Characterization of Central and Nasal Orbital Adipose Stem Cells and their Neural Differentiation Footprints
- Authors: Sanie-Jahromi F.1, Nowroozzadeh M.H.1, Shaabanian M.1, Khademi B.1, Owji N.1, Mehrabani D.2
-
Affiliations:
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences
- Issue: Vol 19, No 8 (2024)
- Pages: 1111-1119
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645906
- DOI: https://doi.org/10.2174/1574888X19666230905114246
- ID: 645906
Cite item
Full Text
Abstract
Background:The unique potential of stem cells to restore vision and regenerate damaged ocular cells has led to the increased attraction of researchers and ophthalmologists to ocular regenerative medicine in recent decades. In addition, advantages such as easy access to ocular tissues, non-invasive follow-up, and ocular immunologic privilege have enhanced the desire to develop ocular regenerative medicine.
Objective:This study aimed to characterize central and nasal orbital adipose stem cells (OASCs) and their neural differentiation potential.
Methods:The central and nasal orbital adipose tissues extracted during an upper blepharoplasty surgery were explant-cultured in Dulbeccos Modified Eagle Medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS). Cells from passage 3 were characterized morphologically by osteogenic and adipogenic differentiation potential and by flow cytometry for expression of mesenchymal (CD73, CD90, and CD105) and hematopoietic (CD34 and CD45) markers. The potential of OASCs for the expression of NGF, PI3K, and MAPK and to induce neurogenesis was assessed by real-time PCR.
Results:OASCs were spindle-shaped and positive for adipogenic and osteogenic induction. They were also positive for mesenchymal and negative for hematopoietic markers. They were positive for NGF expression in the absence of any significant alteration in the expression of PI3K and MAPK genes. Nasal OASCs had higher expression of CD90, higher potential for adipogenesis, a higher level of NGF expression under serum-free supplementation, and more potential for neuron-like morphology.
Conclusion:We suggested the explant method of culture as an easy and suitable method for the expansion of OASCs. Our findings denote mesenchymal properties of both central and nasal OASCs, while mesenchymal and neural characteristics were expressed stronger in nasal OASCs when compared to central ones. These findings can be added to the literature when cell transplantation is targeted in the treatment of neuro-retinal degenerative disorders.
About the authors
Fatemeh Sanie-Jahromi
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
M. Hossein Nowroozzadeh
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Mina Shaabanian
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Behzad Khademi
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Naser Owji
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Davood Mehrabani
Stem Cell Technology Research Center, Shiraz University of Medical Sciences
Email: info@benthamscience.net
References
- Miotti G, Parodi PC, Zeppieri M. Stem cell therapy in ocular pathologies in the past 20 years. World J Stem Cells 2021; 13(5): 366-85. doi: 10.4252/wjsc.v13.i5.366 PMID: 34136071
- Caras IW, Collins LR, Creasey AA. A stem cell journey in ophthalmology: From the bench to the clinic. Stem Cells Transl Med 2021; 10(12): 1581-7. doi: 10.1002/sctm.21-0239 PMID: 34515419
- Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration therapies for eye disorders: The state of the art. BioTech 2023; 12(2): 48. doi: 10.3390/biotech12020048 PMID: 37366796
- Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu Rev Chem Biomol Eng 2011; 2(1): 403-30. doi: 10.1146/annurev-chembioeng-061010-114257 PMID: 22432625
- Steindler DA, Okun MS, Scheffler B. Stem cell pathologies and neurological disease. Mod Pathol 2012; 25(2): 157-62. doi: 10.1038/modpathol.2011.165 PMID: 22056951
- Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784. doi: 10.3390/cells8080784 PMID: 31357692
- Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int 2012; 2012: 461718. doi: 10.1155/2012/461718
- Charbord P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045-56. doi: 10.1089/hum.2010.115 PMID: 20565251
- Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5): 1669-75. doi: 10.1182/blood-2003-05-1670 PMID: 14576065
- Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Whartons jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7. doi: 10.1634/stemcells.2004-0013 PMID: 15579650
- Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25. doi: 10.3892/ijmm.2015.2413 PMID: 26719857
- Mailey B, Hosseini A, Baker J, Young A, Alfonso Z, Hicok K. Adipose-derived stem cells: Methods for isolation and applications for clinical use. Methods Mol Biol 2014; 1210: 161-81. doi: 10.1007/978-1-4939-1435-7_13
- Trevor LV, Riches-Suman K, Mahajan AL, Thornton MJ. Adipose tissue: A source of stem cells with potential for regenerative therapies for wound healing. J Clin Med 2020; 9(7): 2161. doi: 10.3390/jcm9072161 PMID: 32650555
- Korn BS, Kikkawa DO, Hicok KC. Identification and characterization of adult stem cells from human orbital adipose tissue. Ophthal Plast Reconstr Surg 2009; 25(1): 27-32. doi: 10.1097/IOP.0b013e3181912292 PMID: 19273919
- Billon N, Iannarelli P, Monteiro MC, et al. The generation of adipocytes by the neural crest. Development 2007; 134(12): 2283-92. doi: 10.1242/dev.002642 PMID: 17507398
- Johnston MC, Noden DM, Hazelton RD, Coulombre JL, Coulombre AJ. Origins of avian ocular and periocular tissues. Exp Eye Res 1979; 29(1): 27-43. doi: 10.1016/0014-4835(79)90164-7 PMID: 510425
- Mawrie D, Bhattacharjee K, Sharma A, et al. Human orbital adipose tissue-derived mesenchymal stem cells possess neuroectodermal differentiation and repair ability. Cell Tissue Res 2019; 378(3): 531-42. doi: 10.1007/s00441-019-03072-0 PMID: 31377878
- Price PJ, Brewer GJ. Serum-free media for neural cell cultures. In: Fedoroff S, Richardson A, Eds. Springer Protocols Handbooks, Protocols for neural cell culture. New York: Springer, Humana Press 2001; pp. 255-64. doi: 10.1385/1-59259-207-4:255
- Gordon J, Amini S. General overview of neuronal cell culture. Methods Mol Biol 2021; 1078: 1-8. doi: 10.1007/978-1-0716-1437-2_1
- Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11(1): 345. doi: 10.1186/s13287-020-01855-9 PMID: 32771052
- Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic stem cell transplantation therapies. Regen Med 2012; 7(S6): 32-9. doi: 10.2217/rme.12.77 PMID: 23210809
- Samoila O, Samoila L. Stem cells in the path of light, from corneal to retinal reconstruction. Biomedicines 2021; 9(8): 873. doi: 10.3390/biomedicines9080873 PMID: 34440077
- Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: A status update! Stem Cell Res Ther 2014; 5(2): 56. doi: 10.1186/scrt445 PMID: 25158127
- Billon N, Monteiro MC, Dani C. Developmental origin of adipocytes: New insights into a pending question. Biol Cell 2008; 100(10): 563-75. doi: 10.1042/BC20080011 PMID: 18793119
- Chen SY, Mahabole M, Horesh E, Wester S, Goldberg JL, Tseng SCG. Isolation and characterization of mesenchymal progenitor cells from human orbital adipose tissue. Invest Ophthalmol Vis Sci 2014; 55(8): 4842-52. doi: 10.1167/iovs.14-14441 PMID: 24994870
- Priya N, Sarcar S, Majumdar AS, SundarRaj S. Explant culture: A simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9): 706-16. doi: 10.1002/term.1569 PMID: 22837175
- Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 2014; 7(2): 118-26. doi: 10.15283/ijsc.2014.7.2.118 PMID: 25473449
- Moraes DA, Sibov TT, Pavon LF, et al. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther 2016; 7(1): 97. doi: 10.1186/s13287-016-0359-3 PMID: 27465541
- Rege TA, Hagood JS. Thy‐1 as a regulator of cell‐cell and cell‐matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 2006; 20(8): 1045-54. doi: 10.1096/fj.05-5460rev PMID: 16770003
- Barboni E, Gormley AM, Pliego Rivero FB, Vidal M, Morris RJ. Activation of T lymphocytes by cross-linking of glycophospholipid-anchored Thy-1 mobilizes separate pools of intracellular second messengers to those induced by the antigen-receptor/CD3 complex. Immunology 1991; 72(4): 457-63. PMID: 1674734
- Morris RJ, Tiveron MC, Xue GP. The relation of the expression and function of the neuronal glycoprotein Thy-1 to axonal growth. Biochem Soc Trans 1992; 20(2): 401-5. doi: 10.1042/bst0200401 PMID: 1356856
- Jeng CJ, McCarroll SA, Martin TFJ, et al. Thy-1 is a component common to multiple populations of synaptic vesicles. J Cell Biol 1998; 140(3): 685-98. doi: 10.1083/jcb.140.3.685 PMID: 9456327
- Hueber A-O, Bernard A-M, Battari CLE, et al. Thymocytes in Thy-1−/− mice show augmented TCR signaling and impaired differentiation. Curr Biol 1997; 7(9): 705-8. doi: 10.1016/S0960-9822(06)00300-9 PMID: 9285719
- Lung HL, Bangarusamy DK, Xie D, et al. THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005; 24(43): 6525-32. doi: 10.1038/sj.onc.1208812 PMID: 16007174
- Abeysinghe H, Pollock SJ, Guckert NL, et al. The role of the THY1 gene in human ovarian cancer suppression based on transfection studies. Cancer Genet Cytogenet 2004; 149(1): 1-10. doi: 10.1016/S0165-4608(03)00234-6 PMID: 15104276
- Barker TH, Grenett HE, MacEwen MW, et al. Thy-1 regulates fibroblast focal adhesions, cytoskeletal organization and migration through modulation of p190 RhoGAP and Rho GTPase activity. Exp Cell Res 2004; 295(2): 488-96. doi: 10.1016/j.yexcr.2004.01.026 PMID: 15093746
- Zhou Y, Hagood JS, Murphy-Ullrich JE. Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-β in response to fibrogenic stimuli. Am J Pathol 2004; 165(2): 659-69. doi: 10.1016/S0002-9440(10)63330-5 PMID: 15277239
- Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 2005; 167(2): 365-79. doi: 10.1016/S0002-9440(10)62982-3 PMID: 16049324
- Phipps RP, Penney DP, Keng P, et al. Characterization of two major populations of lung fibroblasts: distinguishing morphology and discordant display of Thy 1 and class II MHC. Am J Respir Cell Mol Biol 1989; 1(1): 65-74. doi: 10.1165/ajrcmb/1.1.65 PMID: 2576218
- Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001; 24(1): 1217-81. doi: 10.1146/annurev.neuro.24.1.1217 PMID: 11520933
- Li B, Ning B, Yang F, Guo C. Nerve growth factor promotes retinal neurovascular unit repair: A review. Curr Eye Res 2022; 47(8): 1095-105. doi: 10.1080/02713683.2022.2055084 PMID: 35499266
- Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP, Cudnoch-Jędrzejewska A. Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: A review. Ophthalmic Res 2021; 64(3): 345-55. doi: 10.1159/000514441 PMID: 33454713
Supplementary files
