Mesenchymal Stem Cells-Conditioned Medium; An Effective Cell-Free Therapeutic Option for in vitro Maturation of Oocytes


Cite item

Full Text

Abstract

Infertility is a major reproductive health issue worldwide. One of the main problems in infertile women is the failure to generate or release a mature egg. Therefore, the development of new technologies for in vitro generation or induction of mature oocytes can improve various ART procedures. Recently, stem cell-based therapy has opened a new window for several pathological complications. Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity to self-renew and differentiate into the mesodermal lineage. MSCs contain various bioactive molecules which are involved in the regulation of key biological processes. They can secret multiple paracrine factors, such as VEGF, IGF, HGF, EGF, and FGF to stimulate egg maturation. Although MSCs represent a promising source for cell therapy, the potential risk of tumor development reduces their clinical applications. Recent studies have suggested that the supernatant or conditioned medium of MSCs also contains similar components and regulates the oocyte behavior. The MSC-conditioned medium can eliminate the safety concerns associated with MSC transplantation and avoid rejection problems. Although MSC and MSC-CM could improve oocyte quality, ovarian function, and fertility, these improvements have not yet been demonstrated in clinical trials in humans. Hereby, we summarized recent research findings of MSCs-derived conditioned medium in in vitro development of immature oocytes.

About the authors

Fatemeh Pour

Department of Obstetrics and Gynecology, School of Medicine,, Hamadan University of Medical Sciences

Email: info@benthamscience.net

Mahrokh Gale Dari

Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Mohammad Ramazii

, Kerman University of Medical Sciences, University of Kerman

Email: info@benthamscience.net

Mona Keivan

Fertility and Infertility Research Center, Kermanshah University of Medical Sciences

Email: info@benthamscience.net

Maryam Farzaneh

Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Simionescu G, Doroftei B, Maftei R, et al. The complex relationship between infertility and psychological distress. Exp Ther Med 2021; 21(4): 306. doi: 10.3892/etm.2021.9737 PMID: 33717249
  2. Zhao N, Sheng M, Wang X, Li Y, Farzaneh M. Differentiation of human induced pluripotent stem cells into male germ cells. Curr Stem Cell Res Ther 2021; 16(5): 622-9. doi: 10.2174/1574888X15666200705214223 PMID: 32628592
  3. Wang G, Farzaneh M. Mini review; differentiation of human pluripotent stem cells into oocytes. Curr Stem Cell Res Ther 2020; 15(4): 301-7. doi: 10.2174/1574888X15666200116100121 PMID: 31951188
  4. Akhondi MM, Ranjbar F, Shirzad M, Behjati Ardakani Z, Kamali K, Mohammad K. Practical difficulties in estimating the prevalence of primary infertility in Iran. Int J Fertil Steril 2019; 13(2): 113-7. PMID: 31037921
  5. Zhang Y, Song Y, Xia X, et al. A retrospective study on IVF/ICSI outcomes in patients with persisted positive of anticardiolipin antibody: Effects of low-dose aspirin plus low molecular weight heparin adjuvant treatment. J Reprod Immunol 2022; 153: 103674. doi: 10.1016/j.jri.2022.103674 PMID: 35882076
  6. Liang S, Chen Y, Wang Q, et al. Prevalence and associated factors of infertility among 20–49 year old women in Henan Province, China. Reprod Health 2021; 18(1): 254. doi: 10.1186/s12978-021-01298-2 PMID: 34930324
  7. Madziyire MG, Magwali TL, Chikwasha V, Mhlanga T. The causes of infertility in women presenting to gynaecology clinics in Harare, Zimbabwe; a cross sectional study. Fertil Res Pract 2021; 7(1): 1. doi: 10.1186/s40738-020-00093-0 PMID: 33397485
  8. Kanellopoulos D, Karagianni D. PErgialiotis V, Nikiteas N, Lazaris AC, Iliopoulos D. Endometriosis and subfertility: A literature review. Maedica. J Clin Med 2022; 17(2): 458-63.
  9. Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161(2): R13-35. doi: 10.1530/REP-20-0422 PMID: 33170803
  10. Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells 2020; 9(3): 557. doi: 10.3390/cells9030557
  11. Galvão A, Segers I, Smitz J, Tournaye H, De Vos M. In vitro maturation (IVM) of oocytes in patients with resistant ovary syndrome and in patients with repeated deficient oocyte maturation. J Assist Reprod Genet 2018; 35(12): 2161-71. doi: 10.1007/s10815-018-1317-z PMID: 30238176
  12. Julania S, Walls ML, Hart R. The place of in vitro maturation in PCO/PCOS. Int J Endocrinol 2018; 2018: 5750298. doi: 10.1155/2018/5750298 PMID: 30154841
  13. La X, Zhao J, Wang Z. Clinical application of in vitro maturation of oocytes. IntechOpen 2019; 2019: 87773. doi: 10.5772/intechopen.87773
  14. Karavani G, Wasserzug-Pash P, Mordechai-Daniel T, Bauman D, Klutstein M, Imbar T. Age-dependent in vitro maturation efficacy of human oocytes – is there an optimal age? Front Cell Dev Biol 2021; 9: 667682. doi: 10.3389/fcell.2021.667682 PMID: 34222236
  15. Wang J, Liu C, Fujino M, et al. Stem cells as a resource for treatment of infertility-related diseases. Curr Mol Med 2019; 19(8): 539-46. doi: 10.2174/1566524019666190709172636 PMID: 31288721
  16. Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19. doi: 10.21037/sci.2019.06.04 PMID: 31463312
  17. Jung D, Xiong J, Ye M, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8(1): 15680. doi: 10.1038/ncomms15680 PMID: 28604658
  18. Gulimiheranmu M, Wang X, Zhou J. Advances in female germ cell induction from pluripotent stem cells. Stem Cells Int 2021; 2021: 8849230. doi: 10.1155/2021/8849230
  19. Zolfaghar M, Fathi R, Naji T. Differentiation of human Wharton’s jelly mesenchymal stem cells into oocyte-like cells by follicular fluid. J Mazandaran Univ Med Sci 2017; 27: 1-11.
  20. Sheikholeslami A, Kalhor N, Sheykhhasan M, Jannatifar R, Sahraei SS. Evaluating differentiation potential of the human menstrual blood-derived stem cells from infertile women into oocyte-like cells. Reprod Biol 2021; 21(1): 100477. doi: 10.1016/j.repbio.2020.100477 PMID: 33401233
  21. Jozkowiak M, Hutchings G, Jankowski M, et al. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs—A review based on cellular and molecular knowledge. Cells 2020; 9(6): 1418. doi: 10.3390/cells9061418 PMID: 32517362
  22. Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341. doi: 10.1186/s13287-019-1455-y PMID: 31753034
  23. Charitos IA, Ballini A, Cantore S, et al. Stem Cells: A historical review about biological, religious, and ethical issues. Stem Cells Int 2021; 2021: 9978837. doi: 10.1155/2021/9978837
  24. Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal stem cells beyond regenerative medicine. Front Cell Dev Biol 2020; 8: 72. doi: 10.3389/fcell.2020.00072 PMID: 32133358
  25. de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol (Lausanne) 2021; 12: 631463. doi: 10.3389/fendo.2021.631463 PMID: 33716982
  26. Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219: 34-45. doi: 10.1016/j.imlet.2019.12.011 PMID: 31917251
  27. Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human mesenchymal stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(4): 340-8. doi: 10.2174/1574888X15666200316164051 PMID: 32178619
  28. Moghadam MT, Moghadam ARE, Saki G, Nikbakht R. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cell derived from human follicular fluid to oocyte like cell. Cell Biol Int 2021; 45(1): 127-39.
  29. Dalman A, Totonchi M, Rezazadeh Valojerdi M. Human ovarian theca-derived multipotent stem cells have the potential to differentiate into oocyte-like cells in vitro. Cell J 2019; 20(4): 527-36. PMID: 30123999
  30. Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 2018; 33(1): 46-52. doi: 10.1007/s12291-017-0641-x PMID: 29371769
  31. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536. doi: 10.1155/2019/9628536 PMID: 31093291
  32. Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 2015; 8(1): 54-68. doi: 10.15283/ijsc.2015.8.1.54 PMID: 26019755
  33. Ho CH, Lan CW, Liao CY, Hung SC, Li HY, Sung YJ. Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. J Chin Med Assoc 2018; 81(3): 268-76. doi: 10.1016/j.jcma.2017.03.013 PMID: 28882732
  34. Akbari H, Eftekhar Vaghefi S, Shahedi A, et al. Mesenchymal stem cell-conditioned medium modulates apoptotic and stress-related gene expression, ameliorates maturation and allows for the development of immature human oocytes after artificial activation. Genes (Basel) 2017; 8(12): 371. doi: 10.3390/genes8120371 PMID: 29292728
  35. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2): e00191. doi: 10.1042/BSR20150025 PMID: 25797907
  36. Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): 264. doi: 10.18295/squmj.2018.18.03.002 PMID: 30607265
  37. Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256: 118002. doi: 10.1016/j.lfs.2020.118002 PMID: 32585248
  38. Wei ZJ, Wang QQ, Cui ZG, Inadera H, Jiang X, Wu CA. Which is the most effective one in knee osteoarthritis treatment from mesenchymal stem cells obtained from different sources? —A systematic review with conventional and network meta-analyses of randomized controlled trials. Ann Transl Med 2021; 9(6): 452-2. doi: 10.21037/atm-20-5116 PMID: 33850849
  39. Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2012; 2(3): 154-62. PMID: 23738292
  40. Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74. doi: 10.4252/wjsc.v11.i6.347 PMID: 31293717
  41. Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A, Martin I. Challenges toward the identification of predictive markers for human mesenchymal stromal cells chondrogenic potential. Stem Cells Transl Med 2019; 8(2): 194-204. doi: 10.1002/sctm.18-0147 PMID: 30676001
  42. Poggi A, Zocchi MR. Immunomodulatory properties of mesenchymal stromal cells: still unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14(4): 344-50. doi: 10.2174/1574888X14666181205115452 PMID: 30516112
  43. Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624. doi: 10.1155/2018/3057624 PMID: 30013600
  44. Huang CC, Kang M, Narayanan R, et al. Evaluating the endocytosis and lineage-specification properties of mesenchymal stem cell derived extracellular vesicles for targeted therapeutic applications. Front Pharmacol 2020; 11: 163. doi: 10.3389/fphar.2020.00163 PMID: 32194405
  45. Nogueira-Pedro A, Makiyama EN, Segreto HRC, Fock RA. The role of low-dose radiation in association with TNF-α on immunomodulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 2021; 17(3): 968-80. doi: 10.1007/s12015-020-10084-9 PMID: 33206285
  46. da Costa Gonçalves F, Grings M, Nunes NS, et al. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39(4): 613-22. doi: 10.1007/s10529-016-2272-3 PMID: 28032203
  47. Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep (Amst) 2021; 31: e00658. doi: 10.1016/j.btre.2021.e00658 PMID: 34377681
  48. Badawy A, Sobh M, Ahdy M, Abdelhafez M. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9: 441-7. doi: 10.2147/IJWH.S134074 PMID: 28670143
  49. Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci 2019; 20(18): 4597. doi: 10.3390/ijms20184597 PMID: 31533317
  50. Ragni E, Perucca Orfei C, De Luca P, et al. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res Ther 2020; 11(1): 165. doi: 10.1186/s13287-020-01677-9 PMID: 32345351
  51. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852. doi: 10.3390/ijms18091852 PMID: 28841158
  52. Haryadi D, Sadewa AH, Mubarika S, Dasuki D. The potential application of conditioned media-mesenchymal stem cells on human oocyte maturation in assisted reproductive technology: a quasi- experimental based-study at Dr Sardjito General Hospital, Yogyakarta, Indonesia. 2019.
  53. Jiao W, Mi X, Qin Y, Zhao S. Stem cell transplantation improves ovarian function through paracrine mechanisms. Curr Gene Ther 2020; 20(5): 347-55. doi: 10.2174/1566523220666200928142333 PMID: 32988352
  54. Mi X, Jiao W, Yang Y, Qin Y, Chen ZJ, Zhao S. HGF secreted by mesenchymal stromal cells promotes primordial follicle activation by increasing the activity of the pi3k-akt signaling pathway. Stem Cell Rev Rep 2022; 18(5): 1834-50. doi: 10.1007/s12015-022-10335-x PMID: 35089464
  55. Zhao Y, Chen S, Su P, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int 2019; 2019: 9071720. doi: 10.1155/2019/9071720 PMID: 31885630
  56. Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. Reprod Med Biol 2021; 20(1): 13-9. doi: 10.1002/rmb2.12339 PMID: 33488279
  57. Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-derived mesenchymal stem cells: A promising tool in the treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147: 103363. doi: 10.1016/j.jri.2021.103363 PMID: 34450435
  58. Jia Y, Shi X, Xie Y, Xie X, Wang Y, Li S. Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial. Stem Cell Res Ther 2017; 8(1): 152. doi: 10.1186/s13287-017-0604-4 PMID: 28646900
  59. Asgharzadeh S, Mirshokraei P, Hassanpour H, Ahmadi E, Nazari H. The effect of mesenchymal stem cells as co-culture in in vitro nuclear maturation of ovine oocytes. Anim Sci Pap Rep 2015; 33: 223-32.
  60. Maldonado M, Huang T, Chen J, Zhong Y. Differentiation potential of human Wharton’s jelly-derived mesenchymal stem cells and paracrine signaling interaction contribute to improve the in vitro maturation of mouse cumulus oocyte complexes. Stem Cells Int 2018; 2018: 7609284. doi: 10.1155/2018/7609284 PMID: 30405722
  61. Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in female reproductive diseases. Front Endocrinol (Lausanne) 2021; 12: 665645. doi: 10.3389/fendo.2021.665645 PMID: 34248842
  62. Ling B, Feng DQ, Zhou Y, Gao T, Wei HM, Tian ZG. Effect of conditioned medium of mesenchymal stem cells on the in vitro maturation and subsequent development of mouse oocyte. Braz J Med Biol Res 2008; 41(11): 978-85. doi: 10.1590/S0100-879X2008005000053 PMID: 19039379
  63. Ghiasi M, Fazaely H, Asaii E, Sheykhhasan M. In vitro maturation of human oocytes using conditioned medium of mesenchymal stem cells and formation of embryo by use of ICSI. Vitro 2014; 41: 978-85.
  64. Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media. J Cell Biochem 2018; 119(12): 10365-75. doi: 10.1002/jcb.27380 PMID: 30171726
  65. Yang W, Zhang J, Xu B, et al. HucMSC-Derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther 2020; 28(4): 1200-13. doi: 10.1016/j.ymthe.2020.02.003 PMID: 32097602
  66. Lee SH. Human adipose-derived stem cells’ paracrine factors in conditioned medium can enhance porcine oocyte maturation and subsequent embryo development. Int J Mol Sci 2021; 22(2): 579. doi: 10.3390/ijms22020579 PMID: 33430095
  67. Hatırnaz Ş, Ata B, Saynur Hatırnaz E, et al. Oocyte in vitro maturation: A sytematic review. J Turkish Soc Obs Gynecol 2018; 15(2): 112-25. doi: 10.4274/tjod.23911 PMID: 29971189
  68. Sfakianoudis K, Rapani A, Grigoriadis S, et al. Novel approaches in addressing ovarian insufficiency in 2019: Are we there yet? Cell Transplant 2020; 29: 0963689720926154. doi: 10.1177/0963689720926154 PMID: 32686983
  69. Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: A systematic review. Arch Med Res 2021; 52(1): 93-101. doi: 10.1016/j.arcmed.2020.08.006 PMID: 32977984
  70. Pan Q, Li Y, Li Y, et al. Local administration of allogeneic or autologous bone marrow-derived mesenchymal stromal cells enhances bone formation similarly in distraction osteogenesis. Cytotherapy 2021; 23(7): 590-8. doi: 10.1016/j.jcyt.2020.12.005 PMID: 33546925
  71. Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11(1): 187. doi: 10.1186/s13578-021-00698-y PMID: 34727974
  72. Mezey É. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl Med 2022; 11(2): 114-34. doi: 10.1093/stcltm/szab020 PMID: 35298659
  73. Coelho A, Alvites RD, Branquinho MV, Guerreiro SG, Maurício AC. Mesenchymal stem cells (MSCs) as a potential therapeutic strategy in COVID-19 patients: Literature research. Front Cell Dev Biol 2020; 8: 602647. doi: 10.3389/fcell.2020.602647 PMID: 33330498
  74. Mohamed S, Issa H, Fahmy S, Khattab RAR. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, cord blood and matrix. Egyptian J Lab Med 2020; 32: 63. doi: 10.4103/ejolm.ejolm_8_21
  75. Mastrolia I, Foppiani EM, Murgia A, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med 2019; 8(11): 1135-48. doi: 10.1002/sctm.19-0044 PMID: 31313507
  76. Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45. doi: 10.7150/ijms.21666 PMID: 29333086
  77. Poliwoda S, Noor N, Downs E, et al. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia) 2022; 14(3): 37498. doi: 10.52965/001c.37498 PMID: 36034728
  78. Wragg NM, Tampakis D, Stolzing A. Cryopreservation of mesenchymal stem cells using medical grade ice nucleation inducer. Int J Mol Sci 2020; 21(22): 8579. doi: 10.3390/ijms21228579 PMID: 33203028
  79. Liu RR, Danesh H. Adult mesenchymal stem cell collection and banking. In: Regenerative Medicine. Cham: Springer 2023; pp. 81-8. doi: 10.1007/978-3-030-75517-1_8
  80. Jovic D, Yu Y, Wang D, et al. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev Rep 2022; 18(5): 1525-45. doi: 10.1007/s12015-022-10369-1 PMID: 35344199
  81. Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013; 8(8): e72604. doi: 10.1371/journal.pone.0072604 PMID: 23991127
  82. Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12(1): 192. doi: 10.1186/s13287-021-02265-1 PMID: 33736695
  83. Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10(1): 87. doi: 10.1186/s13287-019-1185-1 PMID: 30867069

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers