Conditioned Media Therapy in Alzheimer's Disease: Current Findings and Future Challenges
- Authors: Firoozi A.1, Shadi M.1, Aghaei Z.2, Namavar M.1
-
Affiliations:
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences
- Issue: Vol 19, No 5 (2024)
- Pages: 700-711
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645824
- DOI: https://doi.org/10.2174/1574888X18666230523155659
- ID: 645824
Cite item
Full Text
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by a reduction in cognition and memory. Till now, there is no definite cure for AD, although, there are treatments available that may improve some symptoms. Currently, in regenerative medicine stem cells are widely used, mainly for treating neurodegenerative diseases. There are numerous forms of stem cells to treat AD aiming at the expansion of the treatment methods for this particular disease. Since 10 years ago, science has gained abundant knowledge to treat AD by understanding the sorts of stem cells, methods, and phasing of injection. Besides, due to the side effects of stem cell therapy like the potentiation for cancer, and as it is hard to follow the cells through the matrix of the brain, researchers have presented a new therapy for AD. They prefer to use conditioned media (CM) that are full of different growth factors, cytokines, chemokines, enzymes, etc. without tumorigenicity or immunogenicity such as stem cells. Another benefit of CM is that CM could be kept in the freezer, easily packaged, and transported, and doesnt need to fit with the donor. Due to the beneficial effects of CM, in this paper, we intend to evaluate the effects of various types of CM of stem cells on AD.
About the authors
Amin Firoozi
Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Mehri Shadi
Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Zohre Aghaei
Department of Physiology, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Mohammad Namavar
Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Lei P, Ayton S, Bush AI. The essential elements of Alzheimers disease. J Biol Chem 2021; 296: 100105. doi: 10.1074/jbc.REV120.008207 PMID: 33219130
- Patterson C. World alzheimer report 2018. 2018.
- van der Lee SJ, Wolters FJ, Ikram MK, et al. The effect of APOE and other common genetic variants on the onset of Alzheimers disease and dementia: A community-based cohort study. Lancet Neurol 2018; 17(5): 434-44. doi: 10.1016/S1474-4422(18)30053-X PMID: 29555425
- Association As. 2019 Alzheimers disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87. doi: 10.1016/j.jalz.2019.01.010
- Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimers disease. N Engl J Med 2012; 367(9): 795-804. doi: 10.1056/NEJMoa1202753 PMID: 22784036
- Lange KW, Lange KM, Makulska-Gertruda E, et al. Ketogenic diets and Alzheimers disease. Food Sci Hum Wellness 2017; 6(1): 1-9. doi: 10.1016/j.fshw.2016.10.003
- Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189. doi: 10.1101/cshperspect.a006189 PMID: 22229116
- Kelley BJ, Petersen RC. Alzheimers disease and mild cognitive impairment. Neurol Clin 2007; 25(3): 577-609. doi: 10.1016/j.ncl.2007.03.008 PMID: 17659182
- Holtzman DM, Carrillo MC, Hendrix JA, et al. Tau: From research to clinical development. Alzheimers Dement 2016; 12(10): 1033-9. doi: 10.1016/j.jalz.2016.03.018 PMID: 27154059
- Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological tau: A review. JAMA Neurol 2019; 76(1): 101-8. doi: 10.1001/jamaneurol.2018.2505 PMID: 30193298
- Ittner A, Ittner LM. Dendritic tau in Alzheimers disease. Neuron 2018; 99(1): 13-27. doi: 10.1016/j.neuron.2018.06.003 PMID: 30001506
- Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimers disease. Neuron 2014; 82(4): 756-71. doi: 10.1016/j.neuron.2014.05.004 PMID: 24853936
- Ryu J, Girigoswami K, Ha C, Ku SH, Park CB. Influence of multiple metal ions on β-amyloid aggregation and dissociation on a solid surface. Biochemistry 2008; 47(19): 5328-35. doi: 10.1021/bi800012e PMID: 18422346
- Wallin C, Jarvet J, Biverstål H, et al. Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregationinert complex. J Biol Chem 2020; 295(21): 7224-34. doi: 10.1074/jbc.RA120.012738 PMID: 32241918
- Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimers disease senile plaques. J Neurol Sci 1998; 158(1): 47-52. doi: 10.1016/S0022-510X(98)00092-6 PMID: 9667777
- Bush AI. The metallobiology of Alzheimers disease. Trends Neurosci 2003; 26(4): 207-14. doi: 10.1016/S0166-2236(03)00067-5 PMID: 12689772
- House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimers disease. J Alzheimers Dis 2004; 6(3): 291-301. doi: 10.3233/JAD-2004-6310 PMID: 15201484
- Garai K, Sengupta P, Sahoo B, Maiti S. Selective destabilization of soluble amyloid β oligomers by divalent metal ions. Biochem Biophys Res Commun 2006; 345(1): 210-5. doi: 10.1016/j.bbrc.2006.04.056 PMID: 16678130
- Vermunt L, Sikkes SAM, Hout A, et al. Duration of preclinical, prodromal, and dementia stages of Alzheimers disease in relation to age, sex, and APOE genotype. Alzheimers Dement 2019; 15(7): 888-98. doi: 10.1016/j.jalz.2019.04.001 PMID: 31164314
- McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimers disease: Recommendations from the National Institute on Aging‐Alzheimers Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Dement 2011; 7(3): 263-9. doi: 10.1016/j.jalz.2011.03.005 PMID: 21514250
- Farlow MR, Cummings JL. Effective pharmacologic management of Alzheimers disease. Am J Med 2007; 120(5): 388-97. doi: 10.1016/j.amjmed.2006.08.036 PMID: 17466645
- Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimers disease. N Engl J Med 2012; 366(10): 893-903. doi: 10.1056/NEJMoa1106668 PMID: 22397651
- Grossberg GT, Manes F, Allegri RF, et al. The safety, tolerability, and efficacy of once-daily memantine (28 mg): A multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimers disease taking cholinesterase inhibitors. CNS Drugs 2013; 27(6): 469-78. doi: 10.1007/s40263-013-0077-7 PMID: 23733403
- Cummings JL, Tong G, Ballard C. Treatment combinations for Alzheimers disease: Current and future pharmacotherapy options. J Alzheimers Dis 2019; 67(3): 779-94. doi: 10.3233/JAD-180766 PMID: 30689575
- Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimers disease: Identification of novel therapeutic targets. Alzheimers Res Ther 2013; 5(5): 49. doi: 10.1186/alzrt214 PMID: 24152385
- Rosenmann H. Immunotherapy for targeting tau pathology in Alzheimers disease and tauopathies. Curr Alzheimer Res 2013; 10(3): 217-28. doi: 10.2174/1567205011310030001 PMID: 23534533
- Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimers disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017; 16(2): 123-34. doi: 10.1016/S1474-4422(16)30331-3 PMID: 27955995
- Ding L, Meng Y, Zhang HY, Yin WC, Yan Y, Cao YP. Active immunization with the peptide epitope vaccine Aβ3-10-KLH induces a Th2-polarized anti-Aβ antibody response and decreases amyloid plaques in APP/PS1 transgenic mice. Neurosci Lett 2016; 634: 1-6. doi: 10.1016/j.neulet.2016.09.050 PMID: 27693663
- Meng Y, Ding L, Zhang H, Yin W, Yan Y, Cao Y. Immunization of Tg-APPswe/PSEN1dE9 mice with Aβ3-10-KLH vaccine prevents synaptic deficits of Alzheimers disease. Behav Brain Res 2017; 332: 64-70. doi: 10.1016/j.bbr.2017.05.056 PMID: 28577919
- Zhang XY, Meng Y, Yan XJ, Liu S, Wang GQ, Cao YP. Immunization with Aβ3-10-KLH vaccine improves cognitive function and ameliorates mitochondrial dysfunction and reduces Alzheimers disease-like pathology in Tg-APPswe/PSEN1dE9 mice. Brain Res Bull 2021; 174: 31-40. doi: 10.1016/j.brainresbull.2021.05.019 PMID: 34044034
- Ferrucci R, Mameli F, Guidi I, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 2008; 71(7): 493-8. doi: 10.1212/01.wnl.0000317060.43722.a3 PMID: 18525028
- Metkar SK, Girigoswami A, Murugesan R, Girigoswami K. Lumbrokinase for degradation and reduction of amyloid fibrils associated with amyloidosis. J Appl Biomed 2017; 15(2): 96-104. doi: 10.1016/j.jab.2017.01.003
- Metkar SK, Girigoswami A, Bondage DD, Shinde UG, Girigoswami K. The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ 142 peptide an in vitro and in silico approach. Int J Neurosci 2022; 1-12. doi: 10.1080/00207454.2022.2089137 PMID: 35694981
- Shikama Y, Kitazawa J, Yagihashi N, et al. Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med 2010; 49(5): 397-401. doi: 10.2169/internalmedicine.49.2633 PMID: 20190472
- Gong H, He Z, Peng A, et al. Effects of several quinones on insulin aggregation. Sci Rep 2014; 4(1): 5648. doi: 10.1038/srep05648 PMID: 25008537
- Hsu RL, Lee KT, Wang JH, Lee LYL, Chen RPY. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J Agric Food Chem 2009; 57(2): 503-8. doi: 10.1021/jf803072r PMID: 19117402
- Fadl NN, Ahmed HH, Booles HF, Sayed AH. Serrapeptase and nattokinase intervention for relieving Alzheimers disease pathophysiology in rat model. Hum Exp Toxicol 2013; 32(7): 721-35. doi: 10.1177/0960327112467040 PMID: 23821590
- Metkar SK, Girigoswami A, Murugesan R, Girigoswami K. In vitro and in vivo insulin amyloid degradation mediated by Serratiopeptidase. Mater Sci Eng C 2017; 70(Pt 1): 728-35. doi: 10.1016/j.msec.2016.09.049 PMID: 27770948
- Metkar SK, Girigoswami A, Vijayashree R, Girigoswami K. Attenuation of subcutaneous insulin induced amyloid mass in vivo using Lumbrokinase and Serratiopeptidase. Int J Biol Macromol 2020; 163: 128-34. doi: 10.1016/j.ijbiomac.2020.06.256 PMID: 32615214
- Dabbagh F, Negahdaripour M, Berenjian A, et al. Nattokinase: Production and application. Appl Microbiol Biotechnol 2014; 98(22): 9199-206. doi: 10.1007/s00253-014-6135-3 PMID: 25348469
- Ahmed HH, Nevein NF, Karima A, Hamza AH. Miracle enzymes serrapeptase and nattokinase mitigate neuroinflammation and apoptosis associated with Alzheimers disease in experimental model. WJPPS 2013; 3: 876-91.
- Iwahara N, Yokokaw K, Saito T, et al. Mesenchymal stem cell-conditioned medium induces microglia into M2 phenotype and promotes amyloid β-phagocytosis. J Neurol Sci 2017; 381: 665. doi: 10.1016/j.jns.2017.08.1871
- Martínez-Morales PL, Revilla A, Ocaña I, et al. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev 2013; 9(5): 685-99. doi: 10.1007/s12015-013-9443-6 PMID: 23681704
- Bruno S, Grange C, Collino F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012; 7(3): e33115. doi: 10.1371/journal.pone.0033115 PMID: 22431999
- Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008; 26(7): 1787-95. doi: 10.1634/stemcells.2007-0979 PMID: 18499892
- Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cellderived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8. doi: 10.1182/blood-2007-03-078709 PMID: 17536014
- Sahoo S, Klychko E, Thorne T, et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 2011; 109(7): 724-8. doi: 10.1161/CIRCRESAHA.111.253286 PMID: 21835908
- Schäfer S, Calas AG, Vergouts M, Hermans E. Immunomodulatory influence of bone marrow-derived mesenchymal stem cells on neuroinflammation in astrocyte cultures. J Neuroimmunol 2012; 249(1-2): 40-8. doi: 10.1016/j.jneuroim.2012.04.018 PMID: 22633273
- Ma H, Zhang S, Xu Y, Zhang R, Zhang X. Analysis of differentially expressed microRNA of TNF-α-stimulated mesenchymal stem cells and exosomes from their culture supernatant. Arch Med Sci 2018; 14(5): 1102-11. doi: 10.5114/aoms.2017.70878 PMID: 30154894
- Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed Res Int 2014; 2014: 965849. doi: 10.1155/2014/965849
- Park D, Yang G, Bae DK, et al. Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J Neurosci Res 2013; 91(5): 660-70. doi: 10.1002/jnr.23182 PMID: 23404260
- Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae J. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimers disease mice by modulation of immune responses. Stem Cells 2010; 28(2): 329-43. doi: 10.1002/stem.277 PMID: 20014009
- Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 2012; 18(13-14): 1479-89. doi: 10.1089/ten.tea.2011.0325 PMID: 22443121
- Katagiri W, Osugi M, Kawai T, Ueda M. Novel cell-free regeneration of bone using stem cell-derived growth factors. Int J Oral Maxillofac Implants 2013; 28(4): 1009-16. doi: 10.11607/jomi.3036 PMID: 23869359
- Cantinieaux D, Quertainmont R, Blacher S, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation. PLoS One 2013; 8(8): e69515. doi: 10.1371/journal.pone.0069515 PMID: 24013448
- Chen L, Xu Y, Zhao J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 2014; 9(4): e96161. doi: 10.1371/journal.pone.0096161 PMID: 24781370
- Kuo SC, Chio CC, Yeh CH, et al. Mesenchymal stem cell‐conditioned medium attenuates the retinal pathology in amyloid‐β‐induced rat model of Alzheimers disease: Underlying mechanisms. Aging Cell 2021; 20(5): e13340. doi: 10.1111/acel.13340 PMID: 33783931
- Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimers disease and vascular dementia. Brain 2015; 138(4): 1059-69. doi: 10.1093/brain/awv025 PMID: 25688080
- Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, bloodbrain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimers disease. J Cereb Blood Flow Metab 2018; 38(1): 103-15. doi: 10.1177/0271678X17690761 PMID: 28151041
- Provias J, Jeynes B. Reduction in vascular endothelial growth factor expression in the superior temporal, hippocampal, and brainstem regions in Alzheimers disease. Curr Neurovasc Res 2014; 11(3): 202-9. doi: 10.2174/1567202611666140520122316 PMID: 24845858
- Noshita T, Murayama N, Oka T, Ogino R, Nakamura S, Inoue T. Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. Eur J Pharmacol 2012; 695(1-3): 76-82. doi: 10.1016/j.ejphar.2012.09.020 PMID: 23026373
- Abe K, Saito H. Effects of basic fibroblast growth factor on central nervous system functions. Pharmacol Res 2001; 43(4): 307-12. doi: 10.1006/phrs.2000.0794 PMID: 11352534
- Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimers disease. Int J Pharm 2014; 461(1-2): 192-202. doi: 10.1016/j.ijpharm.2013.11.049 PMID: 24300213
- Wang Y, Yan W, Lu X, et al. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. Eur J Cell Biol 2011; 90(8): 642-8. doi: 10.1016/j.ejcb.2011.03.005 PMID: 21616556
- Dai J, Peng L, Fan K, et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 2009; 28(38): 3412-22. doi: 10.1038/onc.2009.189 PMID: 19597469
- Lederle W, Hartenstein B, Meides A, et al. MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis 2010; 31(7): 1175-84. doi: 10.1093/carcin/bgp248 PMID: 19892798
- Li W-M, Chen W-B. Effect of FGF-BP on angiogenesis in squamous cell carcinoma. Chin Med J 2004; 117(4): 621-3. PMID: 15109463
- Harris VK, Coticchia CM, Kagan BL, Ahmad S, Wellstein A, Riegel AT. Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways. J Biol Chem 2000; 275(15): 10802-11. doi: 10.1074/jbc.275.15.10802 PMID: 10753873
- Sainaghi PP, Bellan M, Lombino F, et al. Growth arrest specific 6 concentration is increased in the cerebrospinal fluid of patients with Alzheimers disease. J Alzheimers Dis 2016; 55(1): 59-65. doi: 10.3233/JAD-160599 PMID: 27636849
- Tondo G, Perani D, Comi C. TAM receptor pathways at the crossroads of neuroinflammation and neurodegeneration. Dis Markers 2019; 2019: 2387614. doi: 10.1155/2019/2387614
- Ma X, Huang M, Zheng M, et al. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimers disease. J Control Release 2020; 327: 688-702. doi: 10.1016/j.jconrel.2020.09.019 PMID: 32931898
- Gadelkarim M, Abushouk AI, Ghanem E, Hamaad AM, Saad AM, Abdel-Daim MM. Adipose-derived stem cells: Effectiveness and advances in delivery in diabetic wound healing. Biomed Pharmacother 2018; 107: 625-33. doi: 10.1016/j.biopha.2018.08.013 PMID: 30118878
- Lee M, Ban JJ, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimers disease. Brain Res 2018; 1691: 87-93. doi: 10.1016/j.brainres.2018.03.034 PMID: 29625119
- Wei X, Zhao L, Zhong J, et al. Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 2009; 462(1): 76-9. doi: 10.1016/j.neulet.2009.06.054 PMID: 19549558
- Egashira Y, Sugitani S, Suzuki Y, et al. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 2012; 1461: 87-95. doi: 10.1016/j.brainres.2012.04.033 PMID: 22608076
- Ikegame Y, Yamashita K, Hayashi SI, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 2011; 13(6): 675-85. doi: 10.3109/14653249.2010.549122 PMID: 21231804
- Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki T. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimers disease. Neurosci Lett 2015; 609: 53-7. doi: 10.1016/j.neulet.2015.10.023 PMID: 26472709
- Guillén MI, Platas J, Pérez del Caz MD, Mirabet V, Alcaraz MJ. Paracrine anti-inflammatory effects of adipose tissue-derived mesenchymal stem cells in human monocytes. Front Physiol 2018; 9: 661. doi: 10.3389/fphys.2018.00661 PMID: 29904354
- Zheng C, Nennesmo I, Fadeel B, Henter JI. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2004; 56(4): 564-7. doi: 10.1002/ana.20223 PMID: 15389897
- Mehrabadi S, Motevaseli E, Sadr SS, Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimers disease rats. Behav Brain Res 2020; 379: 112362. doi: 10.1016/j.bbr.2019.112362 PMID: 31739000
- Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000; 97(25): 13625-30. doi: 10.1073/pnas.240309797 PMID: 11087820
- Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 2003; 100(10): 5807-12. doi: 10.1073/pnas.0937635100 PMID: 12716973
- Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90. PMID: 22133879
- Király M, Porcsalmy B, Pataki Á, et al. Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 2009; 55(5): 323-32. doi: 10.1016/j.neuint.2009.03.017 PMID: 19576521
- Taghipour Z, Karbalaie K, Kiani A, et al. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 2012; 21(10): 1794-802. doi: 10.1089/scd.2011.0408 PMID: 21970342
- de Almeida FM, Marques SA, Ramalho BS, et al. Human dental pulp cells: A new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma 2011; 28(9): 1939-49. doi: 10.1089/neu.2010.1317 PMID: 21609310
- Leong WK, Henshall TL, Arthur A, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 2012; 1(3): 177-87. doi: 10.5966/sctm.2011-0039 PMID: 23197777
- Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9. doi: 10.1089/ten.tea.2011.0385 PMID: 22839964
- Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013; 44(2): 551-4. doi: 10.1161/STROKEAHA.112.676759 PMID: 23238858
- Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 2014; 78: 16-20. doi: 10.1016/j.neures.2013.10.010 PMID: 24252618
- Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimers disease. Behav Brain Res 2015; 293: 189-97. doi: 10.1016/j.bbr.2015.07.043 PMID: 26210934
- Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog Brain Res 2000; 128: 231-41. doi: 10.1016/S0079-6123(00)28020-5 PMID: 11105682
- Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2008; 89(3): 312-23. doi: 10.1016/j.nlm.2007.08.018 PMID: 17942328
- Ozawa T, Yamada K, Ichitani Y. Hippocampal BDNF treatment facilitates consolidation of spatial memory in spontaneous place recognition in rats. Behav Brain Res 2014; 263: 210-6. doi: 10.1016/j.bbr.2014.01.034 PMID: 24503120
- Nutt JG, Burchiel KJ, Comella CL, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003; 60(1): 69-73. doi: 10.1212/WNL.60.1.69 PMID: 12525720
- Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138(2): 155-75. doi: 10.1016/j.pharmthera.2013.01.004 PMID: 23348013
- Konishi Y, Yang LB, He P, et al. Deficiency of GDNF receptor GFRα1 in Alzheimers neurons results in neuronal death. J Neurosci 2014; 34(39): 13127-38. doi: 10.1523/JNEUROSCI.2582-13.2014 PMID: 25253858
- Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 2012; 47(3): 407-15. doi: 10.1016/j.nbd.2012.04.014 PMID: 22579772
- Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu X-M. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 2003; 183(2): 379-93. doi: 10.1016/S0014-4886(03)00188-2 PMID: 14552879
- Jourquin J, Tremblay E, Bernard A, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur J Neurosci 2005; 22(10): 2569-78. doi: 10.1111/j.1460-9568.2005.04426.x PMID: 16307599
- Niimura M, Takagi N, Takagi K, et al. The protective effect of hepatocyte growth factor against cell death in the hippocampus after transient forebrain ischemia is related to the improvement of apurinic/apyrimidinic endonuclease/redox factor-1 level and inhibition of NADPH oxidase activity. Neurosci Lett 2006; 407(2): 136-40. doi: 10.1016/j.neulet.2006.08.060 PMID: 16973282
- Li JW, Li LL, Chang LL, Wang ZY, Xu Y. Stem cell factor protects against neuronal apoptosis by activating AKT/ERK in diabetic mice. Braz J Med Biol Res 2009; 42(11): 1044-9. doi: 10.1590/S0100-879X2009005000031 PMID: 19802467
- Fragkouli A, Tsilibary EC, Tzinia AK. Neuroprotective role of MMP-9 overexpression in the brain of Alzheimers 5xFAD mice. Neurobiol Dis 2014; 70: 179-89. doi: 10.1016/j.nbd.2014.06.021 PMID: 25008761
- Rubio-Perez JM, Morillas-Ruiz JM. A review: Inflammatory process in Alzheimers disease, role of cytokines. ScientificWorldJournal 2012; 2012: 756357. doi: 10.1100/2012/756357
- Ahmed NE-MB, Murakami M, Hirose Y, Nakashima M. Therapeutic potential of dental pulp stem cell secretome for Alzheimers disease treatment: An in vitro study. Stem Cells Int 2016; 2016: 8102478. doi: 10.1155/2016/8102478
- Man RC, Sulaiman N, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD. Insights into the effects of the dental stem cell secretome on nerve regeneration: Towards cell-free treatment. Stem Cells Int 2019; 2019: 4596150.
- Cheng Y, Zhang J, Deng L, et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int J Clin Exp Pathol 2015; 8(3): 2928-36. PMID: 26045801
- Ratajczak MZ, Kucia M, Jadczyk T, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2012; 26(6): 1166-73. doi: 10.1038/leu.2011.389 PMID: 22182853
- Yoon B-W, Ryu S, Lee S-H, Kim SU. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res 2016; 11(2): 298-304. doi: 10.4103/1673-5374.177739 PMID: 27073384
- Talaverón R, Matarredona ER, de la Cruz RR, Pastor AM. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons. PLoS One 2013; 8(1): e54519. doi: 10.1371/journal.pone.0054519 PMID: 23349916
- Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003; 181(2): 115-29. doi: 10.1016/S0014-4886(03)00037-2 PMID: 12781986
- Schindler SM, Little JP, Klegeris A. Microparticles: A new perspective in central nervous system disorders. BioMed Res Int 2014; 2014: 756327. doi: 10.1155/2014/756327
- Krämer-Albers EM, Kuo-Elsner PW. Extracellular vesicles: Goodies for the brain? Neuropsychopharmacology 2016; 41(1): 371-2. doi: 10.1038/npp.2015.242 PMID: 26657950
- Porro C, Trotta T, Panaro MA. Microvesicles in the brain: Biomarker, messenger or mediator? J Neuroimmunol 2015; 288: 70-8. doi: 10.1016/j.jneuroim.2015.09.006 PMID: 26531697
- Yang H, Wang C, Chen H, Li L, Ma S, Wang H. Neural stem cell-conditioned medium ameliorated cerebral ischemia-reperfusion injury in rats. Stem Cells Int 2018; 2018: 4659159. doi: 10.1155/2018/4659159
- Yang H, Wang J, Sun J, Liu X, Duan WM, Qu T. A new method to effectively and rapidly generate neurons from SH-SY5Y cells. Neurosci Lett 2016; 610: 43-7. doi: 10.1016/j.neulet.2015.10.047 PMID: 26497914
- Liang P, Liu J, Xiong J, et al. Neural stem cell-conditioned medium protects neurons and promotes propriospinal neurons relay neural circuit reconnection after spinal cord injury. Cell Transplant 2014; 23(S1): 45-56. doi: 10.3727/096368914X684989 PMID: 25333841
- Cheng Z, Bosco DB, Sun L, et al. Neural stem cell-conditioned medium suppresses inflammation and promotes spinal cord injury recovery. Cell Transplant 2017; 26(3): 469-82. doi: 10.3727/096368916X693473 PMID: 27737726
- Jia G, Yang H, Diao Z, Liu Y, Sun C. Neural stem cell conditioned medium alleviates Aβ25-35 damage to SH-SY5Y cells through the PCMT1/MST1 pathway. Eur J Histochem 2020; 64(S2): 3135.
- Jia Y, Cao N, Zhai J, et al. HGF mediates clinical‐grade human umbilical cord‐derived mesenchymal stem cells improved functional recovery in a senescence‐accelerated mouse model of Alzheimers disease. Adv Sci 2020; 7(17): 1903809. doi: 10.1002/advs.201903809 PMID: 32995116
- Kim JY, Kim DH, Kim JH, et al. Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine. World J Stem Cells 2012; 4(11): 110-6. doi: 10.4252/wjsc.v4.i11.110 PMID: 23293711
- Kim JY, Kim DH, Kim DS, et al. Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-beta42 neurotoxicity in vitro. Biophys J 2011; 100(3): 415a. doi: 10.1016/j.bpj.2010.12.2460
- Kim DH, Lee D, Chang EH, et al. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimers disease model. Stem Cells Dev 2015; 24(20): 2378-90. doi: 10.1089/scd.2014.0487 PMID: 26154268
- Kim DH, Lim H, Lee D, et al. Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimers disease model. Sci Rep 2018; 8(1): 354. doi: 10.1038/s41598-017-18542-0 PMID: 29321508
- Kim J-Y, Kim DH, Kim JH, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 2012; 19(4): 680-91. doi: 10.1038/cdd.2011.140 PMID: 22015609
- Kim DH, Lee D, Lim H, et al. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimers disease. Biochem Biophys Res Commun 2018; 504(4): 933-40. doi: 10.1016/j.bbrc.2018.09.012 PMID: 30224067
- Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2(1): 47-63. doi: 10.1002/wdev.86 PMID: 23799630
- Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006; 24(1): 99-146. doi: 10.1146/annurev.immunol.24.021605.090737 PMID: 16551245
- Caraci F, Spampinato S, Sortino MA, et al. Dysfunction of TGF-β1 signaling in Alzheimers disease: perspectives for neuroprotection. Cell Tissue Res 2012; 347(1): 291-301. doi: 10.1007/s00441-011-1230-6 PMID: 21879289
- Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002; 6(1): 1-12. doi: 10.1111/j.1582-4934.2002.tb00307.x PMID: 12003665
- Ikeda H, Miyatake M, Koshikawa N, et al. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation. J Biol Chem 2010; 285(49): 38415-27. doi: 10.1074/jbc.M110.109827 PMID: 20889977
- Xu J, Xiao N, Xia J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 2010; 13(1): 22-4. doi: 10.1038/nn.2459 PMID: 19915562
- Lu Z, Kipnis J. Thrombospondin 1-a key astrocyte‐derived neurogenic factor. FASEB J 2010; 24(6): 1925-34. doi: 10.1096/fj.09-150573 PMID: 20124433
- Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Downs syndrome. PLoS One 2010; 5(12): e14200. doi: 10.1371/journal.pone.0014200 PMID: 21152035
- Tyzack GE, Sitnikov S, Barson D, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun 2014; 5(1): 4294. doi: 10.1038/ncomms5294 PMID: 25014177
- Cheng C, Lau SKM, Doering LC. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Mol Brain 2016; 9(1): 74. doi: 10.1186/s13041-016-0256-9 PMID: 27485117
- Xu Z, Nan W, Zhang X, et al. Umbilical cord mesenchymal stem cells conditioned medium promotes Aβ25-35 phagocytosis by modulating autophagy and aβ-degrading enzymes in BV2 cells. J Mol Neurosci 2018; 65(2): 222-33. doi: 10.1007/s12031-018-1075-5 PMID: 29845511
Supplementary files
