Progress of Cancer Stem Cells in Retinoblastoma


Cite item

Full Text

Abstract

The theory of cancer stem cells is a breakthrough discovery that offers exciting possibilities for comprehending the biological behavior of tumors. More and more evidence suggests that retinoblastoma cancer stem cells promote tumor growth and are likely to be the origin of tumor formation, drug resistance, recurrence, and metastasis. At present, some progress has been made in the verification, biological behavior, and drug resistance mechanism of retinoblastoma cancer stem cells. This article aims to review the relevant research and explore future development direction.

About the authors

Nan Wang

Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University

Email: info@benthamscience.net

Jian-Min Ma

Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Tang Z, Ma H, Mao Y, et al. Identification of stemness in primary retinoblastoma cells by analysis of stem-cell phenotypes and tumorigenicity with culture and xenograft models. Exp Cell Res 2019; 379(1): 110-8. doi: 10.1016/j.yexcr.2019.03.034 PMID: 30935947
  2. Deegan WF. Emerging strategies for the treatment of retinoblastoma. Curr Opin Ophthalmol 2003; 14(5): 291-5. doi: 10.1097/00055735-200310000-00010 PMID: 14502057
  3. Knudson AG Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci 1971; 68(4): 820-3. doi: 10.1073/pnas.68.4.820 PMID: 5279523
  4. Sachdeva UM, O’Brien JM. Understanding pRb: Toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 2012; 122(2): 425-34. doi: 10.1172/JCI57114 PMID: 22293180
  5. Wong JR, Morton LM, Tucker MA, et al. Risk of subsequent malignant neoplasms in long-term hereditary retinoblastoma survivors after chemotherapy and radiotherapy. J Clin Oncol 2014; 32(29): 3284-90. doi: 10.1200/JCO.2013.54.7844 PMID: 25185089
  6. Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12: 963780. doi: 10.3389/fonc.2022.963780 PMID: 36408154
  7. Abramson DH, Frank CM. Second nonocular tumors in survivors of bilateral retinoblastoma. Ophthalmology 1998; 105(4): 573-80. doi: 10.1016/S0161-6420(98)94006-4 PMID: 9544627
  8. Rushlow DE, Mol BM, Kennett JY, et al. Characterisation of retinoblastomas without RB1 mutations: Genomic, gene expression, and clinical studies. Lancet Oncol 2013; 14(4): 327-34. doi: 10.1016/S1470-2045(13)70045-7 PMID: 23498719
  9. Cassoux N, Lumbroso L, Levy-Gabriel C, Aerts I, Doz F, Desjardins L. Retinoblastoma: Update on current management. Asia Pac J Ophthalmol 2017; 6(3): 290-5. PMID: 28558178
  10. Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma. Nat Rev Dis Primers 2015; 1(1): 15021. doi: 10.1038/nrdp.2015.21 PMID: 27189421
  11. Chantada GL, Qaddoumi I, Canturk S, et al. Strategies to manage retinoblastoma in developing countries. Pediatr Blood Cancer 2011; 56(3): 341-8. doi: 10.1002/pbc.22843 PMID: 21225909
  12. Warda O, Naeem Z, Roelofs KA, Sagoo MS, Reddy MA. Retinoblastoma and vision. Eye 2022; 37(5): 797-808. PMID: 34987197
  13. Zhou C, Wen X, Ding Y, et al. Eye-preserving therapies for advanced retinoblastoma. Ophthalmology 2022; 129(2): 209-19. doi: 10.1016/j.ophtha.2021.09.002 PMID: 34536465
  14. Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of intraocular retinoblastoma with vincristine and carboplatin. J Clin Oncol 2003; 21(10): 2019-25. doi: 10.1200/JCO.2003.09.103 PMID: 12743157
  15. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34. doi: 10.1038/nm.4409 PMID: 28985214
  16. Hewitt HB. Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br J Cancer 1958; 12(3): 378-401. doi: 10.1038/bjc.1958.47 PMID: 13596492
  17. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-8. doi: 10.1038/367645a0 PMID: 7509044
  18. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11. doi: 10.1038/35102167 PMID: 11689955
  19. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 2003; 100(7): 3983-8. doi: 10.1073/pnas.0530291100 PMID: 12629218
  20. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66(19): 9339-44. doi: 10.1158/0008-5472.CAN-06-3126 PMID: 16990346
  21. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature 2012; 488(7412): 527-30. doi: 10.1038/nature11344 PMID: 22854777
  22. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14(3): 275-91. doi: 10.1016/j.stem.2014.02.006 PMID: 24607403
  23. Jia M, Wei Z, Liu P, Zhao X. Silencing of ABCG2 by MicroRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. J Korean Med Sci 2016; 31(6): 836-42. doi: 10.3346/jkms.2016.31.6.836 PMID: 27247490
  24. Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev 2020; 49(22): 7856-78. doi: 10.1039/D0CS00379D PMID: 32633291
  25. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781. doi: 10.1016/j.lfs.2019.116781 PMID: 31430455
  26. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8(7): 545-54. doi: 10.1038/nrc2419 PMID: 18511937
  27. Marx J. Cancer research. Mutant stem cells may seed cancer. Science 2003; 301(5638): 1308-10. doi: 10.1126/science.301.5638.1308 PMID: 12958339
  28. Soda Y, Marumoto T, Friedmann-Morvinski D, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci 2011; 108(11): 4274-80. doi: 10.1073/pnas.1016030108 PMID: 21262804
  29. Seigel GM. Differentiation potential of human retinoblastoma cells. Curr Pharm Biotechnol 2011; 12(2): 213-6. doi: 10.2174/138920111794295846 PMID: 21044005
  30. Shimokawa M, Ohta Y, Nishikori S, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 2017; 545(7653): 187-92. doi: 10.1038/nature22081 PMID: 28355176
  31. Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 2017; 16(1): 41. doi: 10.1186/s12943-017-0600-4 PMID: 28209166
  32. Quayle LA, Ottewell PD, Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention. Clin Exp Metastasis 2018; 35(8): 831-46. doi: 10.1007/s10585-018-9946-2 PMID: 30377878
  33. Sancho P, Burgos-Ramos E, Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 2015; 22(4): 590-605. doi: 10.1016/j.cmet.2015.08.015 PMID: 26365176
  34. Yokoi E, Mabuchi S, Shimura K, et al. Lurbinectedin (PM01183), a selective inhibitor of active transcription, effectively eliminates both cancer cells and cancer stem cells in preclinical models of uterine cervical cancer. Invest New Drugs 2019; 37(5): 818-27. doi: 10.1007/s10637-018-0686-6 PMID: 30374654
  35. Oshimori N, Oristian D, Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 2015; 160(5): 963-76. doi: 10.1016/j.cell.2015.01.043 PMID: 25723170
  36. Kurtova AV, Xiao J, Mo Q, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015; 517(7533): 209-13. doi: 10.1038/nature14034 PMID: 25470039
  37. Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci 2009; 106(33): 13820-5. doi: 10.1073/pnas.0905718106 PMID: 19666588
  38. Ma B, Lei X, Guan Y, et al. Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncol Rep 2011; 26(1): 135-43. J. PMID: 21573498
  39. Kelland L. Targeting the limitless replicative potential of cancer: The telomerase/telomere pathway. Clin Cancer Res 2007; 13(17): 4960-3. doi: 10.1158/1078-0432.CCR-07-0422 PMID: 17785545
  40. Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015; 6(12): e2020. doi: 10.1038/cddis.2015.363 PMID: 26673665
  41. Zhang M, Mathur A, Zhang Y, et al. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res 2012; 72(16): 4178-92. doi: 10.1158/0008-5472.CAN-11-3983 PMID: 22751465
  42. Kipp AP, Deubel S, Arnér ESJ, Johansson K. Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-κB activities in 3D spheroids enriched for cancer stem cells. Redox Biol 2017; 12: 403-9. doi: 10.1016/j.redox.2017.03.013 PMID: 28319891
  43. Chefetz I, Grimley E, Yang K, et al. A Pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep 2019; 26(11): 3061-3075.e6. doi: 10.1016/j.celrep.2019.02.032 PMID: 30865894
  44. Yip NC, Fombon IS, Liu P, et al. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 2011; 104(10): 1564-74. doi: 10.1038/bjc.2011.126 PMID: 21487404
  45. Najafi M, Mortezaee K, Ahadi R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 2019; 231: 116520. doi: 10.1016/j.lfs.2019.05.076 PMID: 31158379
  46. Bayik D, Lathia JD. Cancer stem cell–immune cell crosstalk in tumour progression. Nat Rev Cancer 2021; 21(8): 526-36. doi: 10.1038/s41568-021-00366-w PMID: 34103704
  47. Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma. Mol Vis 2005; 11(11): 729-37. PMID: 16179903
  48. Gail MS, Abigail SH, Arupa G, Lorrie MM, Gonzalez-Fernandez F. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 2007; 13: 823-32.
  49. Zhong X, Li Y, Peng F, et al. Identification of tumorigenic retinal stem like cells in human solid retinoblastomas. Int J Cancer 2007; 121(10): 2125-31. doi: 10.1002/ijc.22880 PMID: 17565741
  50. Vemuganti GK, Nair RM, Revu NVL, et al. A short-term chick embryo in vivo xenograft model to study retinoblastoma cancer stem cells. Indian J Ophthalmol 2022; 70(5): 1703-11. doi: 10.4103/ijo.IJO_2348_21 PMID: 35502056
  51. Austin Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47): 7340-58. doi: 10.1038/sj.onc.1206938 PMID: 14576842
  52. Bhattacharya S, Das A, Mallya K, Ahmad I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci 2007; 120(15): 2652-62. doi: 10.1242/jcs.008417 PMID: 17635990
  53. Mohan A, Kandalam M, Ramkumar HL, Gopal L, Krishnakumar S. Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma. Br J Ophthalmol 2006; 90(7): 889-93. doi: 10.1136/bjo.2005.089219 PMID: 16556617
  54. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8. J. PMID: 14522905
  55. Jang JW, Song Y, Kim SH, Kim J, Seo HR. Potential mechanisms of CD133 in cancer stem cells. Life Sci 2017; 184: 25-9. doi: 10.1016/j.lfs.2017.07.008 PMID: 28697984
  56. Hu H, Deng F, Liu Y, et al. Characterization and retinal neuron differentiation of WERI-Rb1 cancer stem cells. Mol Vis 2012; 18: 2388-97. J. PMID: 23049239
  57. Nair RM, Balla MMS, Khan I, Kalathur RKR, Kondaiah P, Vemuganti GK. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer 2017; 17(1): 779. doi: 10.1186/s12885-017-3750-2 PMID: 29162051
  58. Balla MMS, Vemuganti GK, Kannabiran C, Honavar SG, Murthy R. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci 2009; 50(4): 1506-14. doi: 10.1167/iovs.08-2356 PMID: 19029022
  59. Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39(3): 969-87. doi: 10.1007/s10555-020-09898-3 PMID: 32507912
  60. Mitra M, Kandalam M, Harilal A, et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy. Mol Vis 2012; 18: 290-308. PMID: 22328825
  61. Krishnakumar S, Mohan A, Mallikarjuna K, et al. EpCAM expression in retinoblastoma: A novel molecular target for therapy. Invest Ophthalmol Vis Sci 2004; 45(12): 4247-50. doi: 10.1167/iovs.04-0591 PMID: 15557427
  62. Mitra M, Kandalam M, Verma RS, UmaMaheswari K, Krishnakumar S. Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis 2010; 16: 828-42. J. PMID: 20461151
  63. Qiang L, Yang Y, Ma YJ, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 2009; 279(1): 13-21. doi: 10.1016/j.canlet.2009.01.016 PMID: 19232461
  64. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028-34. doi: 10.1038/nm0901-1028 PMID: 11533706
  65. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035): 843-50. doi: 10.1038/nature03319 PMID: 15829953
  66. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461-73. doi: 10.1038/onc.2016.304 PMID: 27617575
  67. Silva AK, Yi H, Hayes SH, Seigel GM, Hackam AS. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: A potential role for the canonical Wnt signaling pathway. Mol Vis 2010; 16: 36-45. J. PMID: 20069066
  68. Tell S, Yi H, Jockovich ME, Murray TG, Hackam AS. The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. Biochem Biophys Res Commun 2006; 349(1): 261-9. doi: 10.1016/j.bbrc.2006.08.044 PMID: 16930536
  69. Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2020; 67(Pt 1): 74-82. doi: 10.1016/j.semcancer.2019.08.007 PMID: 31412296
  70. Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211-26. doi: 10.1038/s41580-018-0086-y PMID: 30546055
  71. Zhou B, Lin W, Long Y, et al. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7(1): 95. doi: 10.1038/s41392-022-00934-y PMID: 35332121
  72. Xiao W, Chen X, He M. Inhibition of the Jagged/Notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, Src, p38MAPK and Wnt/β-catenin signaling pathways. Mol Med Rep 2014; 10(1): 453-8. doi: 10.3892/mmr.2014.2213 PMID: 24805975
  73. Asnaghi L, Tripathy A, Yang Q, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget 2016; 7(43): 70028-44. doi: 10.18632/oncotarget.12142 PMID: 27661116
  74. Zhao N, Zhou L, Lu Q, et al. SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res 2021; 214: 108887.
  75. Dong C, Liu S, Lv Y, et al. Long non-coding RNA HOTAIR regulates proliferation and invasion via activating Notch signalling pathway in retinoblastoma. J Biosci 2016; 41(4): 677-87. doi: 10.1007/s12038-016-9636-7 PMID: 27966488
  76. Gao Y, Luo X, Zhang J. LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther 2021; 28(1-2): 42-54. doi: 10.1038/s41417-020-0181-z PMID: 32439866
  77. Zhang S, Cui Z. MicroRNA 34b 5p inhibits proliferation, stemness, migration and invasion of retinoblastoma cells via Notch signaling. Exp Ther Med 2021; 21(3): 255. doi: 10.3892/etm.2021.9686 PMID: 33603862
  78. Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol 2014; 70: 572-82. doi: 10.1016/j.ijbiomac.2014.07.041 PMID: 25088498
  79. Narayana RVL, Jana P, Tomar N, et al. Carboplatin- and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro. Invest Ophthalmol Vis Sci 2021; 62(14): 13. doi: 10.1167/iovs.62.14.13 PMID: 34784412
  80. Katchinskiy N, Godbout R, Hatef A, Elezzabi AY. Anti-EpCAM gold nanorods and femtosecond laser pulses for targeted lysis of retinoblastoma. Adv Ther 2018; 1(1): 1800009. doi: 10.1002/adtp.201800009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers