Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process


Cite item

Full Text

Abstract

Background:Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes.

Methods:In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used.

Results:MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size.

Conclusion:CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.

About the authors

Mojtaba Cheravi

Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University

Email: info@benthamscience.net

Javad Baharara

Department of Biology and Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University

Author for correspondence.
Email: info@benthamscience.net

Parichehreh Yaghmaei

Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University

Email: info@benthamscience.net

Nasim Roudbari

Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University

Email: info@benthamscience.net

References

  1. Wang Y, Yin P, Bian GL, et al. The combination of stem cells and tissue engineering: An advanced strategy for blood vessels regeneration and vascular disease treatment. Stem Cell Res Ther 2017; 8(1): 194. doi: 10.1186/s13287-017-0642-y PMID: 28915929
  2. Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 2017; 12(8): 1600671. doi: 10.1002/biot.201600671 PMID: 28544779
  3. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85. doi: 10.1038/nbt.2958 PMID: 25093879
  4. Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther 2016; 3: 45-57. doi: 10.1016/j.reth.2016.02.007 PMID: 31245472
  5. Forcales SV. Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci 2015; 7: 123. doi: 10.3389/fnagi.2015.00123 PMID: 26217219
  6. Scioli M, Bielli A, Gentile P, Mazzaglia D, Cervelli V, Orlandi A. The biomolecular basis of adipogenic differentiation of adipose-derived stem cells. Int J Mol Sci 2014; 15(4): 6517-26. doi: 10.3390/ijms15046517 PMID: 24743893
  7. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
  8. McGough IJ, Vincent JP. Exosomes in developmental signalling. Development 2016; 143(14): 2482-93. doi: 10.1242/dev.126516 PMID: 27436038
  9. Stuendl A, Kunadt M, Kruse N, et al. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016; 139(2): 481-94. doi: 10.1093/brain/awv346 PMID: 26647156
  10. Farivar S, Mohamadzade Z, Shiari R, Fahimzad A. Neural differentiation of human umbilical cord mesenchymal stem cells by cerebrospinal fluid. Iran J Child Neurol 2015; 9(1): 87-93. PMID: 25767544
  11. Lin HR, Heish CW, Liu CH, et al. Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Sci Rep 2017; 7(1): 40069. doi: 10.1038/srep40069 PMID: 28071738
  12. Galateanu B, Dimonie D, Vasile E, Nae S, Cimpean A, Costache M. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells. BMC Biotechnol 2012; 12(1): 35. doi: 10.1186/1472-6750-12-35 PMID: 22748201
  13. Park J, Lee SJ, Chung S, et al. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Mater Sci Eng C 2017; 71: 678-84. doi: 10.1016/j.msec.2016.10.069 PMID: 27987760
  14. Ozbolat IT, Chen H, Yu Y. Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput-Integr Manuf 2014; 30(3): 295-304. doi: 10.1016/j.rcim.2013.10.005
  15. Takeda YS, Xu Q. Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 2015; 10(8): e0135111. doi: 10.1371/journal.pone.0135111 PMID: 26248331
  16. Zhou J, Ghoroghi S, Benito-Martin A, et al. Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content. Sci Rep 2016; 6(1): 19743. doi: 10.1038/srep19743 PMID: 26797168
  17. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: Oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol 2016; 142(1): 101-10. doi: 10.1007/s00432-015-2005-3 PMID: 26115960
  18. Soares Martins T, Catita J, Martins Rosa I, A B da Cruz E Silva O, Henriques AG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 2018; 13(6): e0198820. doi: 10.1371/journal.pone.0198820 PMID: 29889903
  19. Torreggiani E, Perut F, Roncuzzi L, Zini N, Baglìo SR, Baldini N. Exosomes: novel effectors of human platelet lysate activity. Eur Cell Mater 2014; 28: 137-51. doi: 10.22203/eCM.v028a11 PMID: 25241964
  20. Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8(12): e84256. doi: 10.1371/journal.pone.0084256 PMID: 24391924
  21. Razavi S, Jahromi M, Amirpour N, Khosravizadeh Z. Effect of sertraline on proliferation and neurogenic differentiation of human adipose-derived stem cells. Adv Biomed Res 2014; 3(1): 97. doi: 10.4103/2277-9175.129367 PMID: 24800186
  22. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014; 35(1): 49-62. doi: 10.1016/j.biomaterials.2013.09.078 PMID: 24112804
  23. Khosravizadeh Z, Razavi S, Bahramian H, Kazemi M. The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation. J Biomed Mater Res B Appl Biomater 2014; 102(4): 749-55. doi: 10.1002/jbm.b.33055 PMID: 24142904
  24. Razavi S, Khosravizadeh Z, Bahramian H, Kazemi M. Time-dependent effect of encapsulating alginate hydrogel on neurogenic potential. Cell J 2015; 17(2): 304-11. PMID: 26199909
  25. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35(24): 6143-56. doi: 10.1016/j.biomaterials.2014.04.064 PMID: 24818883
  26. Zhang J, Liu Y, Chen Y, et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int 2020; 2020: 1-26. doi: 10.1155/2020/8810813 PMID: 33488736
  27. Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 2021; 19(5): 264. doi: 10.3390/md19050264 PMID: 34068547
  28. Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater 2014; 10(10): 4323-31. doi: 10.1016/j.actbio.2014.06.034 PMID: 24998183
  29. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 2015; 7(4): 045012. doi: 10.1088/1758-5090/7/4/045012 PMID: 26689257
  30. Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5(2): 020901. doi: 10.1063/5.0032196 PMID: 33834152
  31. Hamzah RN, Alghazali KM, Biris AS, Griffin RJ. Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci 2021; 22(10): 5346. doi: 10.3390/ijms22105346 PMID: 34069542
  32. Hou BR, Jiang C, Wang ZN, Ren HJ. Exosome-mediated crosstalk between microglia and neural stem cells in the repair of brain injury. Neural Regen Res 2020; 15(6): 1023-4. doi: 10.4103/1673-5374.270302 PMID: 31823874
  33. Yoo Y, Lee J, Kim H, Hwang K, Yoon D, Lee J. Toward exosome-based neuronal diagnostic devices. Micromachines 2018; 9(12): 634. doi: 10.3390/mi9120634 PMID: 30501125
  34. Ngolab J, Trinh I, Rockenstein E, et al. Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol Commun 2017; 5(1): 46. doi: 10.1186/s40478-017-0445-5 PMID: 28599681
  35. Giorgi Silveira R, Perelló Ferrúa C, do Amaral CC, Fernandez Garcia T, de Souza KB, Nedel F. MicroRNAs expressed in neuronal differentiation and their associated pathways: Systematic review and bioinformatics analysis. Brain Res Bull 2020; 157: 140-8. doi: 10.1016/j.brainresbull.2020.01.009 PMID: 31945407
  36. Yagi Y, Ohkubo T, Kawaji H, et al. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett 2017; 636: 48-57. doi: 10.1016/j.neulet.2016.10.042 PMID: 27780738
  37. Yuan P, Ding L, Chen H, et al. Neural stem cell-derived exosomes regulate neural stem cell differentiation through miR-9-Hes1 axis. Front Cell Dev Biol 2021; 9: 601600. doi: 10.3389/fcell.2021.601600 PMID: 34055767
  38. Cui Y, Xiao Z, Han J, et al. MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neurosci 2012; 13(1): 116. doi: 10.1186/1471-2202-13-116 PMID: 23016664

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers