Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction


Дәйексөз келтіру

Толық мәтін

Аннотация

Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.

Авторлар туралы

Guo-Dong Yang

Department of Cardiac Surgery, The First Hospital of Jilin University

Email: info@benthamscience.net

Da-Shi Ma

Department of Cardiac Surgery, The First Hospital of Jilin University

Email: info@benthamscience.net

Chun-Ye Ma

Department of Cardiac Surgery, The First Hospital of Jilin University

Email: info@benthamscience.net

Yang Bai

Department of Cardiac Surgery, The First Hospital of Jilin University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Madhur MS, Elijovich F, Alexander MR, et al. Hypertension. Circ Res 2021; 128(7): 908-33. doi: 10.1161/CIRCRESAHA.121.318052 PMID: 33793336
  2. Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131. doi: 10.1186/s13287-018-0876-3 PMID: 29751774
  3. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 2003; 75(3): 389-97. doi: 10.1097/01.TP.0000045055.63901.A9 PMID: 12589164
  4. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103(5): 697-705. doi: 10.1172/JCI5298 PMID: 10074487
  5. Hui1 Z. Effect of Ophiopogon Japonicus inducing differentiation of bone marrow mesenchymal stem cells in myocardial cells. Chinese Archives Of Traditional Chinese Medicine 2020; 38(2): 96-101.
  6. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5): 1669-75. doi: 10.1182/blood-2003-05-1670 PMID: 14576065
  7. Fang H, et al. Biological characteristics of different sources of mesenchymal stem cells. Chinese Journal of Tissue Engineering Research 2015; (32): 5243-8.
  8. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7. doi: 10.1080/14653240600855905 PMID: 16923606
  9. Zhang X, Zhang L, Li Y, Yin Z, Feng Y, Ji Y. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF). Gynecol Endocrinol 2021; 37(4): 353-7. doi: 10.1080/09513590.2021.1878133 PMID: 33491494
  10. Zhou W, Silva M, Feng C, et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther 2021; 12(1): 174. doi: 10.1186/s13287-021-02248-2 PMID: 33712072
  11. Ge L, et al. Biological characteristics of human olfactory mucosa mesenchymal stem cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40(1): 53-8.
  12. Pu W, Xu D, Zhang C, Zhao Z, Yang M. Rapid generation of functional hepatocyte-like cells from human minor salivary gland-derived stem cells. Biochem Biophys Res Commun 2020; 522(3): 805-10. doi: 10.1016/j.bbrc.2019.11.173 PMID: 31791589
  13. Kassis I, Zangi L, Rivkin R, et al. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006; 37(10): 967-76. doi: 10.1038/sj.bmt.1705358 PMID: 16670702
  14. Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: A novel stem cell population. J Transl Med 2007; 5(1): 57. doi: 10.1186/1479-5876-5-57 PMID: 18005405
  15. Fu WL, Zhou CY, Yu JK. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 2014; 42(3): 592-601. doi: 10.1177/0363546513512778 PMID: 24327479
  16. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121(2): 368-74. doi: 10.1046/j.1365-2141.2003.04284.x PMID: 12694261
  17. Yang YHK. Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen Ther 2018; 9: 120-2. doi: 10.1016/j.reth.2018.09.002 PMID: 30525083
  18. Dongjia WANG. Comparison of proliferation and osteogenic differentiation potential in different generations of BMSCs derived from SD rats. J Oral Maxillofac Surg 2021; 31(1): 16-23.
  19. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31(10): 890-6. doi: 10.1016/S0301-472X(03)00110-3 PMID: 14550804
  20. Deans RJ, Moseley AB. Mesenchymal stem cells. Exp Hematol 2000; 28(8): 875-84. doi: 10.1016/S0301-472X(00)00482-3 PMID: 10989188
  21. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009; 4(3): 206-16. doi: 10.1016/j.stem.2009.02.001 PMID: 19265660
  22. Jin W, Liang X, Brooks A, et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 2018; 6: e6072. doi: 10.7717/peerj.6072 PMID: 30564525
  23. Rüster B, Göttig S, Ludwig RJ, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108(12): 3938-44. doi: 10.1182/blood-2006-05-025098 PMID: 16896152
  24. Chen YW, Hsieh SC, Yang YC, et al. Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration. Nanomedicine (Lond) 2018; 14(3): 699-711. doi: 10.1016/j.nano.2017.12.023 PMID: 29325741
  25. Wei Y, et al. Cardiomyocyte-like differentiation of bone marrow mesenchymal stem cells induced by myocardial tissue lysates from different parts of the myocardium. Chinese Journal of Tissue Engineering Research 2021; 25(1): 32.
  26. Assis ACM, Carvalho JL, Jacoby BA, et al. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 2010; 19(2): 219-30. doi: 10.3727/096368909X479677 PMID: 19906330
  27. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410(6829): 701-5. doi: 10.1038/35070587 PMID: 11287958
  28. Piryaei A, Soleimani M, Heidari MH, Saheli M, Rohani R, Almasieh M. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine. Cell Biol Int 2015; 39(5): 519-30. doi: 10.1002/cbin.10421 PMID: 25573851
  29. Chaput N, Théry C. Exosomes: Immune properties and potential clinical implementations. Semin Immunopathol 2011; 33(5): 419-40. doi: 10.1007/s00281-010-0233-9 PMID: 21174094
  30. Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int 2017; 2017: 1-10. doi: 10.1155/2017/6305295 PMID: 29410682
  31. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10(3): 301-12. doi: 10.1016/j.scr.2013.01.002 PMID: 23399448
  32. Li G, Wang G, Ma L, et al. miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38α. Biochem Biophys Res Commun 2016; 478(3): 1165-72. doi: 10.1016/j.bbrc.2016.08.086 PMID: 27544030
  33. Liang Zeng. Effect of the exosomes of bone marrow mesenchymal stem cells modified by miR-22 on cardiomyocyte apoptosis in the rats with acute myocardial infarction. Chin J Crit Care 2021; 41(2): 154-60.
  34. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431(7011): 997-1002. doi: 10.1038/nature02989 PMID: 15496926
  35. Maryanovich M, Zaltsman Y, Ruggiero A, et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 2015; 6(1): 7901. doi: 10.1038/ncomms8901 PMID: 26219591
  36. Gross A. BCL-2 family proteins as regulators of mitochondria metabolism. Biochim Biophys Acta Bioenerg 2016; 1857(8): 1243-6. doi: 10.1016/j.bbabio.2016.01.017
  37. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci 2006; 103(5): 1283-8. doi: 10.1073/pnas.0510511103 PMID: 16432190
  38. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004; 303(5660): 1007-10. doi: 10.1126/science.1093133 PMID: 14963329
  39. Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 2008; 12(5a): 1622-31. doi: 10.1111/j.1582-4934.2007.00205.x PMID: 18088382
  40. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344(23): 1750-7. doi: 10.1056/NEJM200106073442303 PMID: 11396441
  41. Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88(8): 871-83. doi: 10.1016/j.mayocp.2013.04.001 PMID: 23910414
  42. Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis (Seoul) 2014; 77(3): 116-23. doi: 10.4046/trd.2014.77.3.116 PMID: 25309606
  43. Chu W, Gan Y, Zhuang Y, et al. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther 2018; 9(1): 157. doi: 10.1186/s13287-018-0906-1 PMID: 29895312
  44. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7(4): 430-6. doi: 10.1038/86498 PMID: 11283669
  45. McFarlin K, Gao X, Liu YB, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 2006; 14(4): 471-8. doi: 10.1111/j.1743-6109.2006.00153.x PMID: 16939576
  46. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005; 97(11): 1142-51. doi: 10.1161/01.RES.0000193596.94936.2c PMID: 16254213
  47. Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2011; 2(10): 845-54. doi: 10.1007/s13238-011-1097-z PMID: 22058039
  48. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94(5): 678-85. doi: 10.1161/01.RES.0000118601.37875.AC PMID: 14739163
  49. Oswald J, Boxberger S, Jørgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3): 377-84. doi: 10.1634/stemcells.22-3-377 PMID: 15153614
  50. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol 2007; 127(3): 514-25. doi: 10.1038/sj.jid.5700701 PMID: 17299434
  51. Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6(3): 1018-28. doi: 10.1002/sctm.16-0363 PMID: 28186708
  52. Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308. doi: 10.1186/s12967-015-0642-6 PMID: 26386558
  53. Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44. doi: 10.1089/scd.2013.0479 PMID: 24367916
  54. Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 2016; 64(4): 831-40. doi: 10.1007/s12026-016-8798-6 PMID: 27115513
  55. Li Y, Wang F, Guo R, et al. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life 2019; 71(9): 1284-92. doi: 10.1002/iub.2035 PMID: 30889317
  56. Liu Y, Wang L, Kikuiri T, et al. Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 2011; 17(12): 1594-601. doi: 10.1038/nm.2542 PMID: 22101767
  57. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 1970; 3(4): 393-403. doi: 10.1111/j.1365-2184.1970.tb00347.x PMID: 5523063
  58. Phinney DG. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 2008; 449: 171-86. doi: 10.1007/978-1-60327-169-1_12 PMID: 18370091
  59. Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 2012; 48(2): 75-83. doi: 10.1007/s11626-011-9480-x PMID: 22274909
  60. Stricklin GP, Bauer EA, Jeffrey JJ, Eisen AZ. Human skin collagenase: Isolation of precursor and active forms from both fibroblast and organ cultures. Biochemistry 1977; 16(8): 1607-15. doi: 10.1021/bi00627a013 PMID: 192268
  61. Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194(3): 664-73. doi: 10.1016/j.ajog.2006.01.101 PMID: 16522395
  62. Can A, Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95. doi: 10.1634/stemcells.2007-0417 PMID: 17690177
  63. Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50(2): e12334. doi: 10.1111/cpr.12334 PMID: 28144997
  64. Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85. doi: 10.1016/j.jcyt.2013.04.001 PMID: 23725689
  65. Cai Y, Liu T, Fang F, Xiong C, Shen S. Comparisons of mouse mesenchymal stem cells in primary adherent culture of compact bone fragments and whole bone marrow. Stem Cells Int 2015; 2015: 1-8. doi: 10.1155/2015/708906 PMID: 25821472
  66. Priya N, Sarcar S, Majumdar AS, SundarRaj S. Explant culture: A simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9): 706-16. doi: 10.1002/term.1569 PMID: 22837175
  67. Georgiou GM, Roberton DM, Ellis WM, Shen BJ, Ekert H, Hosking CS. CFU-c enrichment from human bone marrow using a discontinuous Percoll gradient and soybean agglutinin in comparison with Ficoll-paque. Clin Exp Immunol 1983; 53(2): 491-6. PMID: 6309446
  68. Chang Y, Hsieh PH, Chao CC. The efficiency of Percoll and Ficoll density gradient media in the isolation of marrow derived human mesenchymal stem cells with osteogenic potential. Chang Gung Med J 2009; 32(3): 264-75. PMID: 19527605
  69. Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S. Isolation of equine bone marrow-derived mesenchymal stem cells: A comparison between three protocols. Equine Vet J 2010; 42(6): 519-27. doi: 10.1111/j.2042-3306.2010.00098.x PMID: 20716192
  70. Rosca AM, Burlacu A. Isolation of a mouse bone marrow population enriched in stem and progenitor cells by centrifugation on a Percoll gradient. Biotechnol Appl Biochem 2010; 55(4): 199-208. doi: 10.1042/BA20090356 PMID: 20331436
  71. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001; 19(3): 180-92. doi: 10.1634/stemcells.19-3-180 PMID: 11359943
  72. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 2002; 30(7): 783-91. doi: 10.1016/S0301-472X(02)00812-3 PMID: 12135677
  73. Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P. Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45 med,low phenotype. Br J Haematol 2003; 122(3): 506-17. doi: 10.1046/j.1365-2141.2003.04469.x PMID: 12877680
  74. Tondreau T, Meuleman N, Delforge A, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005; 23(8): 1105-12. doi: 10.1634/stemcells.2004-0330 PMID: 15955825
  75. Jones EA, English A, Kinsey SE, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 2006; 70B(6): 391-9. doi: 10.1002/cyto.b.20118 PMID: 16977637
  76. Liu Q-H, Ge J, Liu K-Y. Are CD133 and CD271 useful in positive selection to enrich umbilical cord blood mesenchymal stem cells? Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18(5): 1286-91. PMID: 21129278
  77. Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: Phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6(4): 372-9. doi: 10.1080/14653240410004943 PMID: 16146890
  78. Jia Z, Liang Y, Xu X, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 2018; 42(3): 262-71. doi: 10.1002/cbin.10903 PMID: 29068101
  79. Jia Z. Magnetic-activated cell sorting strategies to isolate and purify synovial fluid-derived mesenchymal stem cells from a rabbit model. J Vis Exp 2018; 138
  80. Amiri F, Halabian R, Dehgan Harati M, et al. Positive selection of Wharton’s jelly-derived CD105 + cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 2015; 20(4): 208-16. doi: 10.1179/1607845414Y.0000000185 PMID: 25116042
  81. Huss R. Perspectives on the morphology and biology of CD34-negative stem cells. J Hematother Stem Cell Res 2000; 9(6): 783-93. doi: 10.1089/152581600750062228 PMID: 11177591
  82. Chalmers JJ, Zborowski M, Moore L, Mandal S, Fang B, Sun L. Theoretical analysis of cell separation based on cell surface marker density. Biotechnol Bioeng 1998; 59(1): 10-20. doi: 10.1002/(SICI)1097-0290(19980705)59:13.0.CO;2-W PMID: 10099309
  83. Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Rep Prog Phys 2015; 78(1): 016601. doi: 10.1088/0034-4885/78/1/016601 PMID: 25471081
  84. Grützkau A, Radbruch A. Small but mighty: How the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A 2010; 77A(7): 643-7. doi: 10.1002/cyto.a.20918 PMID: 20583279
  85. Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 2011; 11(11): 1902-10. doi: 10.1039/c0lc00656d PMID: 21512692
  86. Shen Y, Huang Z, Liu X, et al. Iron-induced myocardial injury: An alarming side effect of superparamagnetic iron oxide nanoparticles. J Cell Mol Med 2015; 19(8): 2032-5. doi: 10.1111/jcmm.12582 PMID: 26041641
  87. Schade A, Müller P, Delyagina E, et al. Magnetic nanoparticle based nonviral microrna delivery into freshly isolated CD105 + hMSCs. Stem Cells Int 2014; 2014: 1-11. doi: 10.1155/2014/197154 PMID: 24799915
  88. Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J. Cell separation: Terminology and practical considerations. J Tissue Eng 2013; 4. doi: 10.1177/2041731412472690 PMID: 23440031
  89. Müller P, Gaebel R, Lemcke H, et al. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS® purified stem cell products. Biomaterials 2017; 135: 74-84. doi: 10.1016/j.biomaterials.2017.05.002 PMID: 28494265
  90. Boiret N, Rapatel C, Veyrat-Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 2005; 33(2): 219-25. doi: 10.1016/j.exphem.2004.11.001 PMID: 15676216
  91. Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A. Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 2007; 37(2): 152-9. doi: 10.1165/rcmb.2006-0386OC PMID: 17395889
  92. Kitano Y, Radu A, Shaaban A, Flake AW. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol 2000; 28(12): 1460-9. doi: 10.1016/S0301-472X(00)00551-8 PMID: 11146168
  93. Ito K, Aoyama T, Fukiage K, et al. A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric. Tissue Eng Part C Methods 2010; 16(1): 81-91. doi: 10.1089/ten.tec.2008.0693 PMID: 19364273
  94. Wang Y-h, Zheng R, Chen L. Isolation and culture of rat bone marrow mesenchymal stem cells using density gradient centrifugation and adherence separation screening. Chinese Journal of Tissue Engineering Research 2014; 18(28): 4463.
  95. Xing W, Pang AM, Yao JF, et al. Efficient isolation of mesenchymal stem cells from human bone marrow by direct plating method combined with modified primary explant culture. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013; 21(2): 451-4. PMID: 23628052
  96. Krause U, Harter C, Seckinger A, et al. Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 2007; 16(1): 31-8. doi: 10.1089/scd.2006.0089 PMID: 17348804
  97. Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 2008; 103(6): 525-36. doi: 10.1007/s00395-008-0741-0 PMID: 18704259
  98. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108(7): 863-8. doi: 10.1161/01.CIR.0000084828.50310.6A PMID: 12900340
  99. Grøgaard HK, Sigurjonsson OE, Brekke M, et al. Cardiac accumulation of bone marrow mononuclear progenitor cells after intracoronary or intravenous injection in pigs subjected to acute myocardial infarction with subsequent reperfusion. Cardiovasc Revasc Med 2007; 8(1): 21-7. doi: 10.1016/j.carrev.2006.09.001 PMID: 17293265
  100. Rui CHENG, You-rong Z, Ling M, Feng C, Yong X. Therapeutic effectiveness of autologous bone marrow mesenchymal stem cells transplantation by three different ways in AMI. Chin J Exp Surg 2005; 22(12): 1504-6.
  101. Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009; 30(22): 2722-32. doi: 10.1093/eurheartj/ehp265 PMID: 19586959
  102. Balana B, Nicoletti C, Zahanich I, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 2006; 16(12): 949-60. doi: 10.1038/sj.cr.7310116 PMID: 17160070
  103. Dong L, et al. Sodium butyrate induces rat bone marrow mesenchymal stem cells to differentiate into cardiomyocytes in vitro. Chinese Journal of Tissue Engineering Research 2012; 16(19): 3462.
  104. Zhou R. Meglumine cyclic adenylate induces differentiation of bone marrow mesenchymal stem cells into cardiomyocytes in vitro. Chinese Journal of Pathophysiology 2011; 10.
  105. Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol 2007; 292(2): H1095-104. doi: 10.1152/ajpheart.01009.2005 PMID: 17056665
  106. Xing Y, Lv A, Wang L, Yan X. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 2012; 360(1-2): 279-87. doi: 10.1007/s11010-011-1067-z PMID: 21935612
  107. Somers P, Cornelissen R, Thierens H, Van Nooten G. An optimized growth factor cocktail for ovine mesenchymal stem cells. Growth Factors 2012; 30(1): 37-48. doi: 10.3109/08977194.2011.634411 PMID: 22077617
  108. Rong ZHOU, Yan-hong LI, Feng-zhi W. Meglumine cyclic adenylate induces differentiation of bone marrow mesenchymal stem cells into cardiomyocytes in vitro. Chinese Journal of Pathophysiology 2005; 3(7): 528-30.
  109. Xue-yun S. Combination of tanshinone IIa and astragaloside induces bone marrow mesenchymal stem cells differentiating into myocardium-like cells. Chinese Journal of Tissue Engineering Research 2013; 17(36): 6515.
  110. Chen J, Wei J, Huang Y, et al. Danhong injection enhances the therapeutic efficacy of mesenchymal stem cells in myocardial infarction by promoting angiogenesis. Front Physiol 2018; 9: 991. doi: 10.3389/fphys.2018.00991 PMID: 30093864
  111. Li Q, Sun G. Effect of icaritin on ferroptosis of bone marrow mesenchymal stem cells and their differentiation into cardiomyocytes. Chinese Journal of Tissue Engineering Research 2021; 25(13): 1988.
  112. Huang Y, Jia X, Bai K, Gong X, Fan Y. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 2010; 41(7): 497-505. doi: 10.1016/j.arcmed.2010.10.002 PMID: 21167388
  113. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006; 98(11): 1414-21. doi: 10.1161/01.RES.0000225952.61196.39 PMID: 16690882
  114. Wang J. Effects of biomimetic electrical stimulation on inducing differentiation of rat bone marrow mesenchymal stem cells into cardiomyocyte-like cells in isolated myocardium. Medical Journal of Chinese People's Liberation Army 1983.(05):
  115. Rangappa S, Entwistle JWC, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 2003; 126(1): 124-32. doi: 10.1016/S0022-5223(03)00074-6 PMID: 12878947
  116. Jia Q. Differentiation of bone marrow mesenchymal stem cells into cardiomyocytes by simulating cardiac microenvironment in vitro. J Clin Rehabil Tissue Eng Res 2008; 12(8): 1489-92.
  117. Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: An update. J Transl Med 2020; 18(1): 42. doi: 10.1186/s12967-020-02234-x PMID: 32000804
  118. Lv Y, Li XJ, Wang HP, Liu B, Chen W, Zhang L. TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs. Iran J Basic Med Sci 2020; 23(8): 1012-9. PMID: 32952947
  119. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2007; 77(1): 134-42. doi: 10.1093/cvr/cvm025 PMID: 18006467
  120. Zhang Y, Ou L, Cheng Z, Jia X, Gao N, Kong D. Genetic modification of bone marrow mesenchymal stem cells with human CXCR4 gene and migration in vitro. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih 2009; 26(3): 595-600. PMID: 19634680
  121. Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007; 25(8): 2118-27. doi: 10.1634/stemcells.2006-0771 PMID: 17478584
  122. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20(6): 661-9. doi: 10.1096/fj.05-5211com PMID: 16581974
  123. Stender S, Murphy M, O’Brien T, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 2007; 13: 93-9. doi: 10.22203/eCM.v013a10 PMID: 17538898
  124. Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S. Multipotent mesenchymal stromal cells: Optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 2008; 10(8): 815-23. doi: 10.1080/14653240802474307 PMID: 19058061
  125. Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H. Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 2008; 15(7): 537-44. doi: 10.1038/gt.2008.9 PMID: 18256695
  126. Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005; 18(6): 383-9. doi: 10.1002/nbm.970 PMID: 16013087
  127. Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology 2019; 30(50): 502003. doi: 10.1088/1361-6528/ab4241 PMID: 31491782
  128. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003; 107(16): 2134-9. doi: 10.1161/01.CIR.0000062649.63838.C9 PMID: 12695305
  129. Schächinger V, Assmus B, Honold J, et al. Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy. Clin Res Cardiol 2006; 95(1): 13-22. doi: 10.1007/s00392-006-0314-x PMID: 16598441
  130. Numaguchi Y, Sone T, Okumura K, et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 2006; 114(1_supplement) (Suppl.). : I114-9. doi: 10.1161/CIRCULATIONAHA.105.000588 PMID: 16820559
  131. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103(5): 634-7. doi: 10.1161/01.CIR.103.5.634 PMID: 11156872
  132. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003; 107(7): 1024-32. doi: 10.1161/01.CIR.0000051460.85800.BB PMID: 12600917
  133. Xu S, Zhu J, Yu L, Fu G. Endothelial progenitor cells: Current development of their paracrine factors in cardiovascular therapy. J Cardiovasc Pharmacol 2012; 59(4): 387-96. doi: 10.1097/FJC.0b013e3182440338 PMID: 22157259
  134. Muscari C, Gamberini C, Basile I, et al. Comparison between culture conditions improving growth and differentiation of blood and bone marrow cells committed to the endothelial cell lineage. Biol Proced Online 2010; 12(1): 89-106. doi: 10.1007/s12575-009-9023-y PMID: 21406067
  135. Rufaihah AJ, Vaibavi SR, Plotkin M, et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 2013; 34(33): 8195-202. doi: 10.1016/j.biomaterials.2013.07.031 PMID: 23891519
  136. Zheng X-h, Chen Z-g. Vascularized strategy for tissue-engineered bone. Chinese Journal of Tissue Engineering Research 2013; 17(15): 2786.
  137. Zhang X, Wei M, Zhu W, Han B. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury. Arch Cardiovasc Dis 2008; 101(5): 333-42. doi: 10.1016/j.acvd.2008.05.002 PMID: 18656092
  138. Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005; 65(3): 321-9. doi: 10.1002/ccd.20406 PMID: 15954106
  139. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 2016; 163: 94-108. doi: 10.1016/j.pharmthera.2016.03.013 PMID: 27063403
  140. Mahmood TA, de Jong R, Riesle J, Langer R, van Blitterswijk CA. Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Exp Cell Res 2004; 301(2): 179-88. doi: 10.1016/j.yexcr.2004.07.027 PMID: 15530854
  141. Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface 2017; 14(127): 20160877. doi: 10.1098/rsif.2016.0877 PMID: 28202590
  142. Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 2012; 12(10): 1347-60. doi: 10.1517/14712598.2012.707181 PMID: 22784238
  143. Dean DM, Napolitano AP, Youssef J, Morgan JR. Rods, tori, and honeycombs: The directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 2007; 21(14): 4005-12. doi: 10.1096/fj.07-8710com PMID: 17627028
  144. Fukuda J, Nakazawa K. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng 2005; 11(7-8): 1254-62. doi: 10.1089/ten.2005.11.1254 PMID: 16144461
  145. Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 2004; 22(4): 195-202. doi: 10.1016/j.tibtech.2004.02.002 PMID: 15038925
  146. Kunz-Schughart LA, Schroeder JA, Wondrak M, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol 2006; 290(5): C1385-98. doi: 10.1152/ajpcell.00248.2005 PMID: 16601149
  147. Desroches BR, Zhang P, Choi BR, et al. Functional scaffold-free 3-D cardiac microtissues: A novel model for the investigation of heart cells. Am J Physiol Heart Circ Physiol 2012; 302(10): H2031-42. doi: 10.1152/ajpheart.00743.2011 PMID: 22427522
  148. Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat 1952; 86(3): 287-301. PMID: 12980879
  149. Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360(2): 297-307. doi: 10.1007/s00441-014-2055-x PMID: 25749992
  150. Lam MT, Longaker MT. Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med 2012; 6Suppl 3. (0 3): s80-6. doi: 10.1002/term.1499
  151. Tunma S, Inthanon K, Chaiwong C, Pumchusak J, Wongkham W, Boonyawan D. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma. Cytotechnology 2013; 65(1): 119-34. doi: 10.1007/s10616-012-9467-9 PMID: 22760551
  152. Lee JH, Han YS, Lee SH. Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther 2016; 24(3): 260-7. doi: 10.4062/biomolther.2015.146 PMID: 26869524
  153. Bartosh TJ, Ylöstalo JH, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 2010; 107(31): 13724-9. doi: 10.1073/pnas.1008117107 PMID: 20643923
  154. Traverse JH, Henry TD, Dib N, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 2019; 4(6): 659-69. doi: 10.1016/j.jacbts.2019.07.012 PMID: 31709316
  155. Serpooshan V, Zhao M, Metzler SA, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013; 34(36): 9048-55. doi: 10.1016/j.biomaterials.2013.08.017 PMID: 23992980
  156. Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 2011; 32(35): 9180-7. doi: 10.1016/j.biomaterials.2011.08.050 PMID: 21906802
  157. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook. Adv Drug Deliv Rev 2016; 96: 54-76. doi: 10.1016/j.addr.2015.04.021 PMID: 25962984
  158. Chen J, Zhan Y, Wang Y, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater 2018; 80: 154-68. doi: 10.1016/j.actbio.2018.09.013 PMID: 30218777
  159. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res 2003; 66A(3): 586-95. doi: 10.1002/jbm.a.10504 PMID: 12918042
  160. Wang Q, Wang H, Li Z, Wang Y, Wu X, Tan Y. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med 2017; 21(9): 1751-66. doi: 10.1111/jcmm.13097 PMID: 28244640
  161. Carrier RL, Papadaki M, Rupnick M, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999; 64(5): 580-9. doi: 10.1002/(SICI)1097-0290(19990905)64:53.0.CO;2-X PMID: 10404238
  162. Rane AA, Chuang JS, Shah A, et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One 2011; 6(6): e21571. doi: 10.1371/journal.pone.0021571 PMID: 21731777
  163. Fujimoto KL, Tobita K, Guan J, et al. Placement of an elastic biodegradable cardiac patch on a subacute infarcted heart leads to cellularization with early developmental cardiomyocyte characteristics. J Card Fail 2012; 18(7): 585-95. doi: 10.1016/j.cardfail.2012.05.006 PMID: 22748493
  164. D’Amore A, Yoshizumi T, Luketich SK, et al. Bi-layered polyurethane-extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107: 1-14. doi: 10.1016/j.biomaterials.2016.07.039 PMID: 27579776
  165. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991; 12(3): 292-304. doi: 10.1016/0142-9612(91)90037-B PMID: 1649646
  166. Bejleri D, Streeter BW, Nachlas ALY, et al. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 2018; 7(23): 1800672. doi: 10.1002/adhm.201800672 PMID: 30379414
  167. Ondeck MG, Engler AJ. Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel. J Biomech Eng 2016; 138(2): 021003. doi: 10.1115/1.4032429 PMID: 26746491
  168. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials 1997; 18(24): 1573-83. doi: 10.1016/S0142-9612(97)00144-0 PMID: 9613804
  169. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW. Topographical control of cell behaviour: II. Multiple grooved substrata. Development 1990; 108(4): 635-44. doi: 10.1242/dev.108.4.635 PMID: 2387239
  170. Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017; 112: 264-74. doi: 10.1016/j.biomaterials.2016.10.026 PMID: 27770630
  171. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 98B(2): 379-86. doi: 10.1002/jbm.b.31862 PMID: 21681953
  172. Tsang KMC, Annabi N, Ercole F, et al. Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv Funct Mater 2015; 25(6): 977-86. doi: 10.1002/adfm.201403124 PMID: 26327819
  173. Bian W, Jackman CP, Bursac N. Controlling the structural and functional anisotropy of engineered cardiac tissues. Biofabrication 2014; 6(2): 024109-24109. doi: 10.1088/1758-5082/6/2/024109 PMID: 24717534
  174. Zong X, Bien H, Chung C, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005; 26(26): 5330-8. doi: 10.1016/j.biomaterials.2005.01.052 PMID: 15814131
  175. Neal RA, Jean A, Park H, et al. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng Part A 2013; 19(5-6): 793-807. doi: 10.1089/ten.tea.2012.0330 PMID: 23190320
  176. Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 2018; 10(2): 025003. doi: 10.1088/1758-5090/aaa15d PMID: 29235444
  177. Antzelevitch C, Burashnikov A. Overview of basic mechanisms of cardiac arrhythmia. Card Electrophysiol Clin 2011; 3(1): 23-45. doi: 10.1016/j.ccep.2010.10.012 PMID: 21892379
  178. Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat Mater 2014; 13(6): 558-69. doi: 10.1038/nmat3980 PMID: 24845995
  179. Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater 2016; 41: 133-46. doi: 10.1016/j.actbio.2016.05.027 PMID: 27212425
  180. Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J Biomed Mater Res A 2019; 107(1): 204-19. doi: 10.1002/jbm.a.36555 PMID: 30371973
  181. Wang X, Wang L, Wu Q, et al. Chitosan/Calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces 2019; 11(1): 1449-68. doi: 10.1021/acsami.8b17754 PMID: 30543278
  182. Tian B, Lieber CM. Nanowired bioelectric interfaces. Chem Rev 2019; 119(15): 9136-52. doi: 10.1021/acs.chemrev.8b00795 PMID: 30995019
  183. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010; 329(5993): 830-4. doi: 10.1126/science.1192033 PMID: 20705858
  184. Dai X, Zhou W, Gao T, Liu J, Lieber CM. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 2016; 11(9): 776-82. doi: 10.1038/nnano.2016.96 PMID: 27347837
  185. Bolonduro OA, Duffy BM, Rao AA, Black LD, Timko BP. From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Res 2020; 13(5): 1253-67. doi: 10.1007/s12274-020-2682-3
  186. Gao LR. Progress and mechanism of stem cell transplantation in the treatment of ischemic heart disease. J Clin Rehabil Tissue Eng Res 2007; (46): 9346-52. in Chinese
  187. Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 2015; 13(1): 162. doi: 10.1186/s12916-015-0399-z PMID: 26162993
  188. Kim SH, Cho JH, Lee YH, et al. Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior wall ST-Segment elevation myocardial infarction. Cardiovasc Drugs Ther 2018; 32(4): 329-38. doi: 10.1007/s10557-018-6804-z PMID: 29956042
  189. Florea V, Rieger AC, DiFede DL, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study). Circ Res 2017; 121(11): 1279-90. doi: 10.1161/CIRCRESAHA.117.311827 PMID: 28923793
  190. Xu J, Xiong YY, Li Q, et al. Optimization of timing and times for administration of atorvastatin-pretreated mesenchymal stem cells in a preclinical model of acute myocardial infarction. Stem Cells Transl Med 2019; 8(10): 1068-83. doi: 10.1002/sctm.19-0013 PMID: 31245934

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024