The Role of Mesenchymal Stem/Stromal Cells Secretome in Macrophage Polarization: Perspectives on Treating Inflammatory Diseases


Citar

Texto integral

Resumo

Mesenchymal stem/stromal cells (MSCs) have exhibited potential for treating multiple inflammation- related diseases (IRDs) due to their easy acquisition, unique immunomodulatory and tissue repair properties, and immune-privileged characteristics. It is worth mentioning that MSCs release a wide array of soluble bioactive components in the secretome that modulate host innate and adaptive immune responses and promote the resolution of inflammation. As the first line of defense, macrophages exist throughout the entire inflammation process. They continuously switch their molecular phenotypes accompanied by complementary functional regulation ranging from classically activated pro-inflammatory M1-type (M1) to alternatively activated anti-inflammatory M2-type macrophages (M2). Recent studies have shown that the active intercommunication between MSCs and macrophages is indispensable for the immunomodulatory and regenerative behavior of MSCs in pharmacological cell therapy products. In this review, we systematically summarized the emerging capacities and detailed the molecular mechanisms of the MSC-derived secretome (MSC-SE) in immunomodulating macrophage polarization and preventing excessive inflammation, providing novel insights into the clinical applications of MSC-based therapy in IRD management.

Sobre autores

Dongdong Ti

, Newlife R&D Center

Email: info@benthamscience.net

Jun Yi

, Newlife R&D Center

Email: info@benthamscience.net

Huihua Chen

, Newlife R&D Center

Email: info@benthamscience.net

Haojie Hao

, Newlife R&D Center

Autor responsável pela correspondência
Email: info@benthamscience.net

Chunmeng Shi

Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7(1): 272. doi: 10.1038/s41392-022-01134-4 PMID: 35933430
  2. Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2022; 45: 15-29. PMID: 35659923
  3. Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011; 60(6): 788-98. doi: 10.1136/gut.2010.214841 PMID: 21257987
  4. Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28(10): 1708-25. doi: 10.1016/j.stem.2021.09.006 PMID: 34624232
  5. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976; 47: 327-59. doi: 10.1016/S0074-7696(08)60092-3 PMID: 11195
  6. Ono-Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose derived mesenchymal stem cells: Mechanistic studies and clinical application. J Thromb Haemost 2021; 19(2): 342-50. doi: 10.1111/jth.15181 PMID: 33217130
  7. Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res 2010; 20(5): 510-8. doi: 10.1038/cr.2010.44 PMID: 20368733
  8. Rossello-Gelabert M, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine Growth Factor Rev 2022; 68: 25-36.
  9. Shi L, Wang L, Xu R, et al. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct Target Ther 2021; 6(1): 339. doi: 10.1038/s41392-021-00754-6 PMID: 34497264
  10. Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172. doi: 10.1038/s41392-020-00286-5 PMID: 32855385
  11. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54. doi: 10.1089/scd.2020.0080 PMID: 32380908
  12. Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13(1): 264. doi: 10.1186/s13287-022-02941-w PMID: 35725652
  13. Barnhoorn MC, Wasser MNJM, Roelofs H, et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for crohn’s disease perianal fistulas. J Crohn’s Colitis 2020; 14(1): 64-70. doi: 10.1093/ecco-jcc/jjz116 PMID: 31197361
  14. Vieujean S, Loly JP, Boutaffala L, et al. Mesenchymal stem cell injection in crohn’s disease strictures: A phase I–II clinical study. J Crohn’s Colitis 2022; 16(3): 506-10. doi: 10.1093/ecco-jcc/jjab154 PMID: 34473270
  15. Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: Touch, fuse, and fix? Stem Cell Res Ther 2022; 13(1): 348. doi: 10.1186/s13287-022-03028-2 PMID: 35883121
  16. Pang SHM, D’Rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat Commun 2021; 12(1): 6495. doi: 10.1038/s41467-021-26834-3 PMID: 34764248
  17. de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15. doi: 10.1002/stem.2779 PMID: 29341339
  18. Zhuang X, Hu X, Zhang S, Li X, Yuan X, Wu Y. Mesenchymal stem cell–based therapy as a new approach for the treatment of systemic sclerosis. Clin Rev Allergy Immunol 2022; 64(3): 284-320. doi: 10.1007/s12016-021-08892-z PMID: 35031958
  19. Hu Q, Zhang S, Yang Y, et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9(1): 61. doi: 10.1186/s40779-022-00417-9 PMID: 36316787
  20. Rao VV, Wechsler ME, Cravens E, et al. Granular PEG hydrogels mediate osteoporotic MSC clustering via N-cadherin influencing the pro-resorptive bias of their secretory profile. Acta Biomater 2022; 145: 77-87. doi: 10.1016/j.actbio.2022.04.023 PMID: 35460910
  21. Thomas MA, Fahey MJ, Pugliese BR, Irwin RM, Antonyak MA, Delco ML. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Front Bioeng Biotechnol 2022; 10: 870193. doi: 10.3389/fbioe.2022.870193 PMID: 36082164
  22. Zhang L, Liu Q, Hu H, Zhao L, Zhu K. Progress in mesenchymal stem cell mitochondria transfer for the repair of tissue injury and treatment of disease. Biomed Pharmacother 2022; 153: 113482. doi: 10.1016/j.biopha.2022.113482 PMID: 36076582
  23. Giri J, Das R, Nylen E, Chinnadurai R, Galipeau J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep 2020; 30(6): 1923-1934.e4.
  24. Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: The emerging role of chemokine cooperativity. Stem Cells 2021; 39(9): 1145-54. doi: 10.1002/stem.3380 PMID: 33786935
  25. Liu C, Xiao K, Xie L. Advances in the regulation of macrophage polarization by mesenchymal stem cells and implications for ALI/ARDS treatment. Front Immunol 2022; 13: 928134. doi: 10.3389/fimmu.2022.928134 PMID: 35880175
  26. Lin W, Li Q, Zhang D, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 2021; 9(1): 17. doi: 10.1038/s41413-021-00141-5 PMID: 33723232
  27. Zhang P, Amarasinghe HE, Whalley JP, et al. Epigenomic analysis reveals a dynamic and context-specific macrophage enhancer landscape associated with innate immune activation and tolerance. Genome Biol 2022; 23(1): 136. doi: 10.1186/s13059-022-02702-1 PMID: 35751107
  28. Espagnolle N, Balguerie A, Arnaud E, Sensebé L, Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Reports 2017; 8(4): 961-76. doi: 10.1016/j.stemcr.2017.02.008 PMID: 28330617
  29. Cho DI, Kim MR, Jeong H, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 2014; 46(1): e70. doi: 10.1038/emm.2013.135 PMID: 24406319
  30. Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133: 4-16. doi: 10.1016/j.actbio.2021.03.038 PMID: 33775905
  31. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2021; 18(3): 579-87. doi: 10.1038/s41423-020-00541-3 PMID: 32934339
  32. Dwyer GK, Turnquist HR. Untangling local pro-inflammatory, reparative, and regulatory damage-associated molecular-patterns (DAMPs) pathways to improve transplant outcomes. Front Immunol 2021; 12: 611910. doi: 10.3389/fimmu.2021.611910 PMID: 33708206
  33. Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55(9): 1530-48. doi: 10.1016/j.immuni.2022.08.005 PMID: 36103851
  34. Zhan Y, Xu D, Tian Y, et al. Novel role of macrophage TXNIP-mediated CYLD–NRF2–OASL1 axis in stress-induced liver inflammation and cell death. JHEP Reports 2022; 4(9): 100532. doi: 10.1016/j.jhepr.2022.100532 PMID: 36035360
  35. Zaman R, Epelman S. Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity 2022; 55(9): 1549-63. doi: 10.1016/j.immuni.2022.08.009 PMID: 36103852
  36. Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in health and disease. Annu Rev Immunol 2019; 37(1): 439-56. doi: 10.1146/annurev-immunol-042617-053119 PMID: 31026415
  37. Lin CW, Hung CM, Chen WJ, et al. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers. Pharmaceutics 2022; 14(10): 2065. doi: 10.3390/pharmaceutics14102065 PMID: 36297499
  38. Ligeon LA, Pena-Francesch M, Vanoaica LD, et al. Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nat Commun 2021; 12(1): 1508. doi: 10.1038/s41467-021-21829-6 PMID: 33686057
  39. Chang CF, Goods BA, Askenase MH, et al. Divergent functions of tissue-resident and blood-derived macrophages in the hemorrhagic brain. Stroke 2021; 52(5): 1798-808. doi: 10.1161/STROKEAHA.120.032196 PMID: 33840225
  40. Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci 2022; 14: 879021. doi: 10.3389/fnagi.2022.879021 PMID: 35754962
  41. Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022; 55(8): 1370-1385.e8. doi: 10.1016/j.immuni.2022.06.007 PMID: 35835107
  42. Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 2018; 122(12): 1722-40. doi: 10.1161/CIRCRESAHA.118.311362 PMID: 29880500
  43. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39(1): 12. doi: 10.1186/s41232-019-0101-5 PMID: 31182982
  44. Neighbors M, Xu X, Barrat FJ, et al. A critical role for interleukin 18 in primary and memory effector responses to Listeria monocytogenes that extends beyond its effects on Interferon gamma production. J Exp Med 2001; 194(3): 343-54. doi: 10.1084/jem.194.3.343 PMID: 11489953
  45. Deng J, Zhang B, Chu H, et al. Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. EBioMedicine 2021; 70: 103505. doi: 10.1016/j.ebiom.2021.103505 PMID: 34332295
  46. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69. doi: 10.1038/nri2448 PMID: 19029990
  47. Denans N, Tran NTT, Swall ME, Diaz DC, Blanck J, Piotrowski T. An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish. Nat Commun 2022; 13(1): 5356. doi: 10.1038/s41467-022-33015-3 PMID: 36127326
  48. Klaver D, Gander H, Dobler G, Rahm A, Thurnher M. The P2Y11 receptor of human M2 macrophages activates canonical and IL-1 receptor signaling to translate the extracellular danger signal ATP into anti-inflammatory and pro-angiogenic responses. Cell Mol Life Sci 2022; 79(10): 519. doi: 10.1007/s00018-022-04548-z PMID: 36107259
  49. Gharavi AT, Hanjani NA, Movahed E, Doroudian M. The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett 2022; 27(1): 83. doi: 10.1186/s11658-022-00384-y PMID: 36192691
  50. Yang Z, Lin S, Feng W, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13: 999179. doi: 10.3389/fphar.2022.999179 PMID: 36147340
  51. Tajbakhsh A, Gheibihayat SM, Askari H, et al. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238: 108282. doi: 10.1016/j.pharmthera.2022.108282 PMID: 36130624
  52. Vago JP, Galvão I, Negreiros-Lima GL, et al. Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol Res 2020; 158: 104842. doi: 10.1016/j.phrs.2020.104842 PMID: 32413484
  53. Yang X, Zhou F, Yuan P, et al. T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioact Mater 2021; 6(10): 3150-63. doi: 10.1016/j.bioactmat.2021.02.034 PMID: 33778195
  54. Haribhai D, Ziegelbauer J, Jia S, et al. Alternatively activated macrophages boost induced regulatory T and Th17 cell responses during immunotherapy for colitis. J Immunol 2016; 196(8): 3305-17. doi: 10.4049/jimmunol.1501956 PMID: 26927797
  55. Zhang H, Xue R, Zhu S, et al. M2-specific reduction of CD1d switches NKT cell-mediated immune responses and triggers metaflammation in adipose tissue. Cell Mol Immunol 2018; 15(5): 506-17. doi: 10.1038/cmi.2017.11 PMID: 28392574
  56. Xie Z, Hao H, Tong C, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells 2016; 34(3): 627-39. doi: 10.1002/stem.2238 PMID: 26523620
  57. Yin Y, Hao H, Cheng Y, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 2018; 9(7): 760. doi: 10.1038/s41419-018-0801-9 PMID: 29988034
  58. Ratnayake D, Nguyen PD, Rossello FJ, et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591(7849): 281-7. doi: 10.1038/s41586-021-03199-7 PMID: 33568815
  59. Zhang M, Johnson-Stephenson TK, Wang W, et al. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res Ther 2022; 13(1): 484. doi: 10.1186/s13287-022-03174-7 PMID: 36153633
  60. Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine activation reveals tissue-imprinted gene profiles of mesenchymal stromal cells. Front Immunol 2022; 13: 917790. doi: 10.3389/fimmu.2022.917790 PMID: 35924240
  61. Takeuchi S, Tsuchiya A, Iwasawa T, et al. Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. NPJ Regen Med 2021; 6(1): 19. doi: 10.1038/s41536-021-00132-4 PMID: 33785758
  62. Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9: rbac022. doi: 10.1093/rb/rbac022 PMID: 35784096
  63. Patrick MD, Annamalai RT. Licensing microgels prolong the immunomodulatory phenotype of mesenchymal stromal cells. Front Immunol 2022; 13: 987032. doi: 10.3389/fimmu.2022.987032 PMID: 36059508
  64. Papait A, Ragni E, Cargnoni A, et al. Comparison of EV-free fraction, EVs, and total secretome of amniotic mesenchymal stromal cells for their immunomodulatory potential: A translational perspective. Front Immunol 2022; 13: 960909. doi: 10.3389/fimmu.2022.960909 PMID: 36052081
  65. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim Biophys Acta, Gen Subj 2014; 1840(8): 2506-19. doi: 10.1016/j.bbagen.2014.01.010 PMID: 24418517
  66. Zhuang Z, Zhang Y, Yang X, et al. Matrix stiffness regulates the immunomodulatory effects of mesenchymal stem cells on macrophages via AP1/TSG-6 signaling pathways. Acta Biomater 2022; 149: 69-81. doi: 10.1016/j.actbio.2022.07.010 PMID: 35820593
  67. Wong SW, Lenzini S, Cooper MH, Mooney DJ, Shin JW. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv 2020; 6(15): eaaw0158. doi: 10.1126/sciadv.aaw0158 PMID: 32284989
  68. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5(1): 54-63. doi: 10.1016/j.stem.2009.05.003 PMID: 19570514
  69. Wang M, Zhang M, Fu L, et al. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics 2020; 10(1): 36-49. doi: 10.7150/thno.37301 PMID: 31903104
  70. Li Q, Song WJ, Ryu MO, et al. TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates severe acute pancreatitis via ER stress downregulation in mice. Stem Cell Res Ther 2018; 9(1): 255. doi: 10.1186/s13287-018-1009-8 PMID: 30257717
  71. Cassano JM, Schnabel LV, Goodale MB, Fortier LA. Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Res Ther 2018; 9(1): 82. doi: 10.1186/s13287-018-0840-2 PMID: 29615127
  72. Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020; 16(1): 28-37. doi: 10.1080/15548627.2019.1630223 PMID: 31185790
  73. Souza-Moreira L, Soares VC, Dias SSG, Bozza PT. Adipose-derived mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR –PPARγ signalling in macrophages. Sci Rep 2019; 9(1): 20304. doi: 10.1038/s41598-019-56835-8 PMID: 31889120
  74. Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells. Stem Cells Transl Med 2019; 8(1): 93-106. doi: 10.1002/sctm.18-0070 PMID: 30272389
  75. Wang J, Liu Y, Ding H, Shi X, Ren H. Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization. Stem Cell Res Ther 2021; 12(1): 15. doi: 10.1186/s13287-020-02070-2 PMID: 33413632
  76. Su Y, Sun X, Liu X, et al. hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype. J Hematol Oncol 2022; 15(1): 99. doi: 10.1186/s13045-022-01315-2 PMID: 35864538
  77. Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9(416): eaam7828. doi: 10.1126/scitranslmed.aam7828 PMID: 29141887
  78. Tynecka M, Janucik A, Niemira M, et al. The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung. Front Immunol 2022; 13: 967487. doi: 10.3389/fimmu.2022.967487 PMID: 36189248
  79. Morioka S, Maueröder C, Ravichandran KS. Living on the edge: Efferocytosis at the interface of homeostasis and pathology. Immunity 2019; 50(5): 1149-62. doi: 10.1016/j.immuni.2019.04.018 PMID: 31117011
  80. Xin L, Wei C, Tong X, et al. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12: 107-19. doi: 10.1016/j.bioactmat.2021.10.025 PMID: 35087967
  81. Zheng C, Sui B, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles 2021; 10(7): e12109. doi: 10.1002/jev2.12109 PMID: 34084287
  82. Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther 2022; 30(10): 3193-208. doi: 10.1016/j.ymthe.2022.05.006 PMID: 35538661
  83. Patil M, Saheera S, Dubey PK, et al. Novel mechanisms of exosome-mediated phagocytosis of dead cells in injured heart. Circ Res 2021; 129(11): 1006-20. doi: 10.1161/CIRCRESAHA.120.317900 PMID: 34623174
  84. Humbert P, Brennan MÁ, De Lima J, et al. Apoptotic mesenchymal stromal cells support osteoclastogenesis while inhibiting multinucleated giant cells formation in vitro. Sci Rep 2021; 11(1): 12144. doi: 10.1038/s41598-021-91258-4 PMID: 34108508
  85. Tan YL, Eng SP, Hafez P, Abdul Karim N, Law JX, Ng MH. Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: A review of evidence in preclinical models. Stem Cells Transl Med 2022; 11(8): 814-27. doi: 10.1093/stcltm/szac044 PMID: 35851922
  86. Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 2016; 34(8): 2210-23. doi: 10.1002/stem.2372 PMID: 27059413
  87. Sanz-Ros J, Romero-García N, Mas-Bargues C, et al. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Sci Adv 2022; 8(42): eabq2226. doi: 10.1126/sciadv.abq2226 PMID: 36260670
  88. García-Bernal D, Blanquer M, Martínez CM, et al. Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. NPJ Regen Med 2022; 7(1): 61. doi: 10.1038/s41536-022-00258-z PMID: 36261464
  89. Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater 2017; 64: 176-86. doi: 10.1016/j.actbio.2017.10.007 PMID: 28987783
  90. Vallés G, Bensiamar F, Crespo L, Arruebo M, Vilaboa N, Saldaña L. Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials 2015; 37: 124-33. doi: 10.1016/j.biomaterials.2014.10.028 PMID: 25453943
  91. Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14(7): 453-72. doi: 10.4252/wjsc.v14.i7.453 PMID: 36157530
  92. Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2021; 17(10): 2991-3010. doi: 10.1080/15548627.2020.1850608 PMID: 33206581
  93. Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 2020; 17(1): 47. doi: 10.1186/s12974-020-1726-7 PMID: 32019561
  94. Collino F, Lopes JA, Corrêa S, et al. Adipose-derived mesenchymal stromal cells under hypoxia: Changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem 2019; 52(6): 1463-83. PMID: 31099507
  95. Su W, Yu S, Yin Y, et al. Diabetic microenvironment preconditioning of adipose tissue-derived mesenchymal stem cells enhances their anti-diabetic, anti-long-term complications, and anti-inflammatory effects in type 2 diabetic rats. Stem Cell Res Ther 2022; 13(1): 422. doi: 10.1186/s13287-022-03114-5 PMID: 35986406
  96. Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308. doi: 10.1186/s12967-015-0642-6 PMID: 26386558
  97. Park HY, Kim CE, Lee SM, et al. Priming mesenchymal stem/stromal cells with a combination of a low dose of IFN-gamma and bortezomib results in potent suppression of pathogenic Th17 immunity through the IDO1-AHR axis. Stem Cells 2022; 41(1): 64-76.
  98. Skibber MA, Olson SD, Prabhakara KS, Gill BS, Cox CS Jr. Enhancing mesenchymal stromal cell potency: inflammatory licensing via mechanotransduction. Front Immunol 2022; 13: 874698. doi: 10.3389/fimmu.2022.874698 PMID: 35874742
  99. Grumet M, Sherman J, Dorf BS. Efficacy of MSC in Patients with severe COVID-19: Analysis of the literature and a case study. Stem Cells Transl Med 2022; 11(11): 1103-12. doi: 10.1093/stcltm/szac067 PMID: 36181766
  100. Shi L, Yuan X, Yao W, et al. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine 2022; 75: 103789. doi: 10.1016/j.ebiom.2021.103789 PMID: 34963099
  101. Upadhyay TK, Trivedi R, Khan F, et al. Potential therapeutic role of mesenchymal-derived stem cells as an alternative therapy to combat COVID-19 through cytokines storm. Cells 2022; 11(17): 2686. doi: 10.3390/cells11172686 PMID: 36078094
  102. Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226: 108712. doi: 10.1016/j.clim.2021.108712 PMID: 33684527
  103. Zang L, Li Y, Hao H, et al. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: A single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther 2022; 13(1): 180. doi: 10.1186/s13287-022-02848-6 PMID: 35505375
  104. Kerstan A, Dieter K, Niebergall-Roth E, et al. Translational development of ABCB5+ dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther 2022; 13(1): 455. doi: 10.1186/s13287-022-03156-9 PMID: 36064604
  105. Duijvestein M, Vos ACW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut 2010; 59(12): 1662-9. doi: 10.1136/gut.2010.215152 PMID: 20921206
  106. Johnson S, Hoch JS, Halabi WJ, Ko J, Nolta J, Dave M. Mesenchymal stem/stromal cell therapy is more cost-effective than fecal diversion for treatment of perianal crohn’s disease fistulas. Front Immunol 2022; 13: 859954. doi: 10.3389/fimmu.2022.859954 PMID: 35784367
  107. Lightner AL, Dadgar N, Matyas C, et al. A phase IB/IIA study of remestemcel L, an allogeneic bone marrow derived mesenchymal stem cell product, for the treatment of medically refractory ulcerative colitis: An interim analysis. Colorectal Dis 2022; 24(11): 1358-70. doi: 10.1111/codi.16239 PMID: 35767384
  108. Altemus J, Dadgar N, Li Y, Lightner AL. Adipose tissue derived mesenchymal stem cells’ acellular product extracellular vesicles as a potential therapy for Crohn’s disease. J Cell Physiol 2022; 237(7): 3001-11. doi: 10.1002/jcp.30756 PMID: 35522572
  109. Albu S, Kumru H, Coll R, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: A randomized controlled study. Cytotherapy 2021; 23(2): 146-56. doi: 10.1016/j.jcyt.2020.08.008 PMID: 32981857
  110. Vaquero J, Zurita M, Rico MA, et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017; 19(3): 349-59. doi: 10.1016/j.jcyt.2016.12.002 PMID: 28089079
  111. Vaquero J, Zurita M, Rico MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018; 20(6): 806-19. doi: 10.1016/j.jcyt.2018.03.032 PMID: 29853256
  112. Siniscalco D, Giordano C, Galderisi U, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Nuerosci 2011; 5: 79. doi: 10.3389/fnint.2011.00079 PMID: 22164136
  113. Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012; 7(4): e35036. doi: 10.1371/journal.pone.0035036 PMID: 22496888
  114. Li Y, Zhang D, Xu L, et al. Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16(12): 908-20. doi: 10.1038/s41423-019-0204-6 PMID: 30778166

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024