046
  38. Giri S, Machens HG, Bader A. Therapeutic potential of endogenous stem cells and cellular factors for scar-free skin regeneration. Drug Discov Today 2019; 24(1): 69-84. doi: 10.1016/j.drudis.2018.10.014 PMID: 30408529
  39. Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM. Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 2011; 22(21): 4068-78. doi: 10.1091/mbc.e10-08-0703 PMID: 21900500
  40. Crum CP, McKeon FD. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5(1): 349-71. doi: 10.1146/annurev-pathol-121808-102117 PMID: 20078223
  41. Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal Stem Cells in Skin Wound Healing. Adv Wound Care (New Rochelle) 2017; 6(9): 297-307. doi: 10.1089/wound.2017.0728 PMID: 28894637
  42. Kurinna S, Seltmann K, Bachmann AL, et al. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res 2021; 49(7): 3748-63. doi: 10.1093/nar/gkab167 PMID: 33764436
  43. Oh JE, Kim RH, Shin KH, Park NH, Kang MK. DeltaNp63α protein triggers epithelial-mesenchymal transition and confers stem cell properties in normal human keratinocytes. J Biol Chem 2011; 286(44): 38757-67. doi: 10.1074/jbc.M111.244939 PMID: 21880709

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers