The Potential of Nanotechnology to Replace Cancer Stem Cells


Cite item

Full Text

Abstract

Stem cells, which were initially identified in the 1900s, are distinct cells with the potential to replenish themselves as well as differentiate into specialised cells with certain forms and functions. Cancer stem cells play a significant role in the growth and recurrence of the tumours and, similar to normal stem cells, are capable of proliferating and differentiating. Traditional cancer treatments are ineffective against cancer stem cells, which leads to tumour regrowth. Cancer stem cells are thought to emerge as a result of epithelial-to-mesenchymal transition pathways. Brain, prostate, pancreatic, blood, ovarian, lung, liver, melanomas, AML, and breast cancer stem cells are among the most prevalent cancer forms. This review aims to comprehend the possibility of using specific forms of nanotechnology to replace cancer stem cells. In terms of nanotechnology, magnetic nanoparticles can deliver medications, especially to the target region without harming healthy cells, and they are biocompatible. In order to kill glioma cancer stem cells, the gold nanoparticles bond with DNA and function as radio sensitizers. In contrast, liposomes can circulate and traverse biological membranes and exhibit high therapeutic efficacy, precise targeting, and better drug release. Similar to carbon nanotubes, grapheme, and grapheme oxide, these substances can be delivered specifically when utilized in photothermal therapy. Recent treatments including signaling pathways and indicators targeted by nanoparticles are being researched. Future research in nanotechnology aims to develop more effective and targeted medicinal approaches. The results of the current investigation also showed that this technology's utilization will improve medical therapy and treatment.

About the authors

Muhammad Amanat

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Anum Farrukh

, Fauji Foundation Hospital Rawalpindi

Email: info@benthamscience.net

Muhammad Ishaq

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Binyameen Bin Shafqat

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Saqib Haidri

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Rehab Amin

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Rafia Sameen

Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat

Email: info@benthamscience.net

Tahira Kamal

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Muhammad Riaz

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Waleed Quresh

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Rabia Ikram

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Ghulam Ali

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Sania Begum

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Email: info@benthamscience.net

Sajid Bangash

, Institute of Biotechnology & Genetic Engineering (IBGE)

Email: info@benthamscience.net

Imdad Kaleem

Department of Biosciences, COMSATS University Islamabad

Email: info@benthamscience.net

Shahid Bashir

Neurosciences Center, King Fahad Specialist Hospital Dammam

Author for correspondence.
Email: info@benthamscience.net

Sahir Khattak

National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sachin K, Singh NP. Stem cells: A new paradigm. Indian Journal of Human Genetics 2006; 12(1): 4-10. doi: 10.4103/0971-6866.25295
  2. Kalra K, Tomar P. Stem cell: Basics, classification and applications. Am J Phytomed Clin Therapeut 2014; 2(7): 919-30.
  3. Singh VK, Saini A, Chandra R. The implications and future perspectives of nanomedicine for cancer stem cell targeted therapies. Front Mol Biosci 2017; 4: 52. doi: 10.3389/fmolb.2017.00052 PMID: 28785557
  4. Kobayashi NCC, Noronha SMR. Cancer stem cells: A new approach to tumor development. Rev Assoc Med Bras 2015; 61(1): 86-93. doi: 10.1590/1806-9282.61.01.086 PMID: 25909215
  5. Parada LF, Dirks PB, Wechsler-Reya RJ. Brain tumor stem cells remain in play. J Clin Oncol 2017; 35(21): 2428-31. doi: 10.1200/JCO.2017.73.9540 PMID: 28640710
  6. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: An important cause of treatment failure. Nat Rev Cancer 2005; 5(7): 516-25. doi: 10.1038/nrc1650 PMID: 15965493
  7. Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 2017; 8: 1. doi: 10.3389/fphar.2017.00001 PMID: 28149278
  8. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells — what challenges do they pose? Nat Rev Drug Discov 2014; 13(7): 497-512. doi: 10.1038/nrd4253 PMID: 24981363
  9. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 2018; 18(11): 669-80. doi: 10.1038/s41568-018-0056-x PMID: 30228301
  10. Chang JC. (2016). Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine 95(1S): S20-5. doi: 10.1097/MD.0000000000004766
  11. Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20. doi: 10.1073/pnas.0601755103 PMID: 16606824
  12. Hong I-S, Jang GB, Lee HY, Nam JS. Targeting cancer stem cells by using the nanoparticles. Int J Nanomedicine 2015; 10: 251-60. PMID: 26425092
  13. Lu B, Huang X, Mo J, Zhao W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol 2016; 7: 84. doi: 10.3389/fphar.2016.00084 PMID: 27148051
  14. Clarke MF, Hass AT. Cancer stem cells. Reviews in cell biology and molecular medicine. 2006. R.A. Meyers (Ed.). doi: 10.1002/3527600906.mcb.200300130
  15. Santilli G, Binda M, Zaffaroni N, Daidone MG. Breast cancer-initiating cells: insights into novel treatment strategies. Cancers (Basel) 2011; 3(1): 1405-25. doi: 10.3390/cancers3011405 PMID: 24212666
  16. Facchino S, Abdouh M, Bernier G. Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 2011; 3(2): 1777-97. doi: 10.3390/cancers3021777 PMID: 24212782
  17. Qureshi IA, Mehler MF. Epigenetics, nervous system tumors, and cancer stem cells. Cancers (Basel) 2011; 3(3): 3525-56. doi: 10.3390/cancers3033525 PMID: 24212967
  18. Mitra D, Malkoski SP, Wang XJ. Cancer stem cells in head and neck cancer. Cancers (Basel) 2011; 3(1): 415-27. doi: 10.3390/cancers3010415 PMID: 24212622
  19. Simeone DM. Pancreatic cancer stem cells: Implications for the treatment of pancreatic cancer. Clin Cancer Res 2008; 14(18): 5646-8. doi: 10.1158/1078-0432.CCR-08-0584 PMID: 18794070
  20. Kryczek I, Liu S, Roh M, et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 2012; 130(1): 29-39. doi: 10.1002/ijc.25967 PMID: 21480217
  21. Todaro M, Alea MP, Di Stefano AB, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1(4): 389-402. doi: 10.1016/j.stem.2007.08.001 PMID: 18371377
  22. Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 2013; 65(13-14): 1763-83. doi: 10.1016/j.addr.2013.09.016 PMID: 24120657
  23. Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol Pharm 2019; 16(6): 2532-9. doi: 10.1021/acs.molpharmaceut.9b00132 PMID: 31009228
  24. Jamil K, Khattak SH, Farrukh A, et al. Biogenic synthesis of silver nanoparticles using Catharanthus roseus and its cytotoxicity effect on vero cell lines. Molecules 2022; 27(19): 6191. doi: 10.3390/molecules27196191 PMID: 36234756
  25. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010; 7(9): 1063-77. doi: 10.1517/17425247.2010.502560 PMID: 20716019
  26. Mohammed ZF, Hammad M, AL-dulaimi M. Synthesis of Nano Sulfur particles and their Antitumor activity. Biochem Lett 2018; 14(1): 109-28. doi: 10.21608/blj.2018.47589
  27. Davis Mark E, Zhuo Chen, Shin Dong M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanoscience And Technology: A Collection of Reviews from Nature Journals 2010; 239-50.
  28. Jain S, Hirst D, O'sullivan JJTBjor. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13. doi: 10.1259/bjr/59448833
  29. Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer Stem Cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells 2021; 10(3): 621. doi: 10.3390/cells10030621 PMID: 33799798
  30. Sun TM, Wang YC, Wang F, et al. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds 2014; 35(2): 836-45. doi: 10.1016/j.biomaterials.2013.10.011
  31. Satapathy SR, et al. Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner 2018; 14(3): 883-96. doi: 10.1016/j.nano.2018.01.007
  32. Dziawer L, Koźmiński P, Męczyńska-Wielgosz S, et al. Gold nanoparticle bioconjugates labelled with 211 At for targeted alpha therapy. RSC Advances 2017; 7(65): 41024-32. doi: 10.1039/C7RA06376H
  33. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12(1): 137. doi: 10.1186/s13045-019-0833-3 PMID: 31847897
  34. Maherani B, Arab-Tehrany E, R Mozafari M, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies 2011; 7(3): 436-52. doi: 10.2174/157341311795542453
  35. Sun X, Chen Y, Zhao H, et al. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma 2018; 25(1): 1718-27. doi: 10.1080/10717544.2018.1494225
  36. Cao J, Li C, Wei X, et al. Selective targeting and eradication of LGR5+ CSCs using RSPO conjugated doxorubicin liposomes. Molecular cancer therapeutics 2018; 17(7): 1475-85.
  37. Zhang L, Yao HJ, Yu Y, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells 2012; 33(2): 565-82. doi: 10.1016/j.biomaterials.2011.09.055
  38. Inamura K, Komizu Y, Yamakuchi M, Ishida S, Matsumoto Y, Matsushita T. Inhibitory effect of hybrid liposomes on the growth of liver cancer stem cells. Biochem Biophys Res Commun 2019; 509(1): 268-74. doi: 10.1016/j.bbrc.2018.12.118 PMID: 30583860
  39. Guo J, Lu W-LJJoP, Sciences P. Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. 2010; 13(2): 136-51. doi: 10.18433/J3P88Z
  40. Indira T, Lakshmi P. Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol 2010; 3(3): 1035-42.
  41. Goya G, Grazu V, Ibarra M. Magnetic nanoparticles for cancer therapy. Curr Nanosci 2008; 4(1): 1-16. doi: 10.2174/157341308783591861
  42. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 2010; 22(25): 2729-42. doi: 10.1002/adma.201000260 PMID: 20473985
  43. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2(3): 22-32. doi: 10.1016/S1748-0132(07)70084-1
  44. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161-75. doi: 10.1039/b402025a
  45. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 2010; 62(2): 144-9. doi: 10.1016/j.phrs.2010.01.014 PMID: 20149874
  46. Xu C, Xie J, Ho D, et al. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed 2008; 47(1): 173-6. doi: 10.1002/anie.200704392 PMID: 17992677
  47. Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell 2011; 3(1): 3. doi: 10.1186/2045-824X-3-3 PMID: 21349160
  48. Liu Z, Kiessling F, Gätjens J. Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater 2010; 2010: 1-15. doi: 10.1155/2010/894303
  49. Hosseini A, Sharifzadeh M, Rezayat SM, et al. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int J Nanomedicine 2010; 5: 517-23. PMID: 20957114
  50. Zhao D, Zhao X, Zu Y, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine 2010; 5: 669-77. PMID: 20957218
  51. Rao W, Wang H, Zhong A, Yu J, Lu X, He X. Nanodrug-mediated thermotherapy of cancer stem-like cells. J Nanosci Nanotechnol 2016; 16(3): 2134-42. doi: 10.1166/jnn.2016.10942 PMID: 27455612
  52. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today 2011; 14(7-8): 316-23. doi: 10.1016/S1369-7021(11)70161-4
  53. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6(1): 555. doi: 10.1186/1556-276X-6-555 PMID: 21995320
  54. Sun T-P, Shieh HL, Ching CT, et al. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring. Int J Nanomedicine 2010; 5: 343-9. PMID: 20517479
  55. Cui D, Zhang H, Sheng J, et al. Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonicstem cells. Nano Biomed Eng 2010; 2(4): 236-44. doi: 10.5101/nbe.v2i4.p236-244
  56. Pitroda J, Jethwa B, Dave SK. A critical review on carbon nanotubes. Int J Constr Res Civ Eng 2016; 2(5): 36-42.
  57. Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022; 74: 103586. doi: 10.1016/j.jddst.2022.103586
  58. Januszewski A, Stebbing J. Hyperthermia in cancer: is it coming of age? Lancet Oncol 2014; 15(6): 565-6. doi: 10.1016/S1470-2045(14)70207-4 PMID: 24807858
  59. He X. Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed Eng J 2011; 5(1): 47-73. doi: 10.2174/1874120701105010047 PMID: 21769301
  60. Qin Z, Bischof JC. Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 2012; 41(3): 1191-217. doi: 10.1039/C1CS15184C PMID: 21947414
  61. Iancu C, Mocan L. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int J Nanomedicine 2011; 6: 1675-84. doi: 10.2147/IJN.S23588 PMID: 21904457
  62. Kam NWS, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005; 102(33): 11600-5. doi: 10.1073/pnas.0502680102 PMID: 16087878
  63. Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 2011; 7(1): 69-79. doi: 10.1016/j.nano.2010.06.010 PMID: 20620237
  64. Burke AR, Singh RN, Carroll DL, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33(10): 2961-70. doi: 10.1016/j.biomaterials.2011.12.052 PMID: 22245557
  65. Dong H, Dong C, Ren T, Li Y, Shi D. Surface-engineered graphene-based nanomaterials for drug delivery. J Biomed Nanotechnol 2014; 10(9): 2086-106. doi: 10.1166/jbn.2014.1989 PMID: 25992450
  66. Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 2011; 133(17): 6825-31. doi: 10.1021/ja2010175 PMID: 21476500
  67. Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012; 33(32): 8017-25. doi: 10.1016/j.biomaterials.2012.07.040 PMID: 22863381
  68. Yao H, Zhang Y, Sun L, Liu Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 2014; 35(33): 9208-23. doi: 10.1016/j.biomaterials.2014.07.033 PMID: 25115788
  69. Nakamura K, Iinuma H, Aoyagi Y, Shibuya H, Watanabe T. Predictive value of cancer stem-like cells and cancer-associated genetic markers for peritoneal recurrence of colorectal cancer in patients after curative surgery. Oncology 2010; 78(5-6): 309-15. doi: 10.1159/000318862 PMID: 20616575
  70. Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 2010; 4(3): 1399-408. doi: 10.1021/nn9011225 PMID: 20148593
  71. Wu H, Shi H, Zhang H, et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 2014; 35(20): 5369-80. doi: 10.1016/j.biomaterials.2014.03.038 PMID: 24709520
  72. Sotropa RMB. The advantages and disadvantages of nanotechnology. Romanian J Oral Rehab 2018; 10(2): 1-8.
  73. Alok A, Kishore M, Panat S, Upadhyay N, Agarwal N, Aggarwal A. Nanotechnology: A boon in oral cancer diagnosis and therapeutics. SRM J Res Dental Sci 2013; 4(4): 154-60. doi: 10.4103/0976-433X.125591
  74. Imdad K, Abualait T, Kanwal A, et al. The metabolic role of ketogenic diets in treating epilepsy. Nutrients 2022; 14(23): 5074. doi: 10.3390/nu14235074 PMID: 36501104
  75. Patwekar M, Patwekar F, Alghamdi S, et al. Vancomycin as an Antibacterial Agent Capped with Silver Nanoparticles: An Experimental Potential Analysis. BioMed Research International 2022; 1-14.
  76. Shinde MU, Patwekar M, Patwekar F, et al. Nanomaterials: a potential hope for life sciences from bench to bedside. Journal of Nanomaterials 2022; 2-15.
  77. Taifa S, Muhee A, Bhat RA, Nabi SU, Roy A, Rather GA, et al. Evaluation of therapeutic efficacy of copper nanoparticles in staphylococcus aureus-induced rat mastitis model. Journal of Nanomaterials 2022; 7124114.
  78. Farrukh A, Khattak SH, Kaleem I, et al. Plant Based Nanotechnology – A New Trend in Therapeutic Approaches of Diabetes. Endo & Diab Opn Acc J 2022; 1(1): 21-33.
  79. Bangash SAK, Khan MS, Ambreen SH. Khattak and A.N. Siddique. Genetic transformation of Brassica juncea with antimicrobial wasabi defensin gene. Pak J Bot 2013; 45(3): 993-8.
  80. Khattak SH, Begum S, Aqeel M, et al. Investigating the allelic variation of loci controlling rust resistance genes in wheat (Triticum aestivum L.) land races by ssr marker. Appl Ecol Environ Res 2020; 18(6): 8091-118. doi: 10.15666/aeer/1806_80918118
  81. Rehman MA, Saleem R, Hasan SW, et al. Economic assessment of cereal -legume intercropping system, a way forward for improving productivity and sustaining soil health. IJBPAS 2020; 9(5): 1078-89.
  82. Siddiqui NR, Muhammad A, Khan MR, Ali GM. Differential gene expression of pectin esterase and changes in pectin during development and ripening stages of fruit in selected cultivars of banana. Food Sci Technol 2020; 40: 827-31.
  83. Bangash SAK, Khan MS, Ambreen SH. Khattak, A.N Siddique. Genetic transformation of Brassica juncea with antimicrobial wasabi defensin gene. Pak J Bot 2013; 45(3): 993-8.
  84. Khattak SH, Imdad K, Anum F, et al. Fruit Ripening Characterization and Amylase Mystery in Bananas. 2022; 4(1): 33-46. doi: 10.33552/GJNFS.2022.04.000577
  85. Begum S, Khattak SH, Shahzad A, et al. Molecular characterization of Pakistani wheat genotypes for leaf rust resistance. J Pure Appl Agric 2019; 4(1): 1-10.
  86. Qaiser R, Akram Z, Asad S, et al. Genome-wide association mapping and population structure for stripe rust in Pakistani wheat germplasm. Pak J Bot 2022; 54(4): 1405-16. doi: 10.30848/PJB2022-4(11)
  87. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  88. Huo Y, Yu J, and Gao S. Magnetic nanoparticle-based cancer therapy. In Synthesis and biomedical applications of magnetic nanomaterials. EDP Sciences 2022; pp. 261-90.
  89. Manescu Paltanea V, Paltanea G, Antoniac I, Vasilescu M. Magnetic nanoparticles used in oncology. Materials (Basel) 2021; 14(20): 5948. doi: 10.3390/ma14205948 PMID: 34683540
  90. Hoang Thi T, Nguyen Tran DH, Bach L, et al. Functional Magnetic Core-Shell System-Based Iron Oxide Nanoparticle Coated with Biocompatible Copolymer for Anticancer Drug Delivery. Pharmaceutics 2019; 11(3): 120. doi: 10.3390/pharmaceutics11030120 PMID: 30875948
  91. Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309. doi: 10.2147/IJN.S146315
  92. Dahaghin A, Emadiyanrazavi S, Salimibani M, et al. A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern Biomed Eng 2021; 41(2): 516-26. doi: 10.1016/j.bbe.2021.04.002
  93. Dash BS, Jose G, Lu YJ, Chen JP. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int J Mol Sci 2021; 22(6): 2989. doi: 10.3390/ijms22062989 PMID: 33804239
  94. Yuan YG, Zhang S, Hwang JY, Kong IK. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 2018; 2018: 1-21. doi: 10.1155/2018/6121328 PMID: 30647812
  95. Pei X, Zhu Z, Gan Z, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep 2020; 10(1): 2717. doi: 10.1038/s41598-020-59624-w PMID: 32066812
  96. Wang Y, Qiu M, Won M, et al. Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coord Chem Rev 2019; 400: 213041. doi: 10.1016/j.ccr.2019.213041

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers