Meta-analysis of the Mesenchymal Stem Cells Immortalization Protocols: A Guideline for Regenerative Medicine


Дәйексөз келтіру

Толық мәтін

Аннотация

Background::This systematic review describes the most common methodologies for immortalizing human and animal mesenchymal stem cells (MSCs). This study follows the rules of PRISMA and is registered in the Institutional Review Board of PROSPERO International of systematic reviews, numbered protocol code: CRD42020202465.

Method::The data search systematization was based on the words "mesenchymal stem cell" AND "immortalization." The search period for publications was between 2000 and 2022, and the databases used were SCOPUS, PUBMED, and SCIENCE DIRECT. The search strategies identified 384 articles: 229 in the SCOPUS database, 84 in PUBMED, and 71 in SCIENCE DIRECT. After screening by titles and abstracts, 285 articles remained. This review included thirty-nine articles according to the inclusion and exclusion criteria.

Result::In 28 articles, MSCs were immortalized from humans and 11 animals. The most used immortalization methodology was viral transfection. The most common immortalized cell type was the MSC from bone marrow, and the most used gene for immortalizing human and animal MSCs was hTERT (39.3%) and SV40T (54.5%), respectively.

Conclusion::Also, it was observed that although less than half of the studies performed tumorigenicity assays to validate the immortalized MSCs, other assays, such as qRT-PCR, colony formation in soft agar, karyotype, FISH, and cell proliferation, were performed in most studies on distinct MSC cell passages.

Авторлар туралы

Priscila Elias Ferreira Stricker

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Nathalia de Oliveira

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Bassam Felipe Mogharbel

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Larissa Lührs

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Ana Irioda

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Eltyeb Abdelwahid

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Luciane Regina Cavalli

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Email: info@benthamscience.net

Idiberto Zotarelli-Filho

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Katherine de Carvalho

, Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2008; 2(4): 313-9. doi: 10.1016/j.stem.2008.03.002 PMID: 18397751
  2. Carvalho KAT, Cunha RC, Vialle EN, et al. Functional outcome of bone marrow stem cells (CD45(+)/CD34(-)) after cell therapy in acute spinal cord injury: In exercise training and in sedentary rats. Transplant Proc 2008; 40(3): 847-9. doi: 10.1016/j.transproceed.2008.02.055 PMID: 18455034
  3. Monteiro BS, Neto NMA, Del Carlo RJ. Mesenchymal stem cell. Cienc Rural 2010; 40.
  4. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7. doi: 10.1080/14653240600855905 PMID: 16923606
  5. Salem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells 2010; 28(3): 585-96. doi: 10.1002/stem.269 PMID: 19967788
  6. Jin H, Bae Y, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013; 14(9): 17986-8001. doi: 10.3390/ijms140917986 PMID: 24005862
  7. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Analyzing cells, molecules and systemsMolecular Biology of the Cell 6th. Artmed: Porto Alegre 2017.
  8. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100(9): 1249-60. doi: 10.1161/01.RES.0000265074.83288.09 PMID: 17495232
  9. Moscoso I, Rodriguez-Barbosa JI, Barallobre-Barreiro J, Anon P, Domenech N. Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers. J Tissue Eng Regen Med 2012; 6(8): 655-65. doi: 10.1002/term.469 PMID: 22162515
  10. Liu TM, Ng WM, Tan HS, et al. Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev 2013; 22(2): 268-78. doi: 10.1089/scd.2012.0222 PMID: 22765508
  11. Hu X, Li L, Yu X, et al. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 2017; 8(67): 111847-65. doi: 10.18632/oncotarget.22915 PMID: 29340096
  12. Stepanenko AA, Kavsan VM. Immortalization and malignant transformation of Eukaryotic cells. Cytol Genet 2012; 46(2): 96-129. doi: 10.3103/S0095452712020041 PMID: 22679821
  13. Freshney RI. Transformation and Immortalization. In: Culture of Animal Cells. Wiley Online Library 2011; pp. 279-97.
  14. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928. doi: 10.1136/bmj.d5928 PMID: 22008217
  15. Lenz LS, Wink MR. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Hum Cell 2023; 36(5): 1593-603. doi: 10.1007/s13577-023-00925-3 PMID: 37341871
  16. Zhao Q, Larios K, Naaldijk Y, et al. Mesenchymal stem cell secretome alters gene expression and upregulates motility of human endometrial stromal cells. Reproduction 2023; 166(2): 161-74. doi: 10.1530/REP-22-0485 PMID: 37252830
  17. Strenzke M, Alberton P, Aszodi A, et al. Tenogenic contribution to skeletal muscle regeneration: the secretome of scleraxis overexpressing mesenchymal stem cells enhances myogenic differentiation In Vitro. Int J Mol Sci 2020; 21(6): 1965. doi: 10.3390/ijms21061965 PMID: 32183051
  18. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 1970; 3(4): 393-403. doi: 10.1111/j.1365-2184.1970.tb00347.x PMID: 5523063
  19. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006; 8(2): 166-77. doi: 10.1080/14653240600621125 PMID: 16698690
  20. Iftimia-Mander A, Hourd P, Dainty R, Thomas RJ. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization. Biopreserv Biobank 2013; 11(5): 291-8. doi: 10.1089/bio.2013.0027 PMID: 24835260
  21. Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006; 30(9): 681-7. doi: 10.1016/j.cellbi.2006.03.009 PMID: 16870478
  22. Li C, Wu X, Tong J, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 2015; 6(1): 55. doi: 10.1186/s13287-015-0066-5 PMID: 25884704
  23. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25. doi: 10.3892/ijmm.2015.2413 PMID: 26719857
  24. Burrow KL, Hoyland JA, Richardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion In Vitro. Stem Cells Int 2017; 2017: 2541275. doi: 10.1155/2017/2541275
  25. Kaneto CM, Pereira Lima PS, Prata KL, et al. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation. Eur J Med Genet 2017; 60(6): 326-34. doi: 10.1016/j.ejmg.2017.04.003 PMID: 28396251
  26. Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74. doi: 10.4252/wjsc.v11.i6.347 PMID: 31293717
  27. Laroye C, Boufenzer A, Jolly L, et al. Bone marrow vs Wharton’s jelly mesenchymal stem cells in experimental sepsis: A comparative study. Stem Cell Res Ther 2019; 10(1): 192. doi: 10.1186/s13287-019-1295-9 PMID: 31248453
  28. Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019; 203: 96-110. doi: 10.1016/j.biomaterials.2018.06.026 PMID: 29980291
  29. Katakura Y, Alam S, Shirahata S. Immortalization by gene transfection. Methods Cell Biol 1998; 57: 69-91. doi: 10.1016/S0091-679X(08)61573-3 PMID: 9648100
  30. Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev 1999; 9(1): 97-103. doi: 10.1016/S0959-437X(99)80014-8 PMID: 10072358
  31. Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 2002; 97(2-3): 159-72. doi: 10.1016/S0301-4622(02)00057-1 PMID: 12050007
  32. Davis HE, Rosinski M, Morgan JR, Yarmush ML. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 2004; 86(2): 1234-42. doi: 10.1016/S0006-3495(04)74197-1 PMID: 14747357
  33. Wu L, Feng J, Wang L, et al. Immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines preserve odontoblastic phenotype and respond to BMP2. J Cell Physiol 2010; 225(1): 132-9. doi: 10.1002/jcp.22204 PMID: 20458728
  34. Gong M, Bi Y, Jiang W, et al. Immortalized mesenchymal stem cells: An alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies. J Biomed Sci 2011; 18(1): 87. doi: 10.1186/1423-0127-18-87 PMID: 22118013
  35. Garba A, Acar DD, Roukaerts IDM, Desmarets LMB, Devriendt B, Nauwynck HJ. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells. Vet Immunol Immunopathol 2017; 191: 44-50. a doi: 10.1016/j.vetimm.2017.08.002 PMID: 28895865
  36. Garba A, Desmarets LMB, Acar DD, Devriendt B, Nauwynck HJ. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells. PLoS One 2017; 12(10): e0186343. b doi: 10.1371/journal.pone.0186343 PMID: 29036224
  37. Fang J, Wei Y, Teng X, Zhao S, Hua J. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation. J Cell Biochem 2018; 119(4): 3663-70. doi: 10.1002/jcb.26574 PMID: 29231997
  38. Calle A, López-Martín S, Monguió-Tortajada M, Borràs FE, Yáñez-Mó M, Ramírez MÁ. Bovine endometrial MSC: Mesenchymal to epithelial transition during luteolysis and tropism to implantation niche for immunomodulation. Stem Cell Res Ther 2019; 10(1): 23. doi: 10.1186/s13287-018-1129-1 PMID: 30635057
  39. Dale TP, de Castro A, Kuiper NJ, Parkinson EK, Forsyth NR. Immortalisation with hTERT impacts on sulphated glycosaminoglycan secretion and immunophenotype in a variable and cell specific manner. PLoS One 2015; 10(7): e0133745. doi: 10.1371/journal.pone.0133745 PMID: 26196672
  40. Gao K, Lu YR, Wei LL, et al. Immortalization of mesenchymal stem cells from bone marrow of rhesus monkey by transfection with human telomerase reverse transcriptase gene. Transplant Proc 2008; 40(2): 634-7. doi: 10.1016/j.transproceed.2008.01.053 PMID: 18374149
  41. Wei LL, Gao K, Liu PQ, et al. Mesenchymal stem cells from Chinese Guizhou minipig by hTERT gene transfection. Transplant Proc 2008; 40(2): 547-50. doi: 10.1016/j.transproceed.2008.01.028 PMID: 18374125
  42. Cao H, Chu Y, Zhu H, et al. Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 2011; 44(1): 19-32. doi: 10.1111/j.1365-2184.2010.00714.x PMID: 21199007
  43. Chu MS, Chang CF, Yang CC, Bau YC, Ho LLT, Hung SC. Signalling pathway in the induction of neurite outgrowth in human mesenchymal stem cells. Cell Signal 2006; 18(4): 519-30. doi: 10.1016/j.cellsig.2005.05.018 PMID: 16098715
  44. Yamaoka E, Hiyama E, Sotomaru Y, et al. Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells. Int J Oncol 2011; 39(1): 5-11. PMID: 21573488
  45. Siska EK, Weisman I, Romano J, et al. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring. PLoS One 2017; 12(9): e0185498. doi: 10.1371/journal.pone.0185498 PMID: 28949988
  46. Göbel C, Goetzke R, Eggermann T, Wagner W, Gobel C, Goetzke R, et al. Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep 2018; 8(1): 11676. doi: 10.1038/s41598-018-30069-6 PMID: 30076334
  47. Zheng Y, He L, Wan Y, Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: An epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2013; 22(2): 256-67. doi: 10.1089/scd.2012.0172 PMID: 22873822
  48. Romagosa C, Simonetti S, López-Vicente L, et al. p16Ink4a overexpression in cancer: A tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011; 30(18): 2087-97. doi: 10.1038/onc.2010.614 PMID: 21297668
  49. Shu Y, Yang C, Ji X, et al. Reversibly immortalized human umbilical cord–derived mesenchymal stem cells (UC-MSCs) are responsive to BMP9-induced osteogenic and adipogenic differentiation. J Cell Biochem 2018; 119(11): 8872-86. doi: 10.1002/jcb.27140 PMID: 30076626
  50. Lee HJ, Choi JH, Jung J, Kim JK, Lee SS, Kim GJ. Changes in PTTG1 by human TERT gene expression modulate the self-renewal of placenta-derived mesenchymal stem cells. Cell Tissue Res 2014; 357(1): 145-57. doi: 10.1007/s00441-014-1874-0 PMID: 24816985
  51. Hung CJ, Yao CL, Cheng FC, Wu ML, Wang TH, Hwang SM. Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy 2010; 12(4): 455-65. doi: 10.3109/14653240903555827 PMID: 20230225
  52. Potter H, Heller R. Transfection by electroporation. Curr Protoc Mol Biol 2018; 121: 9.3.1-9.3.13. doi: 10.1002/cpmb.48
  53. Grandinetti G, Reineke TM. Exploring the mechanism of plasmid DNA nuclear internalization with polymer-based vehicles. Mol Pharm 2012; 9(8): 2256-67. doi: 10.1021/mp300142d PMID: 22715912
  54. Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells 2009; 27(5): 1050-6. doi: 10.1002/stem.37 PMID: 19415771

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024