Articular Cartilage Injury; Current Status and Future Direction


Cite item

Full Text

Abstract

Today, treatments of cartilage and osteochondral lesions are routine clinical procedures. The avascular and hard-to-self-repair nature of cartilage tissue has posed a clinical challenge for the replacement and reconstruction of damaged cartilage. Treatment of large articular cartilage defects is technically difficult and complex, often accompanied by failure. Articular cartilage cannot repair itself after injury due to a lack of blood vessels, lymph, and nerves. Various treatments for cartilage regeneration have shown encouraging results, but unfortunately, none have been the perfect solution. New minimally invasive and effective techniques are being developed. The development of tissue engineering technology has created hope for articular cartilage reconstruction. This technology mainly supplies stem cells with various sources of pluripotent and mesenchymal stem cells. This article describes the treatments in detail, including types, grades of cartilage lesions, and immune mechanisms in cartilage injuries.

About the authors

Maryam Moradi

School of Public Health, Iran University of Medical Sciences

Email: info@benthamscience.net

Farzad Parvizpour

Iranian Tissue Bank & Research Center,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Zohreh Arabpour

Iranian Tissue Bank & Research Center,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Nikan Zargarzadeh

School of Medicine, Tehran University of Medical Sciences,

Email: info@benthamscience.net

Mahnaz Nazari

Hematology and Oncology Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Heewa Rashnavadi

Medicine School, Tehran University of Medical Sciences

Email: info@benthamscience.net

Farshid Sefat

Department of Biomedical and Electronics Engineering, School of Engineering,, University of Bradford

Email: info@benthamscience.net

Sanaz Dehghani

Iranian Tissue Bank & Research Center,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Marzieh Latifi

Hematology and Oncology Research Center,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Arefeh Jafarian

Iranian Tissue Bank & Research Center,, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhao Z, Fan C, Chen F, et al. Progress in articular cartilage tissue engineering: A review on therapeutic cells and macromolecular scaffolds. Macromol Biosci 2020; 20(2): 1900278. doi: 10.1002/mabi.201900278 PMID: 31800166
  2. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009; 1(6): 461-8. doi: 10.1177/1941738109350438 PMID: 23015907
  3. Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res 1999; 360(360): 159-68. doi: 10.1097/00003086-199903000-00019 PMID: 10101321
  4. Sharifi AM, Moshiri A, Oryan A. Articular cartilage: injury, healing, and regeneration. Curr Orthop Pract 2016; 27(6): 644-65. doi: 10.1097/BCO.0000000000000425
  5. Abdo J, Ortman H. Biologic and synthetic cellular and/or tissue-based products and smart wound dressings/coverings. Surg Clin North Am 2020; 100(4): 741-56. doi: 10.1016/j.suc.2020.05.006 PMID: 32681874
  6. Peters HC, Otto TJ, Enders JT, Jin W, Moed BR, Zhang Z. The protective role of the pericellular matrix in chondrocyte apoptosis. Tissue Eng Part A 2011; 17(15-16): 2017-24. doi: 10.1089/ten.tea.2010.0601 PMID: 21457093
  7. Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017; 36(3): 413-25. doi: 10.1016/j.csm.2017.02.001 PMID: 28577703
  8. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: A template for tissue repair. Clin Orthop Relat Res 2001; 391(391) (Suppl.): S26-33. doi: 10.1097/00003086-200110001-00004 PMID: 11603710
  9. Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39: 25-32. doi: 10.1016/j.matbio.2014.08.009 PMID: 25172825
  10. Antons J, Marascio MGM, Nohava J, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 2018; 29(5): 57. doi: 10.1007/s10856-018-6066-0 PMID: 29728770
  11. Bayliss MT. Proteoglycan structure and metabolism during maturation and ageing of human articular cartilage. Biochem Soc Trans 1990; 18(5): 799-802. doi: 10.1042/bst0180799 PMID: 2083680
  12. Kuiper NJ, Sharma A. A detailed quantitative outcome measure of glycosaminoglycans in human articular cartilage for cell therapy and tissue engineering strategies. Osteoarthritis Cartilage 2015; 23(12): 2233-41. doi: 10.1016/j.joca.2015.07.011 PMID: 26211607
  13. Eyre DR, Weis MA, Wu J-J. Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 2006; 12: 57-63. doi: 10.22203/eCM.v012a07 PMID: 17083085
  14. Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng 2007; 35(5): 363-411. doi: 10.1615/CritRevBiomedEng.v35.i5.20 PMID: 19392643
  15. Bielajew BJ, Donahue RP, Lamkin EK, Hu JC, Hascall VC, Athanasiou KA. Proteomic, mechanical, and biochemical characterization of cartilage development. Acta Biomater 2022; 143: 52-62. doi: 10.1016/j.actbio.2022.02.037 PMID: 35235865
  16. Articular cartilage. Oxford Textbook of Rheumatology. Oxford, New York, Tokyo: Oxford Medical Publications 1998; pp. 405-20.
  17. Fosang AJ, Last K, Knäuper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 1996; 380(1-2): 17-20. doi: 10.1016/0014-5793(95)01539-6 PMID: 8603731
  18. Hardingham T. Cartilage: aggrecan-hyaluronan-link protein aggregates. Science of Hyaluronan Today 1998.
  19. Hardingham T, Tew S, Murdoch A. Tissue engineering: chondrocytes and cartilage. Arthritis Res 2002; 4(Suppl 3)(Suppl. 3): S63-8. doi: 10.1186/ar561 PMID: 12110124
  20. Peretti G. Pathophysiology of cartilage injuries. Orthopedic Sports Medicine. Berlin, Germany: Springer 2011; pp. 49-58. doi: 10.1007/978-88-470-1702-3_5
  21. Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44: 38-50. doi: 10.1016/j.cytogfr.2018.10.002 PMID: 30340925
  22. Meszaros E, Malemud CJ. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis 2012; 3(5): 219-29. doi: 10.1177/2040622312454157 PMID: 23342237
  23. Karpiński R, Krakowski P, Jonak J, Machrowska A, Maciejewski M, Nogalski A. Diagnostics of articular cartilage damage based on generated acoustic signals using ANN-Part I: Femoral-tibial joint. Sensors 2022; 22(6): 2176. doi: 10.3390/s22062176 PMID: 35336346
  24. Wang C, Peng J, Lu S. Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Exp Ther Med 2014; 8(3): 700-6. doi: 10.3892/etm.2014.1811 PMID: 25120585
  25. Yamamoto T, DiCarlo EF, Bullough PG. The prevalence and clinicopathological appearance of extension of osteonecrosis in the femoral head. J Bone Joint Surg Br 1999; 81-B(2): 328-32. doi: 10.1302/0301-620X.81B2.0810328 PMID: 10204945
  26. Boss JH, Misselevich I, Bejar J, Norman D, Zinman C, Reis DN. Experimentally gained insight – based proposal apropos the treatment of osteonecrosis of the femoral head. Med Hypotheses 2004; 62(6): 958-65. doi: 10.1016/j.mehy.2003.12.036 PMID: 15142657
  27. Moskowitz RW. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage 1999; 7(3): 323-4. doi: 10.1053/joca.1998.0181 PMID: 10329315
  28. Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab 2007; 4(1): 21-6. PMID: 22460748
  29. Slattery C, Kweon CY. Classifications in brief: outerbridge classification of chondral lesions. Clin Orthop Relat Res 2018; 476(10): 2101-4. doi: 10.1007/s11999.0000000000000255 PMID: 29533246
  30. Zhou F, Chu L, Liu X, et al. Subchondral trabecular microstructure and articular cartilage damage variations between osteoarthritis and osteoporotic osteoarthritis: A cross-sectional cohort study. Front Med (Lausanne) 2021; 8: 617200. doi: 10.3389/fmed.2021.617200 PMID: 33604349
  31. Sofu H, Oner A, Camurcu Y, Gursu S, Ucpunar H, Sahin V. Predictors of the clinical outcome after arthroscopic partial meniscectomy for acute trauma–related symptomatic medial meniscal tear in patients more than 60 years of age. Arthroscopy 2016; 32(6): 1125-32. doi: 10.1016/j.arthro.2015.11.040 PMID: 26882967
  32. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: A review of 31,516 knee arthroscopies. Arthroscopy 1997; 13(4): 456-60. doi: 10.1016/S0749-8063(97)90124-9 PMID: 9276052
  33. Outerbridge RE. Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg Br 1964; 46-B(2): 179-90. doi: 10.1302/0301-620X.46B2.179 PMID: 14167619
  34. Fang Q, Zhou C, Nandakumar KS. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm 2020; 2020: 1-20. doi: 10.1155/2020/3830212 PMID: 32256192
  35. Wang G, Jing W, Bi Y, et al. Neutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis via caspase signaling pathway. Front Pharmacol 2021; 12: 666162. doi: 10.3389/fphar.2021.666162 PMID: 33935789
  36. Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: A potential target on cartilage regeneration. Front Immunol 2020; 11: 111-. doi: 10.3389/fimmu.2020.00111 PMID: 32117263
  37. Yap HY, Tee S, Wong M, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells 2018; 7(10): 161. doi: 10.3390/cells7100161 PMID: 30304822
  38. Estrada McDermott J, Pezzanite L, Goodrich L, et al. Role of innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals (Basel) 2021; 11(11): 3247. doi: 10.3390/ani11113247 PMID: 34827979
  39. Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140: 23-42. doi: 10.1016/j.actbio.2021.12.006 PMID: 34896634
  40. Kim JR, Yoo J, Kim H. Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. Int J Mol Sci 2018; 19(3): 674. doi: 10.3390/ijms19030674 PMID: 29495538
  41. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2095-128. doi: 10.1016/S0140-6736(12)61728-0 PMID: 23245604
  42. Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2018; 14(11): 674-81. doi: 10.1038/s41584-018-0073-x PMID: 30209413
  43. Osteoporosis in the symptom-complex of osteoarthrosis.
  44. Skrepnik N, Spitzer A, Altman R, Hoekstra J, Stewart J, Toselli R. Assessing the impact of a novel smartphone application compared with standard follow-up on mobility of patients with knee osteoarthritis following treatment with Hylan GF 20: A randomized controlled trial. JMIR Mhealth Uhealth 2017; 5(5): e64. doi: 10.2196/mhealth.7179 PMID: 28487266
  45. Sebbag E, Felten R, Sagez F, Sibilia J, Devilliers H, Arnaud L. The world-wide burden of musculoskeletal diseases: A systematic analysis of the World Health Organization Burden of Diseases Database. Ann Rheum Dis 2019; 78(6): 844-8. doi: 10.1136/annrheumdis-2019-215142 PMID: 30987966
  46. Fuggle NR, Cooper C, Oreffo ROC, et al. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin Exp Res 2020; 32(4): 547-60. doi: 10.1007/s40520-020-01515-1 PMID: 32170710
  47. Goyal D, Keyhani S, Goyal A, Lee EH, Hui JHP, Vaziri AS. Evidence-based status of osteochondral cylinder transfer techniques: A systematic review of level I and II studies. Arthroscopy 2014; 30(4): 497-505. doi: 10.1016/j.arthro.2013.12.023 PMID: 24680310
  48. Medvedeva E, Grebenik E, Gornostaeva S, et al. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 2018; 19(8): 2366. doi: 10.3390/ijms19082366 PMID: 30103493
  49. Saris D, Price A, Widuchowski W, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture. Am J Sports Med 2014; 42(6): 1384-94. doi: 10.1177/0363546514528093 PMID: 24714783
  50. Buckwalter JA. Articular cartilage: Injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28(4): 192-202. doi: 10.2519/jospt.1998.28.4.192 PMID: 9785255
  51. Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on intra-tissue strains in the surrounding and opposing cartilage. Biorheology 2008; 45(3-4): 193-207. doi: 10.3233/BIR-2008-0475 PMID: 18836224
  52. Schinhan M, Gruber M, Vavken P, et al. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 2012; 30(2): 214-20. doi: 10.1002/jor.21521 PMID: 21818770
  53. Marcacci M, Filardo G, Kon E. Treatment of cartilage lesions: What works and why? Injury 2013; 44 (Suppl. 1): S11-5. doi: 10.1016/S0020-1383(13)70004-4 PMID: 23351863
  54. Browne JE, Branch TP. Surgical alternatives for treatment of articular cartilage lesions. J Am Acad Orthop Surg 2000; 8(3): 180-9. doi: 10.5435/00124635-200005000-00005 PMID: 10874225
  55. Grieshober JA, Stanton M, Gambardella R. Debridement of articular cartilage: The natural course. Sports Med Arthrosc Rev 2016; 24(2): 56-62. doi: 10.1097/JSA.0000000000000108 PMID: 27135287
  56. Magnuson PB. Joint debridement: Sur-gical treatment of degenerative arthritis. Surg Gynecol Obstet 1941; 73: 1-9.
  57. Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy 2006; 22(12): 1312-7. doi: 10.1016/j.arthro.2006.06.008 PMID: 17157730
  58. Kaplan LD, Royce B, Meier B, et al. Mechanical chondroplasty: early metabolic consequences in vitro. Arthroscopy 2007; 23(9): 923-9. doi: 10.1016/j.arthro.2007.04.005 PMID: 17868830
  59. Hubbard MJS. Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br 1996; 78-B(2): 217-9. doi: 10.1302/0301-620X.78B2.0780217 PMID: 8666628
  60. Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in National Football League athletes. Am J Sports Med 2015; 43(3): 663-8. doi: 10.1177/0363546514562752 PMID: 25573391
  61. Lotto ML, Wright EJ, Appleby D, Zelicof SB, Lemos MJ, Lubowitz JH. Ex vivo comparison of mechanical versus thermal chondroplasty: Assessment of tissue effect at the surgical endpoint. Arthroscopy 2008; 24(4): 410-5. doi: 10.1016/j.arthro.2007.09.018 PMID: 18375272
  62. Kosy JD, Schranz PJ, Toms AD, Eyres KS, Mandalia VI. The use of radiofrequency energy for arthroscopic chondroplasty in the knee. Arthroscopy 2011; 27(5): 695-703. doi: 10.1016/j.arthro.2010.11.058 PMID: 21663725
  63. Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization. Clin Orthop Relat Res 1979; &NA;(144): 74-83. doi: 10.1097/00003086-197910000-00014 PMID: 535254
  64. Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Oper Tech Orthop 1997; 7(4): 300-4. doi: 10.1016/S1048-6666(97)80033-X
  65. Rodrigo J. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 1994; 7: 109-16.
  66. Bhosale AM, Richardson JB. Articular cartilage: Structure, injuries and review of management. Br Med Bull 2008; 87(1): 77-95. doi: 10.1093/bmb/ldn025 PMID: 18676397
  67. Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993; 9(3): 318-21. doi: 10.1016/S0749-8063(05)80428-1 PMID: 8323618
  68. Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 1998; 21(7): 751-6. doi: 10.3928/0147-7447-19980701-04 PMID: 9672912
  69. Bentley G, Biant LC, Carrington RWJ, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003; 85-B(2): 223-30. doi: 10.1302/0301-620X.85B2.13543 PMID: 12678357
  70. Brittberg M, Faxén E, Peterson L. Carbon fiber scaffolds in the treatment of early knee osteoarthritis. A prospective 4-year followup of 37 patients. Clin Orthop Relat Res 1994; (307): 155-64. PMID: 7924028
  71. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br 1990; 72-B(6): 1003-7. doi: 10.1302/0301-620X.72B6.2246280 PMID: 2246280
  72. Jackson JP, Waugh W. Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 1961; 43-B(4): 746-51. doi: 10.1302/0301-620X.43B4.746 PMID: 14036496
  73. Blount WP, Zeier F. Control of bone length. JAMA 1952; 148(6): 451-7. doi: 10.1001/jama.1952.02930060033010 PMID: 14888503
  74. Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev 2020; 5(3): 156-63. doi: 10.1302/2058-5241.5.190031 PMID: 32296549
  75. Cook JL, Stoker AM, Stannard JP, et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 2014; 472(11): 3404-14. doi: 10.1007/s11999-014-3773-9 PMID: 25030100
  76. Wang Z, Le H, Wang Y, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11: 317-38. doi: 10.1016/j.bioactmat.2021.10.002 PMID: 34977434
  77. de Windt TS, Vonk LA, Slaper-Cortenbach ICM, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 2017; 35(1): 256-64. doi: 10.1002/stem.2475 PMID: 27507787
  78. Sánchez-Téllez D, Téllez-Jurado L, Rodríguez-Lorenzo L. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers (Basel) 2017; 9(12): 671. doi: 10.3390/polym9120671 PMID: 30965974

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers