A Monocytic Barrier to the Humanization of Immunodeficient Mice


Cite item

Full Text

Abstract

Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells – monocytes, macrophages, and dendritic cells – in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.

About the authors

Emily Du

, Vitalant Research Institute

Email: info@benthamscience.net

Marcus Muench

, Vitalant Research Institute

Author for correspondence.
Email: info@benthamscience.net

References

  1. Goyama S, Wunderlich M, Mulloy JC. Xenograft models for normal and malignant stem cells. Blood 2015; 125(17): 2630-40. doi: 10.1182/blood-2014-11-570218 PMID: 25762176
  2. Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215(3): 729-43. doi: 10.1084/jem.20172139 PMID: 29453226
  3. Mehler VJ, Burns C, Moore ML. Concise review: Exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models. Stem Cells 2019; 37(3): 298-305. doi: 10.1002/stem.2948 PMID: 30395373
  4. Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun 2019; 2: 100021. doi: 10.1016/j.jtauto.2019.100021 PMID: 32743507
  5. Tyagi AM, Yu M, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via t regulatory cell-mediated regulation of WNT10B expression. Immunity 2018; 49(6): 1116-1131.e7. doi: 10.1016/j.immuni.2018.10.013 PMID: 30446387
  6. Minkah NK, Schafer C, Kappe SHI. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front Immunol 2018; 9: 807. doi: 10.3389/fimmu.2018.00807 PMID: 29725334
  7. Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis 2016; 49: 29-38. doi: 10.1016/j.cimid.2016.08.006 PMID: 27865261
  8. Kremsdorf D, Strick-Marchand H. Modeling hepatitis virus infections and treatment strategies in humanized mice. Curr Opin Virol 2017; 25: 119-25. doi: 10.1016/j.coviro.2017.07.029 PMID: 28858692
  9. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol 2012; 12(11): 786-98. doi: 10.1038/nri3311 PMID: 23059428
  10. McIntosh BE, Brown ME. No irradiation required: The future of humanized immune system modeling in murine hosts. Chimerism 2015; 6(1-2): 40-5. doi: 10.1080/19381956.2016.1162360 PMID: 27171577
  11. Brehm MA, Shultz LD, Luban J, Greiner DL. Overcoming current limitations in humanized mouse research. J Infect Dis 2013; 208(S2): S125-30. doi: 10.1093/infdis/jit319
  12. Blessinger SA, Tran JQ, Jackman RP, et al. Immunodeficient mice are better for modeling the transfusion of human blood components than wild-type mice. PLoS One 2020; 15(7): e0237106. doi: 10.1371/journal.pone.0237106 PMID: 32735605
  13. Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest 2013; 123(8): 3472-87. doi: 10.1172/JCI60561 PMID: 23867505
  14. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265(5178): 1573-7. doi: 10.1126/science.8079170 PMID: 8079170
  15. Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966; 8(3): 295-309. doi: 10.1017/S0016672300010168 PMID: 5980117
  16. Pantelouris EM. Absence of thymus in a mouse mutant. Nature 1968; 217(5126): 370-1. doi: 10.1038/217370a0 PMID: 5639157
  17. Eckels DD, Gershwin ME, Drago J, Faulkin L. Comparative patterns of serum immunoglobulin levels in specific-pathogen-free congenitally athymic (nude), hereditarily asplenic (Dh/+), congenitally athymic-asplenic (lasat) and splenectomized athymic mice. Immunology 1979; 37(4): 777-83. PMID: 159256
  18. Lozzio BB. The lasat mouse: a new model for transplantation of human tissues. Biomedicine (Paris) 1976; 24(3): 144-7. PMID: 11005
  19. Gershwin ME, Ikeda RM, Erickson K, Owens R. Enhancement of heterotransplanted human tumor graft survival in nude mice treated with antilymphocyte serum and in congenitally athymic-asplenic (Lasat) mice. J Natl Cancer Inst 1978; 61(1): 245-8. doi: 10.1093/jnci/61.1.245 PMID: 276631
  20. Machado EA, Gerard DA, Lozzio CB, Lozzio BB, Mitchell JR, Golde DW. Proliferation and differentiation of human myeloid leukemic cells in immunodeficient mice: Electron microscopy and cytochemistry. Blood 1984; 63(5): 1015-22. doi: 10.1182/blood.V63.5.1015.1015 PMID: 6324924
  21. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301(5900): 527-30. doi: 10.1038/301527a0 PMID: 6823332
  22. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci USA 1991; 88(4): 1394-7. doi: 10.1073/pnas.88.4.1394 PMID: 1996340
  23. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241(4873): 1632-9. doi: 10.1126/science.2971269 PMID: 2971269
  24. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335(6187): 256-9. doi: 10.1038/335256a0 PMID: 2970594
  25. Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood 1992; 79(7): 1704-11. doi: 10.1182/blood.V79.7.1704.1704 PMID: 1558966
  26. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255(5048): 1137-41. doi: 10.1126/science.1372131 PMID: 1372131
  27. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154(1): 180-91. doi: 10.4049/jimmunol.154.1.180 PMID: 7995938
  28. Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med 1996; 2(12): 1329-37. doi: 10.1038/nm1296-1329 PMID: 8946831
  29. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L. Phenotype and function of human hematopoietic cells engrafting immune- deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 1996; 88(10): 3731-40. doi: 10.1182/blood.V88.10.3731.bloodjournal88103731 PMID: 8916937
  30. Kataoka S, Satoh J, Fujiya H, et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 1983; 32(3): 247-53. doi: 10.2337/diab.32.3.247 PMID: 6298042
  31. Suzuki T, Yamada T, Fujimura T, et al. Diabetogenic Effects of Lymphocyte Transfusion on the NOD or NOD Nude Mouse. 5th International Workshop, Copenhagen. doi: 10.1159/000413303
  32. Serreze DV, Leiter EH. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol 1988; 140(11): 3801-7. doi: 10.4049/jimmunol.140.11.3801 PMID: 2897395
  33. Baxter AG, Cooke A. Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 1993; 42(11): 1574-8. doi: 10.2337/diab.42.11.1574 PMID: 8405697
  34. Serreze DV, Gaskins HR, Leiter EH. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 1993; 150(6): 2534-43. doi: 10.4049/jimmunol.150.6.2534 PMID: 8450229
  35. Serreze DV, Gaedeke JW, Leiter EH. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: Defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci 1993; 90(20): 9625-9. doi: 10.1073/pnas.90.20.9625 PMID: 8415751
  36. Jacob CO, Aiso S, Michie SA, McDevitt HO, Acha-Orbea H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci 1990; 87(3): 968-72. doi: 10.1073/pnas.87.3.968 PMID: 2405400
  37. Prochazka M, Serreze DV, Frankel WN, Leiter EH. NOR/Lt mice: MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 1992; 41(1): 98-106. doi: 10.2337/diab.41.1.98 PMID: 1727742
  38. Lee MS, Kwon HJ, Kim HS. Macrophages from nonobese diabetic mouse have a selective defect in IFN-γ but not IFN-α/β receptor pathway. J Clin Immunol 2012; 32(4): 753-61. doi: 10.1007/s10875-012-9682-3 PMID: 22396045
  39. Kim HS, Park JM, Lee MS. A defect in cell death of macrophages is a conserved feature of nonobese diabetic mouse. Biochem Biophys Res Commun 2012; 421(1): 145-51. doi: 10.1016/j.bbrc.2012.04.017 PMID: 22510411
  40. Rumore-Maton B, Elf J, Belkin N, et al. M-CSF and GM-CSF regulation of STAT5 activation and DNA binding in myeloid cell differentiation is disrupted in nonobese diabetic mice. Clin Dev Immunol 2008; 2008: 1-8. doi: 10.1155/2008/769795 PMID: 19165346
  41. Koike K, Ogawa M, Ihle JN, et al. Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: Comparison with the effects of interleukin-3. J Cell Physiol 1987; 131(3): 458-64. doi: 10.1002/jcp.1041310319 PMID: 3298286
  42. McNiece IK, Robinson BE, Quesenberry PJ. Stimulation of murine colony-forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood 1988; 72(1): 191-5. doi: 10.1182/blood.V72.1.191.191 PMID: 3291980
  43. Muench MO, Schneider JG, Moore MA. Interactions among colony-stimulating factors, IL-1 β, IL-6, and kit-ligand in the regulation of primitive murine hematopoietic cells. Exp Hematol 1992; 20(3): 339-49. PMID: 1373685
  44. Coleman DL, Chodakewitz JA, Bartiss AH, Mellors JW. Granulocyte-macrophage colony-stimulating factor enhances selective effector functions of tissue-derived macrophages. Blood 1988; 72(2): 573-8. doi: 10.1182/blood.V72.2.573.573 PMID: 3042043
  45. Akagawa KS, Kamoshita K, Tokunaga T. Effects of granulocyte- macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J Immunol 1988; 141(10): 3383-90. doi: 10.4049/jimmunol.141.10.3383 PMID: 3053898
  46. Morrissey PJ, Grabstein KH, Reed SG, Conlon PJ. Granulocyte/macrophage colony stimulating factor. A potent activation signal for mature macrophages and monocytes. Int Arch Allergy Immunol 1989; 88(1-2): 40-5. doi: 10.1159/000234745 PMID: 2496041
  47. Jarmin DI, Nibbs RJB, Jamieson T, de Bono JS, Graham GJ. Granulocyte macrophage colony-stimulating factor and interleukin-3 regulate chemokine and chemokine receptor expression in bone marrow macrophages. Exp Hematol 1999; 27(12): 1735-45. doi: 10.1016/S0301-472X(99)00115-0 PMID: 10641591
  48. Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 1992; 52(3): 274-81. doi: 10.1002/jlb.52.3.274 PMID: 1387891
  49. Scheicher C, Mehlig M, Zecher R, Reske K, Seiler F, Hintz-Obertreis P. Recombinant GM-CSF induces in vitro differentiation of dendritic cells from mouse bone marrow. Adv Exp Med Biol 1993; 329: 269-73. doi: 10.1007/978-1-4615-2930-9_45 PMID: 8379381
  50. Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17(6): 587-99. doi: 10.1038/s41423-020-0465-0 PMID: 32433540
  51. Lee M, Kim AY, Kang Y. Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J Korean Med Sci 2000; 15(2): 217-23. doi: 10.3346/jkms.2000.15.2.217 PMID: 10803701
  52. Morin J, Chimènes A, Boitard C, Berthier R, Boudaly S. Granulocyte-dendritic cell unbalance in the non-obese diabetic mice. Cell Immunol 2003; 223(1): 13-25. doi: 10.1016/S0008-8749(03)00154-0 PMID: 12914754
  53. Boudaly S, Morin J, Berthier R, Marche P, Boitard C. Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur Cytokine Netw 2002; 13(1): 29-37. PMID: 11956018
  54. Feili-Hariri M, Morel PA. Phenotypic and functional characteristics of BM-derived DC from NOD and non-diabetes-prone strains. Clin Immunol 2001; 98(1): 133-42. doi: 10.1006/clim.2000.4959 PMID: 11141336
  55. Weaver DJ Jr, Poligone B, Bui T, Abdel-Motal UM, Baldwin AS Jr, Tisch R. Dendritic cells from nonobese diabetic mice exhibit a defect in NF-kappa B regulation due to a hyperactive I kappa B kinase. J Immunol 2001; 167(3): 1461-8. doi: 10.4049/jimmunol.167.3.1461 PMID: 11466366
  56. Simpson PB, Mistry MS, Maki RA, et al. Cuttine edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. J Immunol 2003; 171(7): 3333-7. doi: 10.4049/jimmunol.171.7.3333 PMID: 14500624
  57. Manirarora JN, Parnell SA, Hu YH, Kosiewicz MM, Alard P. NOD dendritic cells stimulated with Lactobacilli preferentially produce IL-10 versus IL-12 and decrease diabetes incidence. Clin Dev Immunol 2011; 2011: 1-12. doi: 10.1155/2011/630187 PMID: 21716731
  58. O’Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002; 51(8): 2481-8. doi: 10.2337/diabetes.51.8.2481 PMID: 12145161
  59. Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106(5): 1565-73. doi: 10.1182/blood-2005-02-0516 PMID: 15920010
  60. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174(10): 6477-89. doi: 10.4049/jimmunol.174.10.6477 PMID: 15879151
  61. Sugamura K, Asao H, Kondo M, et al. The interleukin-2 receptor gamma chain: Its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14(1): 179-205. doi: 10.1146/annurev.immunol.14.1.179 PMID: 8717512
  62. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=nsg+mice
  63. Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014; 2014(7): pdb.top073585. doi: 10.1101/pdb.top073585 PMID: 24987146
  64. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68(5): 855-67. doi: 10.1016/0092-8674(92)90029-C PMID: 1547487
  65. Shultz LD, Lang PA, Christianson SW, et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 2000; 164(5): 2496-507. doi: 10.4049/jimmunol.164.5.2496 PMID: 10679087
  66. Song J, Willinger T, Rongvaux A, et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010; 8(4): 369-76. doi: 10.1016/j.chom.2010.09.003 PMID: 20951970
  67. Wunderlich M, Chou FS, Sexton C, et al. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS One 2018; 13(12): e0209034. doi: 10.1371/journal.pone.0209034 PMID: 30540841
  68. Brehm MA, Racki WJ, Leif J, et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγnull mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 2012; 119(12): 2778-88. doi: 10.1182/blood-2011-05-353243 PMID: 22246028
  69. Strowig T, Rongvaux A, Rathinam C, et al. Transgenic expression of human signal regulatory protein alpha in Rag2 −/− γ c−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci 2011; 108(32): 13218-23. doi: 10.1073/pnas.1109769108 PMID: 21788509
  70. Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32(4): 364-72. doi: 10.1038/nbt.2858 PMID: 24633240
  71. Beyer AI, Muench MO. Comparison of human hematopoietic reconstitution in different strains of immunodeficient mice. Stem Cells Dev 2017; 26(2): 102-12. doi: 10.1089/scd.2016.0083 PMID: 27758159
  72. Schmidt MR, Appel MC, Giassi LJ, Greiner DL, Shultz LD, Woodland RT. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice. PLoS One 2008; 3(9): e3192. doi: 10.1371/journal.pone.0003192 PMID: 18784835
  73. Ishihara C, Tsuji M, Hagiwara K, Hioki K, Arikawa J, Azuma I. Transfusion with xenogeneic erythrocytes into SCID mice and their clearance from the circulation. J Vet Med Sci 1994; 56(6): 1149-54. doi: 10.1292/jvms.56.1149 PMID: 7696408
  74. Abe M, Cheng J, Qi J, et al. Elimination of porcine hemopoietic cells by macrophages in mice. J Immunol 2002; 168(2): 621-8. doi: 10.4049/jimmunol.168.2.621 PMID: 11777954
  75. de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5: 9. doi: 10.3389/fphys.2014.00009 PMID: 24523696
  76. Walker W, Gallagher G. The in vivo production of specific human antibodies by vaccination of human-PBL-SCID mice. Immunology 1994; 83(2): 163-70. PMID: 7530687
  77. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/-(RAG-hu) mouse model. Retrovirology 2006; 3(1): 76. doi: 10.1186/1742-4690-3-76 PMID: 17078891
  78. King M, Pearson T, Shultz LD, et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 2008; 126(3): 303-14. doi: 10.1016/j.clim.2007.11.001 PMID: 18096436
  79. King MA, Covassin L, Brehm MA, et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft- versus -host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157(1): 104-18. doi: 10.1111/j.1365-2249.2009.03933.x PMID: 19659776
  80. Kim KC, Choi BS, Kim KC, et al. A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retroviruses 2016; 32(2): 194-202. doi: 10.1089/aid.2015.0211 PMID: 26564392
  81. Hoffmann-Fezer G, Kranz B, Gall C, Thierfelder S. Peritoneal sanctuary for human lymphopoiesis in SCID mice injected with human peripheral blood lymphocytes from Epstein-Barr virus-negative donors. Eur J Immunol 1992; 22(12): 3161-6. doi: 10.1002/eji.1830221220 PMID: 1359971
  82. Hesselton RM, Koup RA, Cromwell MA, Graham BS, Johns M, Sullivan JL. Human peripheral blood xenografts in the SCID mouse: Characterization of immunologic reconstitution. J Infect Dis 1993; 168(3): 630-40. doi: 10.1093/infdis/168.3.630 PMID: 8354904
  83. Wallgren AC, Karlsson-Parra A, Korsgren O. The main infiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation 1995; 60(6): 594-601. doi: 10.1097/00007890-199509270-00013 PMID: 7570957
  84. Korsgren O, Wallgren A, Ridderstad A, Satake M, Möller E, Karlsson-Parra A. The CD4+ effector cell in islet xenotransplantation is a macrophage and not a T-lymphocyte. Transplant Proc 1995; 27(1): 251. PMID: 7878989
  85. Wu GS, Korsgren O, Zhang JG, Song ZS, Van Rooijen N, Tibell A. Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice. Transplant Proc 2000; 32(5): 1069. doi: 10.1016/S0041-1345(00)01127-1 PMID: 10936361
  86. van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1984; 238(2): 355-8. doi: 10.1007/BF00217308 PMID: 6239690
  87. van Rooijen N, van Nieuwmegen R, Kamperdijk EW. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Ultrastructural aspects of elimination of marginal zone macrophages. Virchows Arch B Cell Pathol Incl Mol Pathol 1985; 49(4): 375-83. doi: 10.1007/BF02912114 PMID: 2867636
  88. Mönkkönen J, Rooijen N, Ylitalo P. Effects of clodronate and pamidronate on splenic and hepatic phagocytic cells of mice. Pharmacol Toxicol 1991; 68(4): 284-6. doi: 10.1111/j.1600-0773.1991.tb01240.x PMID: 1830965
  89. van Rooijen N, Bakker J, Sanders N. Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends Biotechnol 1997; 15(5): 178-85. doi: 10.1016/S0167-7799(97)01019-6 PMID: 9161052
  90. Frith JC, Mönkkönen J, Blackburn GM, Russell RGG, Rogers MJ. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 1997; 12(9): 1358-67. doi: 10.1359/jbmr.1997.12.9.1358 PMID: 9286751
  91. van Rooijen N, Kors N, Kraal G. Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination. J Leukoc Biol 1989; 45(2): 97-104. doi: 10.1002/jlb.45.2.97 PMID: 2521666
  92. Wijffels JFAM, De Rover Z, Beelen RHJ, Kraal G, Rooijen NV. Macrophage subpopulations in the mouse spleen renewed by local proliferation. Immunobiology 1994; 191(1): 52-64. doi: 10.1016/S0171-2985(11)80267-6 PMID: 7806258
  93. Fraser CC, Chen BP, Webb S, van Rooijen N, Kraal G. Circulation of human hematopoietic cells in severe combined immunodeficient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 1995; 86(1): 183-92. doi: 10.1182/blood.V86.1.183.bloodjournal861183 PMID: 7795223
  94. Terpstra W, Leenen PJM, van den Bos C, et al. Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl2MDP liposomes. Leukemia 1997; 11(7): 1049-54. doi: 10.1038/sj.leu.2400694 PMID: 9204990
  95. Verstegen MMA, van Hennik PB, Terpstra W, et al. Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38- cells. Blood 1998; 91(6): 1966-76. doi: 10.1182/blood.V91.6.1966 PMID: 9490679
  96. van Rijn RS, Simonetti ER, Hagenbeek A, et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- γc-/- double- mutant mice. Blood 2003; 102(7): 2522-31. doi: 10.1182/blood-2002-10-3241 PMID: 12791667
  97. Hu Z, Van Rooijen N, Yang YG. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood 2011; 118(22): 5938-46. doi: 10.1182/blood-2010-11-321414 PMID: 21926352
  98. Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood 2012; 120(8): 1713-6. doi: 10.1182/blood-2012-01-407890 PMID: 22773384
  99. Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11: 1066. doi: 10.3389/fimmu.2020.01066 PMID: 32582172
  100. Qian Q, Jutila MA, Van Rooijen N, Cutler JE. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 1994; 152(10): 5000-8.
  101. Tsuji M, Ishihara C, Arai S, Hiratai R, Azuma I. Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of Plasmodium falciparum in the mouse. Vaccine 1995; 13(15): 1389-92. doi: 10.1016/0264-410X(95)00081-B PMID: 8578814
  102. Fens MHAM, van Wijk R, Andringa G, et al. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica 2012; 97(4): 500-8. doi: 10.3324/haematol.2011.048694 PMID: 22102700
  103. Chen B, Fan W, Zou J, et al. Complement depletion improves human red blood cell reconstitution in immunodeficient mice. Stem Cell Reports 2017; 9(4): 1034-42. doi: 10.1016/j.stemcr.2017.08.018 PMID: 28966117
  104. Culemann S, Knab K, Euler M, et al. Stunning of neutrophils accounts for the anti-inflammatory effects of clodronate liposomes. J Exp Med 2023; 220(6): e20220525. doi: 10.1084/jem.20220525 PMID: 36976180
  105. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126(22): 5073-84. doi: 10.1242/dev.126.22.5073 PMID: 10529424
  106. Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013; 38(4): 792-804. doi: 10.1016/j.immuni.2013.04.004 PMID: 23601688
  107. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518(7540): 547-51. doi: 10.1038/nature13989 PMID: 25470051
  108. Hoeffel G, Chen J, Lavin Y, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015; 42(4): 665-78. doi: 10.1016/j.immuni.2015.03.011 PMID: 25902481
  109. Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 1997; 39(4): 350-64. doi: 10.1002/(SICI)1097-0029(19971115)39:43.0.CO;2-L PMID: 9407545
  110. Schulz C, Perdiguero EG, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336(6077): 86-90. doi: 10.1126/science.1219179 PMID: 22442384
  111. Tan SY, Krasnow MA. Developmental origin of lung macrophage diversity. Development 2016; 143(8): 1318-27. PMID: 26952982
  112. Kurotaki D, Uede T, Tamura T. Functions and development of red pulp macrophages. Microbiol Immunol 2015; 59(2): 55-62. doi: 10.1111/1348-0421.12228 PMID: 25611090
  113. Rooijen NV, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174(1-2): 83-93. doi: 10.1016/0022-1759(94)90012-4 PMID: 8083541
  114. Weisser SB, van Rooijen N, Sly LM. Depletion and reconstitution of macrophages in mice. J Vis Exp 2012; (66): 4105. PMID: 22871793
  115. Burnett SH, Kershen EJ, Zhang J, et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 2004; 75(4): 612-23. doi: 10.1189/jlb.0903442 PMID: 14726498
  116. Lai SM, Sheng J, Gupta P, et al. Organ-specific fate, recruitment, and refilling dynamics of tissue-resident macrophages during blood-stage malaria. Cell Rep 2018; 25(11): 3099-3109.e3. doi: 10.1016/j.celrep.2018.11.059 PMID: 30540942
  117. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12): 6166-73. doi: 10.4049/jimmunol.164.12.6166 PMID: 10843666
  118. Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, et al. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology 2006; 211(6-8): 487-501. doi: 10.1016/j.imbio.2006.06.002 PMID: 16920488
  119. Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 2013; 36(4): 921-31. doi: 10.1007/s10753-013-9621-3 PMID: 23504259
  120. Li P, Ma C, Li J, et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J Zhejiang Univ Sci B 2022; 23(5): 407-22. doi: 10.1631/jzus.B2100930 PMID: 35557041
  121. Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 2011; 131(6): 1322-30. doi: 10.1038/jid.2011.9 PMID: 21307877
  122. Vogel DYS, Vereyken EJF, Glim JE, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 2013; 10(1): 809. doi: 10.1186/1742-2094-10-35 PMID: 23452918
  123. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 2014; 6: 13. doi: 10.12703/P6-13 PMID: 24669294
  124. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55. doi: 10.1038/nature12034 PMID: 23619691
  125. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2021; 18(3): 579-87. doi: 10.1038/s41423-020-00541-3 PMID: 32934339
  126. Seyfried AN, Maloney JM, MacNamara KC. Macrophages orchestrate hematopoietic programs and regulate HSC function during inflammatory stress. Front Immunol 2020; 11: 1499. doi: 10.3389/fimmu.2020.01499 PMID: 32849512
  127. Lee SH, Crocker PR, Westaby S, et al. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters. J Exp Med 1988; 168(3): 1193-8. doi: 10.1084/jem.168.3.1193 PMID: 3049905
  128. Chasis JA, Mohandas N. Erythroblastic islands: Niches for erythropoiesis. Blood 2008; 112(3): 470-8. doi: 10.1182/blood-2008-03-077883 PMID: 18650462
  129. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051-4. doi: 10.1126/science.288.5473.2051 PMID: 10856220
  130. Oldenborg PA, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 2001; 193(7): 855-62. doi: 10.1084/jem.193.7.855 PMID: 11283158
  131. Takenaka K, Prasolava TK, Wang JCY, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8(12): 1313-23. doi: 10.1038/ni1527 PMID: 17982459
  132. Saginario C, Sterling H, Beckers C, et al. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol 1998; 18(11): 6213-23. doi: 10.1128/MCB.18.11.6213 PMID: 9774638
  133. Seiffert M, Brossart P, Cant C, et al. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38−hematopoietic cells. Blood 2001; 97(9): 2741-9. doi: 10.1182/blood.V97.9.2741 PMID: 11313266
  134. Florian S, Ghannadan M, Mayerhofer M, et al. Evaluation of normal and neoplastic human mast cells for expression of CD172a (SIRPα), CD47, and SHP-1. J Leukoc Biol 2005; 77(6): 984-92. doi: 10.1189/jlb.0604349 PMID: 15784688
  135. Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc Natl Acad Sci 2007; 104(12): 5062-6. doi: 10.1073/pnas.0609661104 PMID: 17360380
  136. Yamauchi T, Takenaka K, Urata S, et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 2013; 121(8): 1316-25. doi: 10.1182/blood-2012-06-440354 PMID: 23293079
  137. Bohlson SS, Garred P, Kemper C, Tenner AJ. Complement nomenclature-deconvoluted. Front Immunol 2019; 10: 1308. doi: 10.3389/fimmu.2019.01308 PMID: 31231398
  138. Masayoshi T, Katsuro H, Kyoji H, Jiro A. Transfusion with xenogeneic erythrocytes into SCID mice and their clearance from the circulation. Jpn J Vet 1994; 56(6): 1149-54.
  139. Gowda DC, Petrella EC, Raj TT, Bredehorst R, Vogel CW. Immunoreactivity and function of oligosaccharides in cobra venom factor. J Immunol 1994; 152(6): 2977-86.
  140. Yamaguchi T, Katano I, Otsuka I, et al. Generation of novel human red blood cell-bearing humanized mouse models based on C3-deficient NOG mice. Front Immunol 2021; 12: 671648. doi: 10.3389/fimmu.2021.671648 PMID: 34386001
  141. Spiller OB, Criado-García O, Rodríguez De Córdoba S, Morgan BP. Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol 2008; 121(2): 234-41. doi: 10.1046/j.1365-2249.2000.01305.x PMID: 10931136
  142. Harris CL, Spiller OB, Morgan BP. Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology 2000; 100(4): 462-70. doi: 10.1046/j.1365-2567.2000.00066.x PMID: 10929073
  143. Bongoni AK, Lu B, Salvaris EJ, et al. Overexpression of human CD55 and CD59 or treatment with human CD55 protects against renal ischemia-reperfusion injury in mice. J Immunol 2017; 198(12): 4837-45. doi: 10.4049/jimmunol.1601943 PMID: 28500075
  144. Seya T, Turner JR, Atkinson JP. Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med 1986; 163(4): 837-55. doi: 10.1084/jem.163.4.837 PMID: 3950547
  145. Masaki T, Matsumoto M, Nakanishi I, Yasuda R, Seya T. Factor I-dependent inactivation of human complement C4b of the classical pathway by C3b/C4b receptor (CR1, CD35) and membrane cofactor protein (MCP, CD46). J Biochem 1992; 111(5): 573-8. doi: 10.1093/oxfordjournals.jbchem.a123799 PMID: 1386357
  146. Shida K, Nomura M, Matsumoto M, Suzuki Y, Toyoshima K, Seya T. The 3′-UT of the ubiquitous mRNA of human CD46 confers selective suppression of protein production in murine cells. Eur J Immunol 1999; 29(11): 3603-8. doi: 10.1002/(SICI)1521-4141(199911)29:113.0.CO;2-R PMID: 10556815
  147. Foley S, Li B, Dehoff M, Molina H, Holers VM. Mouse Crry/p65 is a regulator of the alternative pathway of complement activation. Eur J Immunol 1993; 23(6): 1381-4. doi: 10.1002/eji.1830230630 PMID: 8500531
  148. Miwa T, Zhou L, Hilliard B, Molina H, Song WC. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood 2002; 99(10): 3707-16. doi: 10.1182/blood.V99.10.3707 PMID: 11986227
  149. Michael Holers V, Kinoshita T, Molina H. The evolution of mouse and human complement C3-binding proteins: Divergence of form but conservation of function. Immunol Today 1992; 13(6): 231-6. doi: 10.1016/0167-5699(92)90160-9 PMID: 1378280
  150. Kim YU, Kinoshita T, Molina H, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med 1995; 181(1): 151-9. doi: 10.1084/jem.181.1.151 PMID: 7528766
  151. Marchesi VT, Furthmayr H, Tomita M. The red cell membrane. Annu Rev Biochem 1976; 45(1): 667-98. doi: 10.1146/annurev.bi.45.070176.003315 PMID: 786159
  152. Burlak C, Twining LM, Rees MA. Terminal sialic acid residues on human glycophorin A are recognized by porcine kupffer cells. Transplantation 2005; 80(3): 344-52. doi: 10.1097/01.TP.0000162974.94890.9F PMID: 16082330
  153. Crocker PR, Mucklow S, Bouckson V, et al. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 1994; 13(19): 4490-503. doi: 10.1002/j.1460-2075.1994.tb06771.x PMID: 7925291
  154. Brock LG, Delputte PL, Waldman JP, Nauwynck HJ, Rees MA. Porcine sialoadhesin: A newly identified xenogeneic innate immune receptor. Am J Transplant 2012; 12(12): 3272-82. doi: 10.1111/j.1600-6143.2012.04247.x PMID: 22958948
  155. Petitpas K, Habibabady Z, Ritchie V, et al. Genetic modifications designed for xenotransplantation attenuate sialoadhesin‐dependent binding of human erythrocytes to porcine macrophages. Xenotransplantation 2022; 29(6): e12780. doi: 10.1111/xen.12780 PMID: 36125388
  156. Crocker PR, Kelm S, Dubois C, et al. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 1991; 10(7): 1661-9. doi: 10.1002/j.1460-2075.1991.tb07689.x PMID: 2050106
  157. Taylor CE, Cobb BA, Rittenhouse-Olson K, Paulson JC, Schreiber JR. Carbohydrate moieties as vaccine candidates: Targeting the sweet spot in the immune response. Vaccine 2012; 30(30): 4409-13. doi: 10.1016/j.vaccine.2012.04.090 PMID: 22575168
  158. Brinkman-Van der Linden ECM, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A. Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J Biol Chem 2000; 275(12): 8633-40. doi: 10.1074/jbc.275.12.8633 PMID: 10722703
  159. Nemanichvili N, Spruit CM, Berends AJ, et al. Wild and domestic animals variably display Neu5Ac and Neu5Gc sialic acids. Glycobiology 2022; 32(9): cwac033. doi: 10.1093/glycob/cwac033 PMID: 35648131
  160. Waldman JP, Brock LG, Rees MA. A human-specific mutation limits nonhuman primate efficacy in preclinical xenotransplantation studies. Transplantation 2014; 97(4): 385-90. doi: 10.1097/01.TP.0000441321.87915.82 PMID: 24445925
  161. Ducreux J, Crocker PR, Vanbever R. Analysis of sialoadhesin expression on mouse alveolar macrophages. Immunol Lett 2009; 124(2): 77-80. doi: 10.1016/j.imlet.2009.04.006 PMID: 19406152
  162. Crome P, Mollison PL. Splenic destruction of Rh-sensitized, and of heated red cells. Br J Haematol 1964; 10(2): 137-54. doi: 10.1111/j.1365-2141.1964.tb00689.x PMID: 14141613
  163. Marsh GW, Lewis SM, Szur L. The use of 51Cr-labelled heat-damaged red cells to study splenic function. I. Evaluation of method. Br J Haematol 1966; 12(2): 161-6. doi: 10.1111/j.1365-2141.1966.tb05620.x PMID: 5932543
  164. Ultmann J, Gordon CS. The removal of in vitro damaged erythrocytes from the circulation of normal and splenectomized rats. Blood 1965; 26(1): 49-62. doi: 10.1182/blood.V26.1.49.49 PMID: 14314400
  165. Moore JM, Kumar N, Shultz LD, Rajan TV. Maintenance of the human malarial parasite, Plasmodium falciparum, in scid mice and transmission of gametocytes to mosquitoes. J Exp Med 1995; 181(6): 2265-70. doi: 10.1084/jem.181.6.2265 PMID: 7760012
  166. Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 2007; 25(8): 903-10. doi: 10.1038/nbt1326 PMID: 17664939
  167. Khuu DN, Najimi M, Sokal EM. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver? World J Gastroenterol 2007; 13(10): 1554-60. doi: 10.3748/wjg.v13.i10.1154 PMID: 17461448
  168. Schmelzer E, Zhang L, Bruce A, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007; 204(8): 1973-87. doi: 10.1084/jem.20061603 PMID: 17664288
  169. Suemizu H, Hasegawa M, Kawai K, et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun 2008; 377(1): 248-52. doi: 10.1016/j.bbrc.2008.09.124 PMID: 18840406
  170. Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405(3): 405-10. doi: 10.1016/j.bbrc.2011.01.042 PMID: 21238430
  171. Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8(10): e77255. doi: 10.1371/journal.pone.0077255 PMID: 24167566
  172. Gutti TL, Knibbe JS, Makarov E, et al. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 2014; 184(1): 101-9. doi: 10.1016/j.ajpath.2013.09.008 PMID: 24200850
  173. Zhang RR, Zheng YW, Li B, et al. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther 2015; 6(1): 49. doi: 10.1186/s13287-015-0038-9 PMID: 25889844
  174. Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2017; 7(12): 170108. doi: 10.1098/rsob.170108 PMID: 29237808
  175. Nagamoto Y, Takayama K, Tashiro K, et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/SCID mice by overexpression of FNK, a Bcl-xLMutant gene. Cell Transplant 2015; 24(6): 1127-38. doi: 10.3727/096368914X681702 PMID: 24806294
  176. Martino G, Anastasi J, Feng J, et al. The fate of human peripheral blood lymphocytes after transplantation into SCID mice. Eur J Immunol 1993; 23(5): 1023-8. doi: 10.1002/eji.1830230506 PMID: 8477797
  177. Conneally E, Cashman J, Petzer A, Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic– scid/scid mice. Proc Natl Acad Sci 1997; 94(18): 9836-41. doi: 10.1073/pnas.94.18.9836 PMID: 9275212
  178. Piacibello W, Sanavio F, Severino A, et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: Evidence for the amplification and self-renewal of repopulating stem cells. Blood 1999; 93(11): 3736-49. doi: 10.1182/blood.V93.11.3736 PMID: 10339480
  179. Tatekawa T, Ogawa H, Kawakami M, et al. A novel direct competitive repopulation assay for human hematopoietic stem cells using NOD/SCID mice. Cytotherapy 2006; 8(4): 390-8. doi: 10.1080/14653240600847191 PMID: 16923615
  180. Bárcena A, Muench MO, Kapidzic M, Gormley M, Goldfien GA, Fisher SJ. Human placenta and chorion: Potential additional sources of hematopoietic stem cells for transplantation. Transfusion 2011; 51(S4): 94S-105S. doi: 10.1111/j.1537-2995.2011.03372.x PMID: 22074633
  181. Gurung S, Deane JA, Darzi S, Werkmeister JA, Gargett CE. In vivo survival of human endometrial mesenchymal stem cells transplanted under the kidney capsule of immunocompromised mice. Stem Cells Dev 2018; 27(1): 35-43. doi: 10.1089/scd.2017.0177 PMID: 29105567
  182. Duan Y, Catana A, Meng Y, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 2007; 25(12): 3058-68. doi: 10.1634/stemcells.2007-0291 PMID: 17885076
  183. Choi B, Chun E, Kim M, et al. Human T cell development in the liver of humanized NOD/SCID/IL-2Rγnull(NSG) mice generated by intrahepatic injection of CD34+ human (h) cord blood (CB) cells. Clin Immunol 2011; 139(3): 321-35. doi: 10.1016/j.clim.2011.02.019 PMID: 21429805
  184. Brown CE, Aguilar B, Starr R, et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther 2018; 26(1): 31-44. doi: 10.1016/j.ymthe.2017.10.002 PMID: 29103912
  185. Li O, Tormin A, Sundberg B, Hyllner J, Le Blanc K, Scheding S. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) engraft in vivo and support hematopoiesis without suppressing immune function: Implications for off-the shelf ES-MSC therapies. PLoS One 2013; 8(1): e55319. doi: 10.1371/journal.pone.0055319 PMID: 23383153
  186. Togarrati PP, Sasaki RT, Abdel-Mohsen M, et al. Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7(1): 3484. doi: 10.1038/s41598-017-03681-1 PMID: 28615711
  187. Wolf-van Buerck L, Schuster M, Baehr A, et al. Engraftment and reversal of diabetes after intramuscular transplantation of neonatal porcine islet-like clusters. Xenotransplantation 2015; 22(6): 443-50. doi: 10.1111/xen.12201 PMID: 26490671
  188. Kamili A, Gifford AJ, Li N, et al. Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 2020; 122(5): 680-91. doi: 10.1038/s41416-019-0682-4 PMID: 31919402
  189. Muench MO, Chen JC, Beyer AI, Fomin ME. Cellular therapies supplement: the peritoneum as an ectopic site of hematopoiesis following in utero transplantation. Transfusion 2011; 51(S4): 106S-17S. doi: 10.1111/j.1537-2995.2011.03373.x PMID: 22074621
  190. Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9(7): 959-63. doi: 10.1038/nm886 PMID: 12796774
  191. McKenzie JL, Gan OI, Doedens M, Dick JE. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 2005; 106(4): 1259-61. doi: 10.1182/blood-2005-03-1081 PMID: 15878972
  192. Metheny L III, Eid S, Lingas K, et al. Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells. Hematol Med Oncol 2016; 1(1): 25-9. doi: 10.15761/HMO.1000105 PMID: 27882356
  193. Futrega K, Lott WB, Doran MR. Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Sci Rep 2016; 6(1): 23886. doi: 10.1038/srep23886 PMID: 27065210
  194. Ji J, Vijayaragavan K, Bosse M, Weisel K, Bhatia M, Bhatia M. OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells 2008; 26(10): 2485-95. doi: 10.1634/stemcells.2008-0642 PMID: 18669904
  195. Namdee K, Carrasco-Teja M, Fish MB, Charoenphol P, Eniola-Adefeso O. Effect of Variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers. Sci Rep 2015; 5(1): 11631. doi: 10.1038/srep11631 PMID: 26113000
  196. Stock SR, Ed. High-resolution tomographic imaging of microvessels 2008. SPIE 2008.
  197. Smith JE, Mohandas N, Shohet SB. Variability in erythrocyte deformability among various mammals. Am J Physiol 1979; 236(5): H725-30. PMID: 443394
  198. Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp Physiol 2003; 88(3): 431-40. doi: 10.1113/eph8802496 PMID: 12719768
  199. Goldsmith HL, Spain S. Margination of leukocytes in blood flow through small tubes. Microvasc Res 1984; 27(2): 204-22. doi: 10.1016/0026-2862(84)90054-2 PMID: 6708830
  200. Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T. Leukocyte margination at arteriole shear rate. Physiol Rep 2014; 2(6): e12037. doi: 10.14814/phy2.12037 PMID: 24907300
  201. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18(2): 341-7. doi: 10.1038/sj.leu.2403222 PMID: 14628073
  202. Song Y, Shan L, Gbyli R, et al. Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021; 371(6533): 1019-25. doi: 10.1126/science.abe2485 PMID: 33674488
  203. Grompe M. Fah knockout animals as models for therapeutic liver repopulation. Adv Exp Med Biol 2017; 959: 215-30. doi: 10.1007/978-3-319-55780-9_20 PMID: 28755199
  204. Lang J, Zhang B, Kelly M, et al. Replacing mouse BAFF with human BAFF does not improve B-cell maturation in hematopoietic humanized mice. Blood Adv 2017; 1(27): 2729-41. doi: 10.1182/bloodadvances.2017010090 PMID: 29296925
  205. Li Z, Xu X, Feng X, Murphy PM. The macrophage-depleting agent clodronate promotes durable hematopoietic chimerism and donor-specific skin allograft tolerance in mice. Sci Rep 2016; 6(1): 22143. doi: 10.1038/srep22143 PMID: 26917238
  206. Bradley TR, Hodgson GS. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 1979; 54(6): 1446-50. doi: 10.1182/blood.V54.6.1446.1446 PMID: 315805
  207. McNiece IK, Stewart FM, Deacon DM, et al. Detection of a human CFC with a high proliferative potential. Blood 1989; 74(2): 609-12. doi: 10.1182/blood.V74.2.609.609 PMID: 2665850
  208. Muench MO, Cupp J, Polakoff J, Roncarolo MG. Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood 1994; 83(11): 3170-81. doi: 10.1182/blood.V83.11.3170.3170 PMID: 7514903
  209. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011; 117(11): 3076-86. doi: 10.1182/blood-2010-08-301507 PMID: 21252091
  210. Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116(23): 4815-28. doi: 10.1182/blood-2009-11-253534 PMID: 20713966
  211. Li, Y.; Chen, Q.; Zheng, D.; Yin, L.; Chionh, Y.H.; Wong, L.H.; Tan, S.Q.; Tan, T.C.; Chan, J.K.; Alonso, S.; Dedon, P.C.; Lim, B.; Chen, J. Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice. J Immunol 2013; 191(6): 3192-99. doi: 10.4049/jimmunol.1300742 PMID: 23935193
  212. Varga NL, Bárcena A, Fomin ME, Muench MO. Detection of human hematopoietic stem cell engraftment in the livers of adult immunodeficient mice by an optimized flow cytometric method. Stem Cell Stud 2010; 1(1): 1. doi: 10.4081/scs.2011.e1 PMID: 21603093
  213. Coughlan AM, Harmon C, Whelan S, et al. Myeloid engraftment in humanized mice: Impact of granulocyte-colony stimulating factor treatment and transgenic mouse strain. Stem Cells Dev 2016; 25(7): 530-41. doi: 10.1089/scd.2015.0289 PMID: 26879149
  214. Muench MO, Beyer AI, Fomin ME, et al. The adult livers of immunodeficient mice support human hematopoiesis: evidence for a hepatic mast cell population that develops early in human ontogeny. PLoS One 2014; 9(5): e97312. doi: 10.1371/journal.pone.0097312 PMID: 24819392
  215. Gille C, Orlikowsky TW, Spring B, et al. Monocytes derived from humanized neonatal NOD/SCID/IL2Rγnull mice are phenotypically immature and exhibit functional impairments. Hum Immunol 2012; 73(4): 346-54. doi: 10.1016/j.humimm.2012.01.006 PMID: 22330087
  216. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci 2009; 106(51): 21783-8. doi: 10.1073/pnas.0912274106 PMID: 19966223
  217. Evren E, Ringqvist E, Tripathi KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 2021; 54(2): 259-275.e7. doi: 10.1016/j.immuni.2020.12.003 PMID: 33382972
  218. Wunderlich M, Chou F-S, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24(10): 1785-8. doi: 10.1038/leu.2010.158 PMID: 20686503
  219. Bryce PJ, Falahati R, Kenney LL, et al. Humanized mouse model of mast cell–mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol 2016; 138(3): 769-79. doi: 10.1016/j.jaci.2016.01.049 PMID: 27139822
  220. Takagi S, Saito Y, Hijikata A, et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood 2012; 119(12): 2768-77. doi: 10.1182/blood-2011-05-353201 PMID: 22279057
  221. Geissler EN, McFarland EC, Russell ES. Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 1981; 97(2): 337-61. doi: 10.1093/genetics/97.2.337 PMID: 7274658
  222. Ju C, Liang J, Zhang M, et al. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022; 33(1): 143-56. doi: 10.1007/s00335-021-09940-x PMID: 35138443
  223. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100(9): 3175-82. doi: 10.1182/blood-2001-12-0207 PMID: 12384415
  224. Pearson T, Shultz LD, Miller D, et al. Non-obese diabetic–recombination activating gene-1 (NOD– Rag 1 null ) interleukin (IL)-2 receptor common gamma chain ( IL 2 rγ null ) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154(2): 270-84. doi: 10.1111/j.1365-2249.2008.03753.x PMID: 18785974
  225. Brehm MA, Cuthbert A, Yang C, et al. Parameters for establishing humanized mouse models to study human immunity: Analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135(1): 84-98. doi: 10.1016/j.clim.2009.12.008 PMID: 20096637
  226. Maykel J, Liu JH, Li H, Shultz LD, Greiner DL, Houghton J. NOD-scidIl2rg (tm1Wjl) and NOD-Rag1 (null) Il2rg (tm1Wjl) : A model for stromal cell-tumor cell interaction for human colon cancer. Dig Dis Sci 2014; 59(6): 1169-79. doi: 10.1007/s10620-014-3168-5 PMID: 24798995
  227. Legrand N, Huntington ND, Nagasawa M, et al. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci 2011; 108(32): 13224-9. doi: 10.1073/pnas.1101398108 PMID: 21788504
  228. Li Y, Mention JJ, Court N, et al. A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur J Immunol 2016; 46(5): 1291-9. doi: 10.1002/eji.201546132 PMID: 26865269
  229. Lopez-Lastra S, Masse-Ranson G, Fiquet O, et al. A functional DC cross talk promotes human ILC homeostasis in humanized mice. Blood Adv 2017; 1(10): 601-14. doi: 10.1182/bloodadvances.2017004358 PMID: 29296702

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers