Exosomal-microRNAs Improve Islet Cell Survival and Function In Islet Transplantation
- Authors: Minhua Q.1, Bingzheng F.2, Zhiran X.2, Yingying Z.3, Yuwei Y.4, Ting Z.2, Jibing C.2, Hongjun G.5
-
Affiliations:
- Graduate School, Guangxi Traditional Chinese Medical University
- Ruikang Hospital, Guangxi Traditional Chinese Medical University
- Department of Foreign Languages, Guangxi Traditional Chinese Medical University
- Graduate School, Guangxi University of Chinese Medicine
- Ruikang Hospital,, Guangxi University of Chinese Medicine
- Issue: Vol 19, No 5 (2024)
- Pages: 669-677
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645817
- DOI: https://doi.org/10.2174/1574888X18666230510105947
- ID: 645817
Cite item
Full Text
Abstract
Exosomal-microRNAs (Exo-miRNAs) are key regulators of islet cell function, including insulin expression, processing, and secretion. Exo-miRNAs have a significant impact on the outcomes of islet transplantation as biomarkers for evaluating islet cell function and survival. Furthermore, they have been linked to vascular remodeling and immune regulation following islet transplantation. Mesenchymal stem cell-derived exosomes have been shown in preliminary studies to improve islet cell viability and function when injected or transplanted into mice. Overall, Exo-miRNAs have emerged as novel agents for improving islet transplantation success rates. The role of islet-derived Exo-miRNAs and mesenchymal stem cells-derived Exo-miRNAs as biomarkers and immunomodulators in islet regeneration, as well as their role in improving islet cell viability and function in islet transplantation, are discussed in this review.
About the authors
Qiu Minhua
Graduate School, Guangxi Traditional Chinese Medical University
Email: info@benthamscience.net
Feng Bingzheng
Ruikang Hospital, Guangxi Traditional Chinese Medical University
Email: info@benthamscience.net
Xu Zhiran
Ruikang Hospital, Guangxi Traditional Chinese Medical University
Email: info@benthamscience.net
Zhang Yingying
Department of Foreign Languages, Guangxi Traditional Chinese Medical University
Email: info@benthamscience.net
Yang Yuwei
Graduate School, Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Zhang Ting
Ruikang Hospital, Guangxi Traditional Chinese Medical University
Email: info@benthamscience.net
Chen Jibing
Ruikang Hospital, Guangxi Traditional Chinese Medical University
Author for correspondence.
Email: info@benthamscience.net
Gao Hongjun
Ruikang Hospital,, Guangxi University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Rickels MR, Robertson RP. Pancreatic islet transplantation in humans: Recent progress and future directions. Endocr Rev 2019; 40(2): 631-68. doi: 10.1210/er.2018-00154 PMID: 30541144
- Xie M, Xiong W, She Z, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front Immunol 2020; 11: 13. doi: 10.3389/fimmu.2020.00013 PMID: 32117221
- Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006; 103(11): 4034-9. doi: 10.1073/pnas.0510928103 PMID: 16495412
- Nicolas FE, Pais H, Schwach F, et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 2008; 14(12): 2513-20. doi: 10.1261/rna.1221108 PMID: 18945805
- Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 2008; 3(6): e2436. doi: 10.1371/journal.pone.0002436 PMID: 18560586
- Toti F, Bayle F, Berney T, et al. Studies of circulating microparticle release in peripheral blood after pancreatic islet transplantation. Transplant Proc 2011; 43(9): 3241-5. doi: 10.1016/j.transproceed.2011.10.024 PMID: 22099767
- Vallabhajosyula P, Korutla L, Habertheuer A, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest 2017; 127(4): 1375-91. doi: 10.1172/JCI87993 PMID: 28319051
- Korutla L, Rickels MR, Hu RW, et al. Noninvasive diagnosis of recurrent autoimmune type 1 diabetes after islet cell transplantation. Am J Transplant 2019; 19(6): 1852-8. doi: 10.1111/ajt.15322 PMID: 30801971
- Saravanan PB, Vasu S, Yoshimatsu G, et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 2019; 62(10): 1901-14. doi: 10.1007/s00125-019-4950-x PMID: 31372667
- Krishnan P, Syed F, Jiyun Kang N, Mirmira RG, Evans-Molina C. Profiling of RNAs from human islet-derived exosomes in a model of type 1 diabetes. Int J Mol Sci 2019; 20(23): 5903. doi: 10.3390/ijms20235903 PMID: 31775218
- Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019; 8(12): 1533. doi: 10.3390/cells8121533 PMID: 31795194
- Steinman RM. Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol 2012; 30(1): 1-22. doi: 10.1146/annurev-immunol-100311-102839 PMID: 22136168
- Garcia-Contreras M, Brooks RW, Boccuzzi L, Robbins PD, Ricordi C. Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci 2017; 21(12): 2940-56. PMID: 28682421
- Pileggi A, Klein D, Fotino C, et al. MicroRNAs in islet immunobiology and transplantation. Immunol Res 2013; 57(1-3): 185-96. doi: 10.1007/s12026-013-8436-5 PMID: 24242759
- Tang C, Koulajian K, Schuiki I, et al. Glucose-induced beta cell dysfunction in vivo in rats: Link between oxidative stress and endoplasmic reticulum stress. Diabetologia 2012; 55(5): 1366-79. doi: 10.1007/s00125-012-2474-8 PMID: 22396011
- Tong L, Yuan Y, Wu S. Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv Drug Deliv Rev 2015; 81: 1-15. doi: 10.1016/j.addr.2014.09.004 PMID: 25220353
- Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750. doi: 10.1080/20013078.2018.1535750 PMID: 30637094
- Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia 2016; 59(2): 325-33. doi: 10.1007/s00125-015-3808-0 PMID: 26592240
- Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, et al. Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 2010; 30(4): 607-19. doi: 10.1007/s10875-010-9415-4 PMID: 20405178
- Shigemoto-Kuroda T, Oh JY, Kim D, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: Type 1 diabetes and uveoretinitis. Stem Cell Reports 2017; 8(5): 1214-25. doi: 10.1016/j.stemcr.2017.04.008 PMID: 28494937
- Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cellderived exosomes on experimental type‐1 autoimmune diabetes. J Cell Biochem 2018; 119(11): 9433-43. doi: 10.1002/jcb.27260 PMID: 30074271
- Chamberlain CS, Kink JA, Wildenauer LA, et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells 2021; 39(1): 55-61. doi: 10.1002/stem.3291 PMID: 33141458
- Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther 2020; 11(1): 259. doi: 10.1186/s13287-020-01756-x PMID: 32600435
- de Souza BM, Bouças AP, Oliveira FS, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: A systematic review and meta-analysis. Islets 2017; 9(2): 30-42. doi: 10.1080/19382014.2017.1286434 PMID: 28151049
- Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11(1): 97. doi: 10.1186/s13287-020-01610-0 PMID: 32127037
- Zhao H, Guan J, Lee HM, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 2010; 39(6): 843-6. doi: 10.1097/MPA.0b013e3181d12613 PMID: 20467341
- Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 2014; 41(4): 2055-66. doi: 10.1007/s11033-014-3054-4 PMID: 24469711
- Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J Control Release 2016; 238: 166-75. doi: 10.1016/j.jconrel.2016.07.044 PMID: 27475298
- Jacovetti C, Jimenez V, Ayuso E, et al. Contribution of intronic miR-338-3p and its hosting gene AATK to compensatory β-cell mass expansion. Mol Endocrinol 2015; 29(5): 693-702. doi: 10.1210/me.2014-1299 PMID: 25751313
- Tattikota SG, Rathjen T, McAnulty SJ, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014; 19(1): 122-34. doi: 10.1016/j.cmet.2013.11.015 PMID: 24361012
- Tattikota SG, Rathjen T, Hausser J, et al. miR-184 regulates pancreatic β-cell function according to glucose metabolism. J Biol Chem 2015; 290(33): 20284-94. doi: 10.1074/jbc.M115.658625 PMID: 26152724
- Bao L, Fu X, Si M, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes. PLoS One 2015; 10(2): e0116067. doi: 10.1371/journal.pone.0116067 PMID: 25658748
- Bang-Berthelsen CH, Pedersen L, Fløyel T, Hagedorn PH, Gylvin T, Pociot F. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics 2011; 12(1): 97. doi: 10.1186/1471-2164-12-97 PMID: 21294859
- Figliolini F, Cantaluppi V, De Lena M, et al. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS One 2014; 9(7): e102521. doi: 10.1371/journal.pone.0102521 PMID: 25028931
- Nonaka T, Wong DTW. Saliva-exosomics in cancer: Molecular characterization of cancer-derived exosomes in saliva. Enzymes 2017; 42: 125-51. doi: 10.1016/bs.enz.2017.08.002 PMID: 29054268
- Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011; 31(15): 3182-94. doi: 10.1128/MCB.01433-10 PMID: 21646425
- Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012; 21(6): 1305-20. doi: 10.3727/096368911X627534 PMID: 22455973
- Ferguson SW, Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J Control Release 2016; 228: 179-90. doi: 10.1016/j.jconrel.2016.02.037 PMID: 26941033
- Nie W, Ma X, Yang C, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation 2018; 25(5): e12405. doi: 10.1111/xen.12405 PMID: 29932262
- Bandara KV, Michael MZ, Gleadle JM. MicroRNA biogenesis in hypoxia. MicroRNA 2017; 6(2): 80-96. doi: 10.2174/2211536606666170313114821 PMID: 28294076
- Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107 group of microRNA genes: Evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 2010; 402(3): 491-509. doi: 10.1016/j.jmb.2010.07.051 PMID: 20678503
- Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006; 108(9): 3068-71. doi: 10.1182/blood-2006-01-012369 PMID: 16849646
- Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006; 1(1): e116. doi: 10.1371/journal.pone.0000116 PMID: 17205120
- Chan LS, Yue PYK, Mak NK, Wong RNS. Role of MicroRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009; 38(4): 370-7. doi: 10.1016/j.ejps.2009.08.008 PMID: 19733659
- Özcan S. Minireview: MicroRNA function in pancreatic β cells. Mol Endocrinol 2014; 28(12): 1922-33. doi: 10.1210/me.2014-1306 PMID: 25396300
- Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012; 287(37): 31155-64. doi: 10.1074/jbc.M112.362632 PMID: 22733810
- Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015; 52(3): 523-30. doi: 10.1007/s00592-014-0675-y PMID: 25408296
- Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 2010; 5(5): e10843. doi: 10.1371/journal.pone.0010843 PMID: 20520763
- Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: The minute and miracle molecule moving as a monitor in the genomic galaxy. Curr Drug Targets 2013; 14(10): 1110-7. doi: 10.2174/13894501113149990182 PMID: 23834149
- Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59(4): 978-86. doi: 10.2337/db09-0881 PMID: 20086228
- Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56(10): 2203-12. doi: 10.1007/s00125-013-2993-y PMID: 23842730
- Bagge A, Dahmcke C, Dalgaard L. Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells. Horm Metab Res 2013; 45(6): 463-6. doi: 10.1055/s-0032-1333238 PMID: 23315993
- Hennessy E, Clynes M, Jeppesen PB, ODriscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010; 396(2): 457-62. doi: 10.1016/j.bbrc.2010.04.116 PMID: 20417623
- Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 2014; 6(1): e27754. doi: 10.4161/isl.27754 PMID: 25483877
- Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124(6): 2722-35. doi: 10.1172/JCI73066 PMID: 24789908
- Vergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep 2017; 7(1): 2704. doi: 10.1038/s41598-017-02599-y PMID: 28577337
- Sun Y, Mao Q, Shen C, Wang C, Jia W. Exosomes from β-cells alleviated hyperglycemia and enhanced angiogenesis in islets of streptozotocin-induced diabetic mice. Diabetes Metab Syndr Obes 2019; 12: 2053-64. doi: 10.2147/DMSO.S213400 PMID: 31632115
- Wijesekara N, Zhang L, Kang MH, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012; 61(3): 653-8. doi: 10.2337/db11-0944 PMID: 22315319
- Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013; 33(12): 2724-32. doi: 10.1161/ATVBAHA.113.302004 PMID: 24135019
- Street JM, Koritzinsky EH, Glispie DM, Yuen PST. Urine exosome isolation and characterization. Methods Mol Biol 2017; 1641: 413-23. doi: 10.1007/978-1-4939-7172-5_23 PMID: 28748478
- Yu LL, Zhu J, Liu JX, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res Int 2018; 2018: 1-9. doi: 10.1155/2018/3634563 PMID: 30148165
- Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804. doi: 10.7150/thno.18133 PMID: 28255367
- Foers AD, Chatfield S, Dagley LF, et al. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. J Extracell Vesicles 2018; 7(1): 1490145. doi: 10.1080/20013078.2018.1490145 PMID: 29963299
- La Shu S, Yang Y, Allen CL, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles 2020; 9(1): 1692401. doi: 10.1080/20013078.2019.1692401 PMID: 31807236
- Karttunen J, Heiskanen M, Navarro-Ferrandis V, et al. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J Extracell Vesicles 2019; 8(1): 1555410. doi: 10.1080/20013078.2018.1555410 PMID: 30574280
- Iliescu F. Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines (Basel) 2019; 10(6): 392. doi: 10.3390/mi10060392 PMID: 31212754
- Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8(1): 1609206. doi: 10.1080/20013078.2019.1609206 PMID: 31069028
- Ayers L, Pink R, Carter DRF, Nieuwland R. Clinical requirements for extracellular vesicle assays. J Extracell Vesicles 2019; 8(1): 1593755. doi: 10.1080/20013078.2019.1593755 PMID: 30949310
- Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917-50. doi: 10.1021/acs.chemrev.7b00534 PMID: 29384376
Supplementary files
