Role of Extracellular Vesicles in Stem Cell Therapy


Cite item

Full Text

Abstract

Burn wounds are a major source of morbidity and mortality in both the military and civilian settings. Research about the pathophysiology of thermal injury has revealed possible interventions that can aid this process to reduce scarring and wound contracture. Bone Marrow derived Mesenchymal Stem Cells (BM-MSCs) have been an exciting topic in research for many years. They have been shown to facilitate wound healing and tissue regeneration, two areas that are vital in the healing process, especially in burn wounds. More recently the discovery of Extracellular Vesicles (EVs) has allowed us to further characterize the immunomodulatory roles and understand the cellular pathways implicated in wound healing. The purpose of this review is to discuss the role of EVs in wound healing, and to propose that EVs are the main mechanism that deliver cellular materials to target cells to coordinate wound healing following tissue injury.

About the authors

Michael Kaiser

Department of Dermatology and Cutaneous Surgery, Miller School of Medicine,, University of Miami,

Author for correspondence.
Email: info@benthamscience.net

Luis Rodriguez-Menocal

Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami

Email: info@benthamscience.net

Evangelos Badiavas

Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami

Email: info@benthamscience.net

References

  1. Champion HR, Bellamy RF, Roberts CP, Leppaniemi A. A profile of combat injury. J Trauma 2003; 54(5) (Suppl.): S13-9. PMID: 12768096
  2. Burn incidence fact sheet. American Burn Association 2016. https://ameriburn.org/who-we-are/
  3. Hudson DA, Renshaw A. An algorithm for the release of burn contractures of the extremities. Burns 2006; 32(6): 663-8. doi: 10.1016/j.burns.2006.02.009 PMID: 16905261
  4. Richard R, Baryza MJ, Carr JA, et al. Burn rehabilitation and research: Proceedings of a consensus summit. J Burn Care Res 2009; 30(4): 543-73. doi: 10.1097/BCR.0b013e3181adcd93 PMID: 19506486
  5. Broughton G II, Janis JE, Attinger CE. A brief history of wound care. Plast Reconstr Surg 2006; 117(7) (Suppl.): 6S-11S. doi: 10.1097/01.prs.0000225429.76355.dd PMID: 16799371
  6. Schmauss D, Rezaeian F, Finck T, Machens HG, Wettstein R, Harder Y. Treatment of secondary burn wound progression in contact burns-a systematic review of experimental approaches. J Burn Care Res 2015; 36(3): e176-89. doi: 10.1097/BCR.0000000000000131 PMID: 25094011
  7. Jackson DM. The diagnosis of the depth of burning. Br J Surg 1953; 40(164): 588-96. doi: 10.1002/bjs.18004016413 PMID: 13059343
  8. Regas FC, Ehrlich HP. Elucidating the vascular response to burns with a new rat model. J Trauma 1992; 32(5): 557-63. doi: 10.1097/00005373-199205000-00004 PMID: 1588642
  9. Işik S, Şahin U, Ilgan S, Güler M, Günalp B, Selmanpakoğlu N. Saving the zone of stasis in burns with recombinant tissue-type plasminogen activator (r-tPA): An experimental study in rats. Burns 1998; 24(3): 217-23. doi: 10.1016/S0305-4179(97)00116-2 PMID: 9677024
  10. Shupp JW, Nasabzadeh TJ, Rosenthal DS, Jordan MH, Fidler P, Jeng JC. A review of the local pathophysiologic bases of burn wound progression. J Burn Care Res 2010; 31(6): 849-73. doi: 10.1097/BCR.0b013e3181f93571 PMID: 21105319
  11. Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burns and trauma: New approaches to treatment. PLoS Med 2007; 4(9): e234. doi: 10.1371/journal.pmed.0040234 PMID: 17803351
  12. Harrison CA, MacNeil S. The mechanism of skin graft contraction: An update on current research and potential future therapies. Burns 2008; 34(2): 153-63. doi: 10.1016/j.burns.2007.08.011 PMID: 18226455
  13. Mendez-Eastman S. Guidelines for using negative pressure wound therapy. Adv Skin Wound Care 2001; 14(6): 314-22. doi: 10.1097/00129334-200111000-00015 PMID: 11794443
  14. Kantak NA, Mistry R, Halvorson EG. A review of negative-pressure wound therapy in the management of burn wounds. Burns 2016; 42(8): 1623-33. doi: 10.1016/j.burns.2016.06.011 PMID: 27378361
  15. Anzarut A, Olson J, Singh P, Rowe BH, Tredget EE. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: A meta-analysis. J Plast Reconstr Aesthet Surg 2009; 62(1): 77-84. doi: 10.1016/j.bjps.2007.10.052 PMID: 18249046
  16. Friedstat JS, Hultman CS. Hypertrophic burn scar management: What does the evidence show? A systematic review of randomized controlled trials. Ann Plast Surg 2014; 72(6): S198-201. doi: 10.1097/SAP.0000000000000103 PMID: 24835874
  17. Bloemen MC, van der Veer WM, Ulrich MM, van Zuijlen PP, Niessen FB, Middelkoop E. Prevention and curative management of hypertrophic scar formation. Burns 2009; 35(4): 463-75. doi: 10.1016/j.burns.2008.07.016 PMID: 18951704
  18. Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing--review of the literature. Burns 2005; 31(8): 944-56. doi: 10.1016/j.burns.2005.08.023 PMID: 16274932
  19. Sheridan RL, Tompkins RG. What’s new in burns and metabolism. J Am Coll Surg 2004; 198(2): 243-63. doi: 10.1016/j.jamcollsurg.2003.11.007 PMID: 14759783
  20. Mansilla E. Marın G, Drago H, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: New evidence for their use in regenerative medicine. Transplantation proceedings: 2006. Elsevier 2006; pp. 967-9. doi: 10.1016/j.transproceed.2006.02.053
  21. Jung KJ, Lee GW, Park CH, et al. Mesenchymal stem cells decrease oxidative stress in the bowels of Interleukin-10 knockout mice. Gut Liver 2020; 14(1): 100-7. doi: 10.5009/gnl18438 PMID: 31158947
  22. Jiang D, Muschhammer J, Qi Y, et al. Suppression of neutrophil‐mediated tissue damage-a novel skill of mesenchymal stem cells. Stem Cells 2016; 34(9): 2393-406. doi: 10.1002/stem.2417 PMID: 27299700
  23. Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020; 16(1): 28-37. doi: 10.1080/15548627.2019.1630223 PMID: 31185790
  24. Rasulov MF, Vasilchenkov AV, Onishchenko NA, et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 2005; 139(1): 141-4. doi: 10.1007/s10517-005-0232-3 PMID: 16142297
  25. Clover AJ, Kumar AH, Isakson M, et al. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing. Burns 2015; 41(3): 548-57. doi: 10.1016/j.burns.2014.08.009 PMID: 25234958
  26. Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. Burns Trauma 2021; 9: b002. doi: 10.1093/burnst/tkab002 PMID: 34212055
  27. Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2014; 22(3): 313-25. doi: 10.1111/wrr.12173 PMID: 24844331
  28. Yoshikawa T, Mitsuno H, Nonaka I, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3): 860-77. doi: 10.1097/01.prs.0000299922.96006.24 PMID: 18317135
  29. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28. doi: 10.1038/nrm.2017.125 PMID: 29339798
  30. Bray ER, Oropallo AR, Grande DA, Kirsner RS, Badiavas EV. Extracellular vesicles as therapeutic tools for the treatment of chronic wounds. Pharmaceutics 2021; 13(10): 1543. doi: 10.3390/pharmaceutics13101543 PMID: 34683836
  31. Chaput N, Théry C. Exosomes: Immune properties and potential clinical implementations. Seminars in immunopathology: 2011. Springer 2011; p. 419-40. doi: 10.1007/s00281-010-0233-9
  32. Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4(1): 27066. doi: 10.3402/jev.v4.27066 PMID: 25979354
  33. Abels ER, Breakefield XO. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36(3): 301-12. doi: 10.1007/s10571-016-0366-z PMID: 27053351
  34. Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol 2018; 46(8): 1659-70. PMID: 29141446
  35. Ban J-J, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 2015; 461(1): 76-9. doi: 10.1016/j.bbrc.2015.03.172 PMID: 25849885
  36. Guo S, Debbi L, Zohar B, et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett 2021; 21(6): 2497-504. doi: 10.1021/acs.nanolett.0c04834 PMID: 33709717
  37. Bai Y, Han YD, Yan XL, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem Biophys Res Commun 2018; 500(2): 310-7. doi: 10.1016/j.bbrc.2018.04.065 PMID: 29654765
  38. Hoang DH, Nguyen TD, Nguyen H-P, et al. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum-and xeno-free condition. Front Mol Biosci 2020; 7: 119. doi: 10.3389/fmolb.2020.00119 PMID: 32671095
  39. Xu R, Greening DW, Zhu H-J, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: Toward clinical application. J Clin Invest 2016; 126(4): 1152-62. doi: 10.1172/JCI81129 PMID: 27035807
  40. Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Front Bioeng Biotechnol 2020; 8: 146. doi: 10.3389/fbioe.2020.00146 PMID: 32195233
  41. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; 30(1) doi: 10.1002/0471143030.cb0322s30
  42. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635-47. doi: 10.1089/scd.2014.0316 PMID: 25867197
  43. McBride JD, Rodriguez-Menocal L, Guzman W, Candanedo A, Garcia-Contreras M, Badiavas EV. Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev 2017; 26(19): 1384-98. doi: 10.1089/scd.2017.0087 PMID: 28679315
  44. McBride JD, Rodriguez-Menocal L, Candanedo A, Guzman W, Garcia-Contreras M, Badiavas EV. Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. Biochimie 2018; 155: 50-8. doi: 10.1016/j.biochi.2018.04.007 PMID: 29653141
  45. Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13(9): 1738-55. doi: 10.1002/term.2914 PMID: 31216380
  46. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23. doi: 10.1038/mt.2015.44 PMID: 25868399
  47. Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 2017; 264: 112-26. doi: 10.1016/j.jconrel.2017.08.022 PMID: 28837823
  48. Zhu YZ, Hu X, Zhang J, Wang ZH, Wu S, Yi YY. Extracellular vesicles derived from human adipose-derived stem cell prevent the formation of hypertrophic scar in a rabbit model. Ann Plast Surg 2020; 84(5): 602-7. doi: 10.1097/SAP.0000000000002357 PMID: 32282497
  49. McBride JD, Rodriguez-Menocal L, Guzman W, et al. Proteomic analysis of bone marrow-derived mesenchymal stem cell extracellular vesicles from healthy donors: Implications for proliferation, angiogenesis, Wnt signaling, and the basement membrane. Stem Cell Res Ther 2021; 12(1): 328. doi: 10.1186/s13287-021-02405-7 PMID: 34090527
  50. Chen M, Marinkovich MP, Veis A, et al. Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J Biol Chem 1997; 272(23): 14516-22. doi: 10.1074/jbc.272.23.14516 PMID: 9169408
  51. Guerra L, Odorisio T, Zambruno G, Castiglia D. Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol 2017; 63: 1-10. doi: 10.1016/j.matbio.2017.01.002 PMID: 28126522
  52. Abreu-Velez AM, Howard MS. Collagen IV in normal skin and in pathological processes. N Am J Med Sci 2012; 4(1): 1-8. doi: 10.4103/1947-2714.92892 PMID: 22393540
  53. Desai RA, Gao L, Raghavan S, Liu WF, Chen CS. Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 2009; 122(Pt 7): 905-11. doi: 10.1242/jcs.028183 PMID: 19258396
  54. Cabral J, Ryan AE, Griffin MD, Ritter T. Extracellular vesicles as modulators of wound healing. Adv Drug Deliv Rev 2018; 129: 394-406. doi: 10.1016/j.addr.2018.01.018 PMID: 29408181
  55. Dauer DJ, Ferraro B, Song L, et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 2005; 24(21): 3397-408. doi: 10.1038/sj.onc.1208469 PMID: 15735721
  56. Kano A, Wolfgang MJ, Gao Q, et al. Endothelial cells require STAT3 for protection against endotoxin-induced inflammation. J Exp Med 2003; 198(10): 1517-25. doi: 10.1084/jem.20030077 PMID: 14623907
  57. Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016; 8: 72-82. doi: 10.1016/j.ebiom.2016.04.030 PMID: 27428420
  58. Than UTT, Guanzon D, Leavesley D, Parker T. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 2017; 18(5): 956. doi: 10.3390/ijms18050956 PMID: 28468315
  59. Batsali AK, Georgopoulou A, Mavroudi I, Matheakakis A, Pontikoglou CG, Papadaki HA. The role of bone marrow mesenchymal stem cell derived extracellular vesicles (MSC-EVs) in normal and abnormal hematopoiesis and their therapeutic potential. J Clin Med 2020; 9(3): 856. doi: 10.3390/jcm9030856 PMID: 32245055
  60. Liu S, Jiang L, Li H, et al. Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J Invest Dermatol 2014; 134(10): 2648-57. doi: 10.1038/jid.2014.169 PMID: 24714203
  61. Gomzikova MO, James V, Rizvanov AA. Mitochondria donation by mesenchymal stem cells: Current understanding and mitochondria transplantation strategies. Front Cell Dev Biol 2021; 9: 653322. doi: 10.3389/fcell.2021.653322 PMID: 33898449
  62. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5): 847-56. doi: 10.1038/sj.leu.2404132 PMID: 16453000
  63. Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular vesicle-based therapeutics: Preclinical and clinical investigations. Pharmaceutics 2020; 12(12): 1171. doi: 10.3390/pharmaceutics12121171 PMID: 33271883

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers