Exosomal-microRNAs Improve Islet Cell Survival and Function In Islet Transplantation


Cite item

Full Text

Abstract

Exosomal-microRNAs (Exo-miRNAs) are key regulators of islet cell function, including insulin expression, processing, and secretion. Exo-miRNAs have a significant impact on the outcomes of islet transplantation as biomarkers for evaluating islet cell function and survival. Furthermore, they have been linked to vascular remodeling and immune regulation following islet transplantation. Mesenchymal stem cell-derived exosomes have been shown in preliminary studies to improve islet cell viability and function when injected or transplanted into mice. Overall, Exo-miRNAs have emerged as novel agents for improving islet transplantation success rates. The role of islet-derived Exo-miRNAs and mesenchymal stem cells-derived Exo-miRNAs as biomarkers and immunomodulators in islet regeneration, as well as their role in improving islet cell viability and function in islet transplantation, are discussed in this review.

About the authors

Qiu Minhua

Graduate School, Guangxi Traditional Chinese Medical University

Email: info@benthamscience.net

Feng Bingzheng

Ruikang Hospital, Guangxi Traditional Chinese Medical University

Email: info@benthamscience.net

Xu Zhiran

Ruikang Hospital, Guangxi Traditional Chinese Medical University

Email: info@benthamscience.net

Zhang Yingying

Department of Foreign Languages, Guangxi Traditional Chinese Medical University

Email: info@benthamscience.net

Yang Yuwei

Graduate School, Guangxi University of Chinese Medicine

Email: info@benthamscience.net

Zhang Ting

Ruikang Hospital, Guangxi Traditional Chinese Medical University

Email: info@benthamscience.net

Chen Jibing

Ruikang Hospital, Guangxi Traditional Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

Gao Hongjun

Ruikang Hospital,, Guangxi University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rickels MR, Robertson RP. Pancreatic islet transplantation in humans: Recent progress and future directions. Endocr Rev 2019; 40(2): 631-68. doi: 10.1210/er.2018-00154 PMID: 30541144
  2. Xie M, Xiong W, She Z, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front Immunol 2020; 11: 13. doi: 10.3389/fimmu.2020.00013 PMID: 32117221
  3. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006; 103(11): 4034-9. doi: 10.1073/pnas.0510928103 PMID: 16495412
  4. Nicolas FE, Pais H, Schwach F, et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 2008; 14(12): 2513-20. doi: 10.1261/rna.1221108 PMID: 18945805
  5. Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 2008; 3(6): e2436. doi: 10.1371/journal.pone.0002436 PMID: 18560586
  6. Toti F, Bayle F, Berney T, et al. Studies of circulating microparticle release in peripheral blood after pancreatic islet transplantation. Transplant Proc 2011; 43(9): 3241-5. doi: 10.1016/j.transproceed.2011.10.024 PMID: 22099767
  7. Vallabhajosyula P, Korutla L, Habertheuer A, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest 2017; 127(4): 1375-91. doi: 10.1172/JCI87993 PMID: 28319051
  8. Korutla L, Rickels MR, Hu RW, et al. Noninvasive diagnosis of recurrent autoimmune type 1 diabetes after islet cell transplantation. Am J Transplant 2019; 19(6): 1852-8. doi: 10.1111/ajt.15322 PMID: 30801971
  9. Saravanan PB, Vasu S, Yoshimatsu G, et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 2019; 62(10): 1901-14. doi: 10.1007/s00125-019-4950-x PMID: 31372667
  10. Krishnan P, Syed F, Jiyun Kang N, Mirmira RG, Evans-Molina C. Profiling of RNAs from human islet-derived exosomes in a model of type 1 diabetes. Int J Mol Sci 2019; 20(23): 5903. doi: 10.3390/ijms20235903 PMID: 31775218
  11. Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019; 8(12): 1533. doi: 10.3390/cells8121533 PMID: 31795194
  12. Steinman RM. Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol 2012; 30(1): 1-22. doi: 10.1146/annurev-immunol-100311-102839 PMID: 22136168
  13. Garcia-Contreras M, Brooks RW, Boccuzzi L, Robbins PD, Ricordi C. Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci 2017; 21(12): 2940-56. PMID: 28682421
  14. Pileggi A, Klein D, Fotino C, et al. MicroRNAs in islet immunobiology and transplantation. Immunol Res 2013; 57(1-3): 185-96. doi: 10.1007/s12026-013-8436-5 PMID: 24242759
  15. Tang C, Koulajian K, Schuiki I, et al. Glucose-induced beta cell dysfunction in vivo in rats: Link between oxidative stress and endoplasmic reticulum stress. Diabetologia 2012; 55(5): 1366-79. doi: 10.1007/s00125-012-2474-8 PMID: 22396011
  16. Tong L, Yuan Y, Wu S. Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv Drug Deliv Rev 2015; 81: 1-15. doi: 10.1016/j.addr.2014.09.004 PMID: 25220353
  17. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750. doi: 10.1080/20013078.2018.1535750 PMID: 30637094
  18. Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia 2016; 59(2): 325-33. doi: 10.1007/s00125-015-3808-0 PMID: 26592240
  19. Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, et al. Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 2010; 30(4): 607-19. doi: 10.1007/s10875-010-9415-4 PMID: 20405178
  20. Shigemoto-Kuroda T, Oh JY, Kim D, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: Type 1 diabetes and uveoretinitis. Stem Cell Reports 2017; 8(5): 1214-25. doi: 10.1016/j.stemcr.2017.04.008 PMID: 28494937
  21. Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell–derived exosomes on experimental type‐1 autoimmune diabetes. J Cell Biochem 2018; 119(11): 9433-43. doi: 10.1002/jcb.27260 PMID: 30074271
  22. Chamberlain CS, Kink JA, Wildenauer LA, et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells 2021; 39(1): 55-61. doi: 10.1002/stem.3291 PMID: 33141458
  23. Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther 2020; 11(1): 259. doi: 10.1186/s13287-020-01756-x PMID: 32600435
  24. de Souza BM, Bouças AP, Oliveira FS, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: A systematic review and meta-analysis. Islets 2017; 9(2): 30-42. doi: 10.1080/19382014.2017.1286434 PMID: 28151049
  25. Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11(1): 97. doi: 10.1186/s13287-020-01610-0 PMID: 32127037
  26. Zhao H, Guan J, Lee HM, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 2010; 39(6): 843-6. doi: 10.1097/MPA.0b013e3181d12613 PMID: 20467341
  27. Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 2014; 41(4): 2055-66. doi: 10.1007/s11033-014-3054-4 PMID: 24469711
  28. Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J Control Release 2016; 238: 166-75. doi: 10.1016/j.jconrel.2016.07.044 PMID: 27475298
  29. Jacovetti C, Jimenez V, Ayuso E, et al. Contribution of intronic miR-338-3p and its hosting gene AATK to compensatory β-cell mass expansion. Mol Endocrinol 2015; 29(5): 693-702. doi: 10.1210/me.2014-1299 PMID: 25751313
  30. Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014; 19(1): 122-34. doi: 10.1016/j.cmet.2013.11.015 PMID: 24361012
  31. Tattikota SG, Rathjen T, Hausser J, et al. miR-184 regulates pancreatic β-cell function according to glucose metabolism. J Biol Chem 2015; 290(33): 20284-94. doi: 10.1074/jbc.M115.658625 PMID: 26152724
  32. Bao L, Fu X, Si M, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes. PLoS One 2015; 10(2): e0116067. doi: 10.1371/journal.pone.0116067 PMID: 25658748
  33. Bang-Berthelsen CH, Pedersen L, Fløyel T, Hagedorn PH, Gylvin T, Pociot F. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics 2011; 12(1): 97. doi: 10.1186/1471-2164-12-97 PMID: 21294859
  34. Figliolini F, Cantaluppi V, De Lena M, et al. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS One 2014; 9(7): e102521. doi: 10.1371/journal.pone.0102521 PMID: 25028931
  35. Nonaka T, Wong DTW. Saliva-exosomics in cancer: Molecular characterization of cancer-derived exosomes in saliva. Enzymes 2017; 42: 125-51. doi: 10.1016/bs.enz.2017.08.002 PMID: 29054268
  36. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011; 31(15): 3182-94. doi: 10.1128/MCB.01433-10 PMID: 21646425
  37. Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012; 21(6): 1305-20. doi: 10.3727/096368911X627534 PMID: 22455973
  38. Ferguson SW, Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J Control Release 2016; 228: 179-90. doi: 10.1016/j.jconrel.2016.02.037 PMID: 26941033
  39. Nie W, Ma X, Yang C, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation 2018; 25(5): e12405. doi: 10.1111/xen.12405 PMID: 29932262
  40. Bandara KV, Michael MZ, Gleadle JM. MicroRNA biogenesis in hypoxia. MicroRNA 2017; 6(2): 80-96. doi: 10.2174/2211536606666170313114821 PMID: 28294076
  41. Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107 group of microRNA genes: Evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 2010; 402(3): 491-509. doi: 10.1016/j.jmb.2010.07.051 PMID: 20678503
  42. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006; 108(9): 3068-71. doi: 10.1182/blood-2006-01-012369 PMID: 16849646
  43. Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006; 1(1): e116. doi: 10.1371/journal.pone.0000116 PMID: 17205120
  44. Chan LS, Yue PYK, Mak NK, Wong RNS. Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009; 38(4): 370-7. doi: 10.1016/j.ejps.2009.08.008 PMID: 19733659
  45. Özcan S. Minireview: MicroRNA function in pancreatic β cells. Mol Endocrinol 2014; 28(12): 1922-33. doi: 10.1210/me.2014-1306 PMID: 25396300
  46. Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012; 287(37): 31155-64. doi: 10.1074/jbc.M112.362632 PMID: 22733810
  47. Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015; 52(3): 523-30. doi: 10.1007/s00592-014-0675-y PMID: 25408296
  48. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 2010; 5(5): e10843. doi: 10.1371/journal.pone.0010843 PMID: 20520763
  49. Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: The ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets 2013; 14(10): 1110-7. doi: 10.2174/13894501113149990182 PMID: 23834149
  50. Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59(4): 978-86. doi: 10.2337/db09-0881 PMID: 20086228
  51. Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56(10): 2203-12. doi: 10.1007/s00125-013-2993-y PMID: 23842730
  52. Bagge A, Dahmcke C, Dalgaard L. Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells. Horm Metab Res 2013; 45(6): 463-6. doi: 10.1055/s-0032-1333238 PMID: 23315993
  53. Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010; 396(2): 457-62. doi: 10.1016/j.bbrc.2010.04.116 PMID: 20417623
  54. Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 2014; 6(1): e27754. doi: 10.4161/isl.27754 PMID: 25483877
  55. Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124(6): 2722-35. doi: 10.1172/JCI73066 PMID: 24789908
  56. Vergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep 2017; 7(1): 2704. doi: 10.1038/s41598-017-02599-y PMID: 28577337
  57. Sun Y, Mao Q, Shen C, Wang C, Jia W. Exosomes from β-cells alleviated hyperglycemia and enhanced angiogenesis in islets of streptozotocin-induced diabetic mice. Diabetes Metab Syndr Obes 2019; 12: 2053-64. doi: 10.2147/DMSO.S213400 PMID: 31632115
  58. Wijesekara N, Zhang L, Kang MH, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012; 61(3): 653-8. doi: 10.2337/db11-0944 PMID: 22315319
  59. Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013; 33(12): 2724-32. doi: 10.1161/ATVBAHA.113.302004 PMID: 24135019
  60. Street JM, Koritzinsky EH, Glispie DM, Yuen PST. Urine exosome isolation and characterization. Methods Mol Biol 2017; 1641: 413-23. doi: 10.1007/978-1-4939-7172-5_23 PMID: 28748478
  61. Yu LL, Zhu J, Liu JX, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res Int 2018; 2018: 1-9. doi: 10.1155/2018/3634563 PMID: 30148165
  62. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804. doi: 10.7150/thno.18133 PMID: 28255367
  63. Foers AD, Chatfield S, Dagley LF, et al. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. J Extracell Vesicles 2018; 7(1): 1490145. doi: 10.1080/20013078.2018.1490145 PMID: 29963299
  64. La Shu S, Yang Y, Allen CL, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles 2020; 9(1): 1692401. doi: 10.1080/20013078.2019.1692401 PMID: 31807236
  65. Karttunen J, Heiskanen M, Navarro-Ferrandis V, et al. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J Extracell Vesicles 2019; 8(1): 1555410. doi: 10.1080/20013078.2018.1555410 PMID: 30574280
  66. Iliescu F. Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines (Basel) 2019; 10(6): 392. doi: 10.3390/mi10060392 PMID: 31212754
  67. Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8(1): 1609206. doi: 10.1080/20013078.2019.1609206 PMID: 31069028
  68. Ayers L, Pink R, Carter DRF, Nieuwland R. Clinical requirements for extracellular vesicle assays. J Extracell Vesicles 2019; 8(1): 1593755. doi: 10.1080/20013078.2019.1593755 PMID: 30949310
  69. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917-50. doi: 10.1021/acs.chemrev.7b00534 PMID: 29384376

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers