Bone Marrow Mesenchymal Stem Cell Extracellular Vesicle-derived miR-27b- 3p activates the Wnt/Β-catenin Pathway by Targeting SMAD4 and Aggravates Hepatic Ischemia-reperfusion Injury


Cite item

Full Text

Abstract

Background:To investigate the roles of extracellular vesicles (EVs) secreted from bone marrow mesenchymal stem cells (BMSCs) and miR-27 (highly expressed in BMSC EVs) in hepatic ischemia‒ reperfusion injury (HIRI).

Approaches and Results:We constructed a HIRI mouse model and pretreated it with an injection of agomir-miR-27-3p, agomir-NC, BMSC-EVs or control normal PBS into the abdominal cavity. Compared with the HIRI group, HIRI mice preinjected with BMSC-EVs had significantly decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and alleviated liver necrosis (P(<0.05). However, compared with HIRI+NC mice, HIRI+miR-27b mice had significantly increased ALT and AST levels, aggravated liver necrosis, and increased apoptosis-related protein expression (P(<0.05). The proliferation and apoptosis of AML-12 cells transfected with miR-27 were significantly higher than the proliferation and apoptosis of AML-12 cells in the mimic NC group (P(<0.01) after hypoxia induction. SMAD4 was proven to be a miR-27 target gene. Furthermore, compared to HIRI+NC mice, HIRI+miR-27 mice displayed extremely reduced SMAD4 expression and increased levels of wnt1, β-catenin, c-Myc, and Cyclin D1.

Conclusion:Our findings reveal the role and mechanism of miR-27 in HIRI and provide novel insights for the prevention and treatment of HIRI; for example, EVs derived from BMSCs transfected with antimiR- 27 might demonstrate better protection against HIRI.

About the authors

Hongnan Li

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Weidong Lin

School of Medicine, Shanghai Jiao Tong University

Email: info@benthamscience.net

Yunlei Li

Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences

Email: info@benthamscience.net

Jiayang Zhang

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Runsheng Liu

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Minghai Qu

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Ruihua Wang

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Xiaomin Kang

Department of Public Health, Guilin Medical University

Email: info@benthamscience.net

Xuekun Xing

Department of Public Health, Guilin Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Czigany Z, Lurje I, Schmelzle M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: Molecular mechanisms and clinical implications. J Clin Med 2020; 9(3): 846. doi: 10.3390/jcm9030846 PMID: 32244972
  2. Guan Y, Yao W, Yi K, et al. Nanotheranostics for the management of hepatic ischemia‐reperfusion injury. Small 2021; 17(23): 2007727. doi: 10.1002/smll.202007727 PMID: 33852769
  3. Du Y, Li D, Han C, et al. Exosomes from human-induced pluripotent stem cell–derived mesenchymal stromal cells (hiPSC-MSCs) protect liver against hepatic ischemia/reperfusion injury via activating sphingosine kinase and sphingosine-1-phosphate signaling pathway. Cell Physiol Biochem 2017; 43(2): 611-25. doi: 10.1159/000480533 PMID: 28934733
  4. Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8(1): 1609206. doi: 10.1080/20013078.2019.1609206 PMID: 31069028
  5. Cheng C, Chen X, Wang Y, et al. MSCs derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 2021; 27(1): 67. doi: 10.1186/s10020-021-00324-0 PMID: 34215174
  6. Farzamfar S, Hasanpour A, Nazeri N, et al. Extracellular micro/nanovesicles rescue kidney from ischemia‐reperfusion injury. J Cell Physiol 2019; 234(8): 12290-300. doi: 10.1002/jcp.27998 PMID: 30609022
  7. Liu J, Chen T, Lei P, Tang X, Huang P. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway. Int J Med Sci 2019; 16(9): 1238-44. doi: 10.7150/ijms.35369 PMID: 31588189
  8. Shen D, He Z. Mesenchymal stem cell-derived exosomes regulate the polarization and inflammatory response of macrophages via miR-21-5p to promote repair after myocardial reperfusion injury. Ann Transl Med 2021; 9(16): 1323. doi: 10.21037/atm-21-3557 PMID: 34532460
  9. Chen Q, Kong L, Xu X, Geng Q, Tang W, Jiang W. Down-regulation of microRNA-146a in the early stage of liver ischemia-reperfusion injury. Transplant Proc 2013; 45(2): 492-6. doi: 10.1016/j.transproceed.2012.10.045 PMID: 23498784
  10. Farid WRR, Pan Q, van der Meer AJP, et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transpl 2012; 18(3): 290-7. doi: 10.1002/lt.22438 PMID: 21932376
  11. Li X, Yi S, Deng Y, et al. miR-124 protects human hepatic L02 cells from H2O2-induced apoptosis by targeting Rab38 gene. Biochem Biophys Res Commun 2014; 450(1): 148-53. doi: 10.1016/j.bbrc.2014.05.085 PMID: 24875359
  12. Li L, Li G, Yu C, et al. A role of microRNA-370 in hepatic ischaemia-reperfusion injury by targeting transforming growth factor-β receptor II. Liver Int 2015; 35(4): 1124-32. doi: 10.1111/liv.12441 PMID: 24351048
  13. Sun J, Sun X, Chen J, et al. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway. Stem Cell Res Ther 2021; 12(1): 14. doi: 10.1186/s13287-020-02068-w PMID: 33397467
  14. Wu R, Zhao B, Ren X, et al. miR-27a-3p targeting GSK3β promotes triple-negative breast cancer proliferation and migration through Wnt/β-catenin pathway. Cancer Manag Res 2020; 12: 6241-9. doi: 10.2147/CMAR.S255419 PMID: 32801869
  15. Kong LY, Xue M, Zhang QC, Su CF. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget 2017; 8(9): 15507-19. doi: 10.18632/oncotarget.14662 PMID: 28099945
  16. Zhuang Y-S, Liao YY, Liu BY, et al. MicroRNA-27a mediates the Wnt/β-catenin pathway to affect the myocardial fibrosis in rats with chronic heart failure. Cardiovasc Ther 2018; e12468. PMID: 30238685
  17. Liu T. Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering microRNA profiles. Stem Cells Int 2020; 2020: 8852307. doi: 10.1155/2020/8852307
  18. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750. doi: 10.1080/20013078.2018.1535750 PMID: 30637094
  19. Su S, Luo D, Liu X, et al. miR-494 up-regulates the PI3K/Akt pathway via targetting PTEN and attenuates hepatic ischemia/reperfusion injury in a rat model. Biosci Rep 2017; 37(5): BSR20170798. doi: 10.1042/BSR20170798 PMID: 28842516
  20. Suzuki S, Nakamura S, Koizumi T, et al. The beneficial effect of a prostaglandin I2 analog on ischemic rat liver. Transplantation 1991; 52(6): 979-83. doi: 10.1097/00007890-199112000-00008 PMID: 1750084
  21. Annabi B, Lee YT, Turcotte S, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 2003; 21(3): 337-47. doi: 10.1634/stemcells.21-3-337 PMID: 12743328
  22. Xu Q, Tong JL, Zhang CP, Xiao Q, Lin XL, Xiao XY. miR-27a induced by colon cancer cells in HLECs promotes lymphangiogenesis by targeting SMAD4. PLoS One 2017; 12(10): e0186718. doi: 10.1371/journal.pone.0186718 PMID: 29065177
  23. Liu Q, Song B, Xu M, An Y, Zhao Y, Yue F. miR-25 exerts cardioprotective effect in a rat model of myocardial ischemia-reperfusion injury by targeting high-mobility group box 1. J Chin Med Assoc 2020; 83(1): 25-31. doi: 10.1097/JCMA.0000000000000229 PMID: 31809304
  24. Zhang J, Shi L, Zhang L, et al. MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci 2016; 58(4): 507-16. doi: 10.1007/s12031-016-0712-0 PMID: 26768135
  25. Kaplowitz N. Mechanisms of liver cell injury. J Hepatol 2000; 32(1): 39-47. doi: 10.1016/S0168-8278(00)80414-6 PMID: 10728793
  26. Kaplowitz N. Cell death at the millennium. Implications for liver diseases. Clin Liver Dis 2000; 4(1): 1-23. v. doi: 10.1016/S1089-3261(05)70094-5 PMID: 11232179
  27. Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of mitochondrial pathways in cell apoptosis during He-patic ischemia/reperfusion injury. Int J Mol Sci 2022; 23(4): 2357. doi: 10.3390/ijms23042357 PMID: 35216473
  28. Pankajakshan D, Agrawal DK. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J Biomed Technol Res 2014; 1(1) doi: 10.19104/jbtr.2014.107 PMID: 28890954
  29. Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells 2021; 10(8): 1959. doi: 10.3390/cells10081959 PMID: 34440728
  30. Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci 2014; 111(41): 14888-93. doi: 10.1073/pnas.1408301111 PMID: 25267620
  31. Albanese M, Chen YFA, Hüls C, et al. MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genet 2021; 17(12): e1009951. doi: 10.1371/journal.pgen.1009951 PMID: 34871319
  32. Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans 2018; 46(4): 843-53. doi: 10.1042/BST20180079 PMID: 29986939
  33. Li D, Zhang J, Liu Z, Gong Y, Zheng Z. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial–mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 2021; 12(1): 24. doi: 10.1186/s13287-020-02064-0 PMID: 33413548
  34. Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion. Cell Death Differ 2008; 15(4): 686-90. doi: 10.1038/cdd.2008.13 PMID: 18259200
  35. Eltzschig HK, Collard CD. Vascular ischaemia and reperfusion injury. Br Med Bull 2004; 70(1): 71-86. doi: 10.1093/bmb/ldh025 PMID: 15494470
  36. Huang Q, Li F, Liu X, et al. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 2011; 17(7): 860-6. doi: 10.1038/nm.2385 PMID: 21725296
  37. Zhao X, Yang L, Hu J. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res 2011; 30(1): 55. doi: 10.1186/1756-9966-30-55 PMID: 21569481
  38. Peng H, Wang X, Zhang P, Sun T, Ren X, Xia Z. miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. Int J Clin Exp Pathol 2015; 8(2): 2259-66. PMID: 25973137
  39. Moustakas A, Heldin CH. From mono- to oligo-Smads: The heart of the matter in TGF-β signal transduction. Genes Dev 2002; 16(15): 1867-71. doi: 10.1101/gad.1016802 PMID: 12154118
  40. Chen L, Zhong J, Liu JH, et al. Pokemon inhibits transforming growth factor β-smad4-related cell proliferation arrest in breast cancer through specificity protein 1. J Breast Cancer 2019; 22(1): 15-28. doi: 10.4048/jbc.2019.22.e11 PMID: 30941230
  41. Zhao Y, Wang L, Wang Y, et al. Astragaloside IV inhibits cell proliferation in vulvar squamous cell carcinoma through the TGF-β/Smad signaling pathway. Dermatol Ther 2019; 32(4): e12802. PMID: 30536730
  42. Du X, Li Q, Yang L, Liu L, Cao Q, Li Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death Dis 2020; 11(5): 373. doi: 10.1038/s41419-020-2578-x PMID: 32415058
  43. Moon YJ, Yun CY, Choi H, et al. Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability. Exp Mol Med 2016; 48(9): e256-6. doi: 10.1038/emm.2016.75 PMID: 27585718
  44. Freeman TJ, Smith JJ, Chen X, et al. Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology 2012; 142(3): 562-571.e2. doi: 10.1053/j.gastro.2011.11.026 PMID: 22115830
  45. Nayak L, Bhattacharyya NP, De RK. Wnt signal transduction pathways: Modules, development and evolution. BMC Syst Biol 2016; 10(S2): 44. doi: 10.1186/s12918-016-0299-7 PMID: 27490822
  46. Lei S, Chen G, Deng L, He J. Upregulation of miR-27b facilitates apoptosis of TNF-α-stimulated fibroblast-like synoviocytes. Yonsei Med J 2019; 60(6): 585-91. doi: 10.3349/ymj.2019.60.6.585 PMID: 31124343
  47. Miao W, Li N, Gu B, Yi G, Su Z, Cheng H. miR-27b-3p suppresses glioma development via targeting YAP1. Biochem Cell Biol 2020; 98(4): 466-73. doi: 10.1139/bcb-2019-0300 PMID: 32567955
  48. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: Biology and translational medicine. Theranostics 2018; 8(1): 237-55. doi: 10.7150/thno.21945 PMID: 29290805
  49. Yu W, Li S, Guan X, et al. Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration. Biomater Advances 2022; 133: 112646. doi: 10.1016/j.msec.2022.112646 PMID: 35067433

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers