Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration


Citar

Texto integral

Resumo

Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.

Sobre autores

Özlem Altundag

Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University

Email: info@benthamscience.net

Mustafa Öteyaka

Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School,, Eskisehir Osmangazi University

Email: info@benthamscience.net

Betül Çelebi-Saltik

Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Ogueri KS, Laurencin CT. Nanofiber technology for regenerative engineering. ACS Nano 2020; 14(8): 9347-63. doi: 10.1021/acsnano.0c03981 PMID: 32678581
  2. Berton F, Porrelli D, Di Lenarda R, Turco G. A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. Nanomaterials 2019; 10(1): 16. doi: 10.3390/nano10010016 PMID: 31861582
  3. Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J Biomater Sci Polym Ed 2021; 32(4): 536-61. doi: 10.1080/09205063.2020.1849922 PMID: 33175667
  4. Ribeiro N, Sousa A, Cunha-Reis C, et al. New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine 2021; 33: 102353. doi: 10.1016/j.nano.2020.102353 PMID: 33421622
  5. Phakatkar AH, Shirdar MR, Qi M, et al. Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater Sci Eng C 2020; 109: 110497. doi: 10.1016/j.msec.2019.110497 PMID: 32228962
  6. Tao F, Cheng Y, Shi X, et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2020; 230: 115658. doi: 10.1016/j.carbpol.2019.115658 PMID: 31887899
  7. Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B Mater Biol Med 2020; 8(17): 3733-46. doi: 10.1039/D0TB00271B PMID: 32211735
  8. Hashemi J, Barati G, Enderami SE, Safdari M. Osteogenic differentiation of induced pluripotent stem cells on electrospun nanofibers: A review of literature. Mater Today Commun 2020; 25: 101561. doi: 10.1016/j.mtcomm.2020.101561
  9. Stojanovska E, Canbay E, Pampal ES, et al. A review on non-electro nanofibre spinning techniques. RSC Advances 2016; 6(87): 83783-801. doi: 10.1039/C6RA16986D
  10. Mirjalili M, Zohoori S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem 2016; 6(3): 207-13. doi: 10.1007/s40097-016-0189-y
  11. Song J, Li Z, Wu H. Blowspinning: A new choice for nanofibers. ACS Appl Mater Interfaces 2020; 12(30): 33447-64. doi: 10.1021/acsami.0c05740 PMID: 32628010
  12. Zhiming Z, Boya C, Zilong L, Jiawei W, Yaoshuai D. Spinning solution flow model in the nozzle and experimental study of nanofibers fabrication via high speed centrifugal spinning. Polymer 2020; 205: 122794. doi: 10.1016/j.polymer.2020.122794
  13. Elahi MF, Lu W. Core-shell fibers for biomedical applications-a review. J Bioeng Biomed Sci 2013; 3(1) doi: 10.4172/2155-9538.1000121
  14. Guerrero-Pérez MO. Research progress on the applications of electrospun nanofibers in catalysis. Catalysts 2021; 12(1): 9. doi: 10.3390/catal12010009
  15. Ferraris S, Spriano S, Scalia AC, et al. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers 2020; 12(12): 2896. doi: 10.3390/polym12122896 PMID: 33287236
  16. Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 2003; 44(20): 6353-9. doi: 10.1016/S0032-3861(03)00616-5
  17. Kyzas GZ, Mitropoulos AC. Novel Nanomaterials - Synthesis and Applications. London: IntechOpen 2018. doi: 10.5772/intechopen.70149
  18. Li D, McCann JT, Xia Y. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 2005; 1(1): 83-6. doi: 10.1002/smll.200400056 PMID: 17193354
  19. Abazari MF, Soleimanifar F, Faskhodi AM, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. J Cell Physiol 2020; 235(2): 1155-64. doi: 10.1002/jcp.29029 PMID: 31250436
  20. Wang D, Jang J, Kim K, Kim J, Park CB. "Tree to Bone": Lignin/polycaprolactone nanofibers for hydroxyapatite biomineralization. Biomacromolecules 2019; 20(7): 2684-93. doi: 10.1021/acs.biomac.9b00451 PMID: 31117353
  21. Bhattarai D, Aguilar L, Park C, Kim C. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes 2018; 8(3): 62. doi: 10.3390/membranes8030062 PMID: 30110968
  22. Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 2019; 17: 1-35. doi: 10.1016/j.apmt.2019.06.015
  23. Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci 2021; 21(8): 2100153. doi: 10.1002/mabi.202100153 PMID: 34117836
  24. Mbese Z, Alven S, Aderibigbe BA. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers 2021; 13(24): 4368. doi: 10.3390/polym13244368 PMID: 34960918
  25. Dibazar ZE, Mohammadpour M, Samadian H, et al. Bacterial polyglucuronic acid/alginate/carbon nanofibers hydrogel nanocomposite as a potential scaffold for bone tissue engineering. Materials 2022; 15(7): 2494. doi: 10.3390/ma15072494 PMID: 35407826
  26. Hejazi F, Ebrahimi V, Asgary M, et al. Improved healing of critical-size femoral defect in osteoporosis rat models using 3D elastin/polycaprolactone/nHA scaffold in combination with mesenchymal stem cells. J Mater Sci Mater Med 2021; 32(3): 27. doi: 10.1007/s10856-021-06495-w PMID: 33683483
  27. Raj Preeth D, Saravanan S, Shairam M, et al. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160: 105768. doi: 10.1016/j.ejps.2021.105768 PMID: 33607242
  28. Siddiqui N, Kishori B, Rao S, et al. Electropsun polycaprolactone fibres in bone tissue engineering: A review. Mol Biotechnol 2021; 63(5): 363-88. doi: 10.1007/s12033-021-00311-0 PMID: 33689142
  29. Orafa Z, Irani S, Zamanian A, Bakhshi H, Nikukar H, Ghalandari B. Coating of laponite on PLA nanofibrous for bone tissue engineering application. Macromol Res 2021; 29(3): 191-8. doi: 10.1007/s13233-021-9028-1
  30. Cakmak S. Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation. Mater Technol 2022; 37(1): 9-20. doi: 10.1080/10667857.2021.1959216
  31. Wang SF, Wu YC, Cheng YC, Hu WW. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application. Polymers 2021; 13(11): 1740. doi: 10.3390/polym13111740 PMID: 34073347
  32. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019; 119(8): 5298-415. doi: 10.1021/acs.chemrev.8b00593 PMID: 30916938
  33. SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad Afifi A. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process 2018; 33(5): 479-98. doi: 10.1080/10426914.2017.1388523
  34. Jadbabaei S, Kolahdoozan M, Naeimi F, Ebadi-Dehaghani H. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv 2021; 11(49): 30674-88. doi: 10.1039/D1RA04176B PMID: 35479869
  35. Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 2021; 13(2): 286. doi: 10.3390/pharmaceutics13020286 PMID: 33671624
  36. Baghali M, Ziyadi H, Faridi-Majidi R. Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull 2022; 79(3): 1729-49. doi: 10.1007/s00289-021-03591-3
  37. Mukhiya T, Muthurasu A, Tiwari AP, et al. Integrating the essence of a metal–organic framework with electrospinning: A new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion. ACS Appl Mater Interfaces 2021; 13(20): 23732-42. doi: 10.1021/acsami.1c04104 PMID: 33977710
  38. Li X, Chen W, Qian Q, et al. Electrospinning‐based strategies for battery materials. Adv Energy Mater 2021; 11(2): 2000845. doi: 10.1002/aenm.202000845
  39. Zhu S, Nie L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J Ind Eng Chem 2021; 93: 28-56. doi: 10.1016/j.jiec.2020.09.016
  40. Lyu C, Zhao P, Xie J, et al. Electrospinning of nanofibrous membrane and its applications in air filtration: A review. Nanomaterials 2021; 11(6): 1501. doi: 10.3390/nano11061501 PMID: 34204161
  41. Park K, Kang S, Park J, Hwang J. Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. J Hazard Mater 2021; 411: 125043. doi: 10.1016/j.jhazmat.2021.125043 PMID: 33485235
  42. Buivydiene D, Todea AM, Asbach C, Krugly E, Martuzevicius D, Kliucininkas L. Composite micro/nano fibrous air filter by simultaneous melt and solution electrospinning. J Aerosol Sci 2021; 154: 105754. doi: 10.1016/j.jaerosci.2021.105754
  43. Can-Herrera LA, Oliva AI, Dzul-Cervantes MAA, Pacheco-Salazar OF, Cervantes-Uc JM. Morphological and mechanical properties of electrospun polycaprolactone scaffolds: Effect of applied voltage. Polymers 2021; 13(4): 662. doi: 10.3390/polym13040662 PMID: 33672211
  44. Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R. An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 2021; 4(3): 768-79. doi: 10.1007/s42114-021-00230-3 PMID: 33748671
  45. Abdullah MF, Andriyana A, Muhamad F, Ang BC. Effect of core-to-shell flowrate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. Polymer 2021; 237: 124378. doi: 10.1016/j.polymer.2021.124378
  46. Oteyaka M, Ozel E, Yıldırım M. Experimental study on relationship of applied power and feeding rate on production of polyurethane nanofibre. Gazi Univ J Sci 2013; 26(4): 611-8.
  47. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 2012; 3(1) doi: 10.1177/2041731412443530 PMID: 22511995
  48. Nitti P, Gallo N, Natta L, et al. Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018; 2018: 1-12. doi: 10.1155/2018/3651480 PMID: 30538809
  49. Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater Sci Eng C 2021; 118: 111547. doi: 10.1016/j.msec.2020.111547 PMID: 33255098
  50. Qin X. 3 - Coaxial electrospinning of nanofibers. In: Afshari M, Ed. Electrospun Nanofibers. Woodhead Publishing 2017; pp. 41-71. doi: 10.1016/B978-0-08-100907-9.00003-9
  51. Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater Sci Eng C 2021; 123: 111975. doi: 10.1016/j.msec.2021.111975 PMID: 33812603
  52. Yang Y, Chang S, Bai Y, Du Y, Yu DG. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym 2020; 243: 116477. doi: 10.1016/j.carbpol.2020.116477 PMID: 32532400
  53. Ghosal K, Augustine R, Zaszczynska A, et al. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym 2021; 163: 104895. doi: 10.1016/j.reactfunctpolym.2021.104895
  54. Cooley J. Apparatus for electrically dispersing fluids. Patent US692631A, 1902.
  55. Badmus M, Jing L, Wang N. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater Sci 2020; 3(3): 213-32.
  56. Li H, Wang M. 18 - Electrospinning and nanofibrous structures for biomedical applications. In: Osaka A, Narayan R, Eds. Bioceramics. Elsevier 2021; pp. 401-36. doi: 10.1016/B978-0-08-102999-2.00018-1
  57. Wang N, Zhao Y. Coaxial electrospinning. In: Ding B, Wang X, Yu J, Eds. Electrospinning: Nanofabrication and Applications. William Andrew Publishing 2019; pp. 125-200. doi: 10.1016/B978-0-323-51270-1.00005-4
  58. Wang M, Yu D-G, Li X, Williams GR. The development and bio-applications of multifluid electrospinning. Materials Highlights 2020; 1(1-2): 1-13. doi: 10.2991/mathi.k.200521.001
  59. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008; 49(26): 5603-21. doi: 10.1016/j.polymer.2008.09.014
  60. Khajavi R, Abbasipour M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 2012; 19(6): 2029-34. doi: 10.1016/j.scient.2012.10.037
  61. Zhang Q, Li Y, Lin ZYW, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov Today 2017; 22(9): 1351-66. doi: 10.1016/j.drudis.2017.05.007 PMID: 28552498
  62. Mondal K, Ali MA, Srivastava S, Malhotra BD, Sharma A. Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sens Actuators B Chem 2016; 229: 82-91. doi: 10.1016/j.snb.2015.12.108
  63. Shi X, Zhou W, Ma D, et al. Electrospinning of nanofibers and their applications for energy devices. J Nanomater 2015; 2015: 1-20. doi: 10.1155/2015/140716
  64. Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017; 39: 111-39. doi: 10.1016/j.nanoen.2017.06.050
  65. Di J, Chen H, Wang X, et al. Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem Mater 2008; 20(11): 3543-5. doi: 10.1021/cm8006809
  66. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004; 4(5): 933-8. doi: 10.1021/nl049590f
  67. Zhan S, Chen D, Jiao X, Liu S. Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol–gel combined co-electrospinning technology. J Colloid Interface Sci 2007; 308(1): 265-70. doi: 10.1016/j.jcis.2006.12.026 PMID: 17196607
  68. Cleeton C, Keirouz A, Chen X, Radacsi N. Electrospun nanofibers for drug delivery and biosensing. ACS Biomater Sci Eng 2019; 5(9): 4183-205. doi: 10.1021/acsbiomaterials.9b00853 PMID: 33417777
  69. Schreuder-Gibson HL, Gibson P, Tsai P. Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. J Eng Fibers Fabr 2004. doi: 10.1177/1558925004os-1300406
  70. Baykara T, Taylan G. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Mater Sci Eng B 2021; 265: 115012. doi: 10.1016/j.mseb.2020.115012
  71. Su S, Bedir T, Kalkandelen C, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J 2021; 142: 110158. doi: 10.1016/j.eurpolymj.2020.110158
  72. Silva JC, Udangawa RN, Chen J, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C 2020; 107: 110291. doi: 10.1016/j.msec.2019.110291 PMID: 31761240
  73. Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydr Polym 2020; 229: 115544. doi: 10.1016/j.carbpol.2019.115544 PMID: 31826435
  74. Alharbi HF, Luqman M, Khalil KA, et al. Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. Eur Polym J 2018; 98: 483-91. doi: 10.1016/j.eurpolymj.2017.11.052
  75. Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144: 105224. doi: 10.1016/j.ejps.2020.105224 PMID: 31954183
  76. Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148: 1084-97. doi: 10.1016/j.ijbiomac.2019.12.275 PMID: 31917213
  77. Esmaeili A, Haseli M. Optimization, synthesis, and characterization of coaxial electrospun sodium carboxymethyl cellulose-graft-methyl acrylate/poly(ethylene oxide) nanofibers for potential drug-delivery applications. Carbohydr Polym 2017; 173: 645-53. doi: 10.1016/j.carbpol.2017.06.037 PMID: 28732909
  78. Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer 2018; 142: 244-55. doi: 10.1016/j.polymer.2018.03.045
  79. Li F, Zhao Y, Song Y. Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning. In: Kumar A, Ed. Nanofibers. IntechOpen 2010. doi: 10.5772/8166
  80. Nair LS, Laurencin CT. Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Joint Surg Am 2008; 90(S1): 128-31. doi: 10.2106/JBJS.G.01520 PMID: 18292367
  81. Hu S, Chen H, Zhou X, et al. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core–shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells. Int J Nanomedicine 2018; 13: 4145-55. doi: 10.2147/IJN.S167035 PMID: 30046239
  82. Wang C, Wang J, Zeng L, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 2019; 24(5): 834. doi: 10.3390/molecules24050834 PMID: 30813599
  83. Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 2016; 69: 1183-91. doi: 10.1016/j.msec.2016.08.032 PMID: 27612816
  84. He Z, Liu S, Li Z, Xu J, Liu Y, Luo E. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models. Mater Today Bio 2022; 16: 100438. doi: 10.1016/j.mtbio.2022.100438 PMID: 36193342
  85. Yao J, Liu Z, Ma W, et al. Three-dimensional coating of SF/PLGA coaxial nanofiber membranes on surfaces of calcium phosphate cement for enhanced bone regeneration. ACS Biomater Sci Eng 2020; 6(5): 2970-84. doi: 10.1021/acsbiomaterials.9b01729 PMID: 33463266
  86. Jin S, Gao J, Yang R, et al. A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioact Mater 2022; 8: 559-72. doi: 10.1016/j.bioactmat.2021.06.028 PMID: 34541420
  87. Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh T, Uyama H, Sakurai H. Size-controlled preparation of gold nanoparticles deposited on surface-fibrillated cellulose obtained by citric acid modification. ACS Omega 2020; 5(51): 33206-13. doi: 10.1021/acsomega.0c04894 PMID: 33403282
  88. Xing D, Zuo W, Chen J, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration. ACS Appl Mater Interfaces 2022; 14(33): 37380-95. doi: 10.1021/acsami.2c08784 PMID: 35946874
  89. Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 2017; 112: 1-17. doi: 10.1016/j.ejpb.2016.11.010 PMID: 27865991
  90. Williams GR, Raimi-Abraham BT, Luo CJ. Coaxial and multi-axial electrospinning. In: Nanofibres in Drug Delivery. UCL Press 2018; pp. 106-48. doi: 10.2307/j.ctv550dd1.8
  91. Han D, Steckl AJ. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 2013; 5(16): 8241-5. doi: 10.1021/am402376c PMID: 23924226
  92. Jiang S, Duan G, Zussman E, Greiner A, Agarwal S. Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl Mater Interfaces 2014; 6(8): 5918-23. doi: 10.1021/am500837s PMID: 24684423
  93. Wang M. The Development and Bio-applications of Multifluid Electrospinning. Materials Highlights 2020. doi: 10.2991/mathi.k.200521.001
  94. Khalf A, Singarapu K, Madihally SV. Influence of solvent characteristics in triaxial electrospun fiber formation. React Funct Polym 2015; 90: 36-46. doi: 10.1016/j.reactfunctpolym.2015.03.004
  95. Han D, Sherman S, Filocamo S, Steckl AJ. Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes. Acta Biomater 2017; 53: 242-9. doi: 10.1016/j.actbio.2017.02.029 PMID: 28216302
  96. Yang Y, Li W, Yu DG, Wang G, Williams GR, Zhang Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 2019; 203: 228-37. doi: 10.1016/j.carbpol.2018.09.061 PMID: 30318208
  97. Liu X, Yang Y, Yu D-G, Zhu M-J, Zhao M, Williams GR. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 2019; 356: 886-94. doi: 10.1016/j.cej.2018.09.096
  98. Liu W, Ni C, Chase DB, Rabolt JF. Preparation of multilayer biodegradable nanofibers by triaxial electrospinning. ACS Macro Lett 2013; 2(6): 466-8. doi: 10.1021/mz4000688 PMID: 35581798
  99. Nagiah N, Murdock CJ, Bhattacharjee M, Nair L, Laurencin CT. Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications. Sci Rep 2020; 10(1): 609. doi: 10.1038/s41598-020-57412-0 PMID: 31953439
  100. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233(3): 706-20. doi: 10.1002/dvdy.20345 PMID: 15937929
  101. Jin SW, Sim KB, Kim SD. Development and growth of the normal cranial vault : An embryologic review. J Korean Neurosurg Soc 2016; 59(3): 192-6. doi: 10.3340/jkns.2016.59.3.192 PMID: 27226848
  102. Breeland G, Sinkler MA, Menezes RG. Embryology, Bone Ossification. Treasure Island (FL): StatPearls 2022.
  103. Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn 2013; 242(8): 909-22. doi: 10.1002/dvdy.23992 PMID: 23737393
  104. Hall BK. Earliest evidence of cartilage and bone development in embryonic life. Clin Orthop Relat Res 1987; 225(&NA;): 255-72. doi: 10.1097/00003086-198712000-00023 PMID: 3315379
  105. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54. doi: 10.1016/S0092-8674(00)80257-3 PMID: 9182762
  106. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol 2004; 14(2): 86-93. doi: 10.1016/j.tcb.2003.12.003 PMID: 15102440
  107. Šošić D, Brand-Saberi B, Schmidt C, Christ B, Olson EN. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 1997; 185(2): 229-43. doi: 10.1006/dbio.1997.8561 PMID: 9187085
  108. Pirraco RP, Marques AP, Reis RL. Cell interactions in bone tissue engineering. J Cell Mol Med 2010; 14(1-2): 93-102. doi: 10.1111/j.1582-4934.2009.01005.x PMID: 20050963
  109. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 1996; 45: 371-86. PMID: 8727757
  110. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 2006; 8(1): 455-98. doi: 10.1146/annurev.bioeng.8.061505.095721 PMID: 16834564
  111. Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 1-17. doi: 10.1155/2015/421746 PMID: 26247020
  112. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3(S3): S131-9. doi: 10.2215/CJN.04151206 PMID: 18988698
  113. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell... and more. Endocr Rev 2013; 34(5): 658-90. doi: 10.1210/er.2012-1026 PMID: 23612223
  114. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 2012; 23(11): 576-81. doi: 10.1016/j.tem.2012.03.008 PMID: 22595550
  115. Johnson TF, Morris DC, Anderson HC. Matrix vesicles and calcification of rachitic rat osteoid. J Exp Pathol 1989; 4(3): 123-32. PMID: 2769451
  116. Yoshiko Y, Candeliere GA, Maeda N, Aubin JE. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 2007; 27(12): 4465-74. doi: 10.1128/MCB.00104-07 PMID: 17438129
  117. Kenny AM, Gallagher JC, Prestwood KM, Gruman CA, Raisz LG. Bone density, bone turnover, and hormone levels in men over age 75. J Gerontol A Biol Sci Med Sci 1998; 53A(6): M419-25. doi: 10.1093/gerona/53A.6.M419 PMID: 9823745
  118. Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins. Bonekey Rep 2012; 1: 183. doi: 10.1038/bonekey.2012.183 PMID: 24171101
  119. Alt E, Yan Y, Gehmert S, et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 2011; 103(4): 197-208. doi: 10.1042/BC20100117 PMID: 21332447
  120. Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004; 19(4): 1325-44. PMID: 15375775
  121. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68. doi: 10.1186/s13287-019-1165-5 PMID: 30808416
  122. Tonti-Filippini N, McCullagh P. Embryonic stem cells and totipotency. Ethics Medics 2000; 25(7): 1-3. doi: 10.5840/em200025713 PMID: 11842860
  123. Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019; 203: 96-110. doi: 10.1016/j.biomaterials.2018.06.026 PMID: 29980291
  124. Gómez-López S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 2014; 71(4): 575-97. doi: 10.1007/s00018-013-1386-1 PMID: 23771628
  125. Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4(6): a008151. doi: 10.1101/cshperspect.a008151 PMID: 22570373
  126. Isern J, García-García A, Martín AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014; 3: e03696. doi: 10.7554/eLife.03696 PMID: 25255216
  127. Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS, Yam GHF. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 2019; 20(12): 2853. doi: 10.3390/ijms20122853 PMID: 31212734
  128. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86. doi: 10.1023/B:ABME.0000017544.36001.8e PMID: 15095822
  129. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22(1): 85-9. doi: 10.1038/8792 PMID: 10319868
  130. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142(5): 817-31. doi: 10.1242/dev.105536 PMID: 25715393
  131. Yang L, Tsang KY, Tang HC, Chan D, Cheah KSE. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA 2014; 111(33): 12097-102. doi: 10.1073/pnas.1302703111 PMID: 25092332
  132. Miron RJ, Zhang YF. Osteoinduction. J Dent Res 2012; 91(8): 736-44. doi: 10.1177/0022034511435260 PMID: 22318372
  133. Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci 2021; 22(6): 2851. doi: 10.3390/ijms22062851 PMID: 33799644
  134. Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020; 11: 757. doi: 10.3389/fphar.2020.00757 PMID: 32528290
  135. Owen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol 2018; 6: 134. doi: 10.3389/fbioe.2018.00134 PMID: 30364287
  136. Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Med 2007; 4(2): e9. doi: 10.1371/journal.pmed.0040009 PMID: 17311467
  137. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C 2021; 130: 112466. doi: 10.1016/j.msec.2021.112466 PMID: 34702541
  138. Ghelich P, Kazemzadeh-Narbat M, Hassani Najafabadi A, Samandari M, Memić A, Tamayol A. (Bio)manufactured solutions for treatment of bone defects with an emphasis on US‐FDA regulatory science perspective. Adv NanoBiomed Res 2022; 2(4): 2100073. doi: 10.1002/anbr.202100073 PMID: 35935166
  139. Ebrahimi F, Ramezani DH. Poly lactic acid (PLA) polymers: From properties to biomedical applications. Int J Polym Mater 2021; 71(15): 1117-30.
  140. Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 2020; 10(1): 381-8. doi: 10.1016/j.jobcr.2019.10.003 PMID: 31754598
  141. Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45(7): 511-31. doi: 10.1080/03091902.2021.1893396 PMID: 34251971
  142. Kolluru PV, Lipner J, Liu W, et al. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater 2013; 9(12): 9442-50. doi: 10.1016/j.actbio.2013.07.042 PMID: 23933048
  143. Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of electrospun nanofiber for bone tissue engineering. Polymers 2022; 14(14): 2940. doi: 10.3390/polym14142940 PMID: 35890716
  144. Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Compat Polym 2007; 22(1): 62-76. doi: 10.1177/0883911506073570
  145. Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 2020; 110: 110698. doi: 10.1016/j.msec.2020.110698 PMID: 32204012
  146. Hartatiek , Yudyanto , Wuriantika MI, et al. Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Mater Today Proc 2021; 44: 3203-6. doi: 10.1016/j.matpr.2020.11.438
  147. Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187: 755-68. doi: 10.1016/j.ijbiomac.2021.08.002 PMID: 34358597
  148. Asghari N, Irani S, Pezeshki-Moddaress M, Zandi M, Mohamadali M. Neuronal differentiation of mesenchymal stem cells by polyvinyl alcohol/Gelatin/crocin and beta-carotene. Mol Biol Rep 2022; 49(4): 2999-3006. doi: 10.1007/s11033-022-07123-8 PMID: 35025028
  149. Long F. Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012; 13(1): 27-38. doi: 10.1038/nrm3254 PMID: 22189423
  150. Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A 2018; 106(12): 3303-12. doi: 10.1002/jbm.a.36530 PMID: 30242963
  151. Guo S, He L, Yang R, et al. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J Biomater Sci Polym Ed 2020; 31(2): 155-68. doi: 10.1080/09205063.2019.1680927 PMID: 31710268
  152. Yue S, He H, Li B, Hou T. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials 2020; 10(8): 1511. doi: 10.3390/nano10081511 PMID: 32752105
  153. Cheng Y, Cheng G, Xie C, et al. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair. Adv Healthc Mater 2021; 10(9): 2001646. doi: 10.1002/adhm.202001646 PMID: 33694330
  154. Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules 2022; 27(9): 2757. doi: 10.3390/molecules27092757 PMID: 35566110
  155. Mejía-Suaza ML, Moncada ME, Ossa-Orozco CP. Characterization of electrospun silk fibroin scaffolds for bone tissue engineering: A review. TecnoLógicas 2020; 23: 228-46.
  156. Cui J, Yu X, Yu B, et al. Coaxially fabricated dual‐drug loading electrospinning fibrous mat with programmed releasing behavior to boost vascularized bone regeneration. Adv Healthc Mater 2022; 11(16): 2200571. doi: 10.1002/adhm.202200571 PMID: 35668705
  157. Pathmanapan S, Sekar M, Pandurangan AK, Anandasadagopan SK. Fabrication of mesoporous silica nanoparticle–incorporated coaxial nanofiber for evaluating the in vitro osteogenic potential. Appl Biochem Biotechnol 2022; 194(1): 302-22. doi: 10.1007/s12010-021-03741-3 PMID: 34762271
  158. Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021; 269: 118351. doi: 10.1016/j.carbpol.2021.118351 PMID: 34294355
  159. Lam LRWANG, Schilling K, Romas S, et al. Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration. Dent Mater J 2021; 40(5): 1208-16. doi: 10.4012/dmj.2020-412 PMID: 34121026
  160. Peng W, Ren S, Zhang Y, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration. Front Bioeng Biotechnol 2021; 9: 668428. doi: 10.3389/fbioe.2021.668428 PMID: 33842452
  161. Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193: 111110. doi: 10.1016/j.colsurfb.2020.111110 PMID: 32416516
  162. Kalani MM, Nourmohammadi J, Negahdari B, Rahimi A, Sell SA. Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. Mater Sci Eng C 2019; 99: 129-39. doi: 10.1016/j.msec.2019.01.100 PMID: 30889664

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024