The Role of Photobiomodulation on Dental-Derived Stem Cells in Regenerative Dentistry: A Comprehensive Systematic Review


Cite item

Full Text

Abstract

Background:Photobiomodulation therapy involves exposing tissues to light sources, including light-emitting diodes or low-level lasers, which results in cellular function modulation. The molecular mechanism of this treatment is revealed, demonstrating that depending on the light settings utilized, it has the potential to elicit both stimulatory and inhibitory reactions.

Objective:The current systematic review aimed to evaluate the impact of photobiomodulation therapy on dental stem cells and provide an evidence-based conclusion in this regard.

Methods:This systematic review was performed and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) revised guidelines. PICO(S) components were employed to define the inclusion criteria. Web of Science, Scopus, Medline as well as grey literature, and google scholar were searched up to September 2021 to retrieve relevant papers.

Results:Photobiomodulation therapy showed promising effects on the proliferation, viability, and differentiation of dental stem cells. This finding was based on reviewing related articles with a low risk of bias.

Conclusion:Despite the positive benefits of photobiomodulation therapy on dental stem cells, the current data do not provide a definitive conclusion on the best physical parameters for enhancing cell viability, proliferation, and differentiation.

About the authors

Parsa Firoozi

Student Research Committee, Zanjan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Amin Amiri

Student Research Committee,, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Negin Soghli

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Nima Farshidfar

Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Neda Hakimiha

Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Reza Fekrazad

Laser Research Centre in Medical Sciences, AJA University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Baydik O D, Titarenko M A, Sysolyatin P G. Tissue engineering in dentistry. Stomatologii a 2015; 94(2): 65-8. doi: 10.17116/stomat201594265-68
  2. Diniz IMA, Carreira ACO, Sipert CR, et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 2018; 233(6): 4907-18. doi: 10.1002/jcp.26309 PMID: 29215714
  3. Aghali A. Craniofacial bone tissue engineering: Current approaches and potential therapy. Cells 2021; 10(11): 2993. doi: 10.3390/cells10112993 PMID: 34831216
  4. Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations. Head Face Med 2006; 2(1): 12. doi: 10.1186/1746-160X-2-12 PMID: 16700908
  5. Kulkarni S, Meer M, George R. The effect of photobiomodulation on human dental pulp–derived stem cells: Systematic review. Lasers Med Sci 2020; 1889-97. doi: 10.1007/s10103-020-03071-6
  6. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30. doi: 10.1073/pnas.240309797 PMID: 11087820
  7. Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501(1): 193-8. doi: 10.1016/j.bbrc.2018.04.213 PMID: 29730288
  8. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015; 183-4. doi: 10.1089/pho.2015.9848
  9. Karu T. Photobiology of low-power laser effects. Health Phys 1989; 56(5): 691-704. doi: 10.1097/00004032-198905000-00015 PMID: 2651364
  10. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - An update. Dose Response 2011; 9(4): 602-18. doi: 10.2203/dose-response.11-009.Hamblin PMID: 22461763
  11. Abramovitch-Gottlib L, Gross T, Naveh D, et al. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 2005; 20(3-4): 138-46. doi: 10.1007/s10103-005-0355-9 PMID: 16292614
  12. Arany PR, Huang GX, Gadish O, et al. Multi-lineage MSC differentiation via engineered morphogen fields. J Dent Res 2014; 93(12): 1250-7. doi: 10.1177/0022034514542272 PMID: 25143513
  13. Giannelli M, Chellini F, Sassoli C, et al. Photoactivation of bone marrow mesenchymal stromal cells with diode laser: Effects and mechanisms of action. J Cell Physiol 2013; 228(1): 172-81. doi: 10.1002/jcp.24119 PMID: 22628164
  14. Wu JY, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 2013; 5(2): 85-91. doi: 10.1038/ijos.2013.38 PMID: 23788285
  15. Matsui S, Takeuchi H, Tsujimoto Y, Matsushima K. Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J Oral Sci 2008; 50(1): 75-81. doi: 10.2334/josnusd.50.75 PMID: 18403888
  16. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 2008; 40(10): 726-33. doi: 10.1002/lsm.20709 PMID: 19065562
  17. Mvula B, Mathope T, Moore T, Abrahamse H. The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 2008; 23(3): 277-82. doi: 10.1007/s10103-007-0479-1 PMID: 17713825
  18. Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen 2007; 15(6): 866-74. doi: 10.1111/j.1524-475X.2007.00306.x PMID: 18028135
  19. Moreira MS, Velasco IT, Ferreira LS, et al. Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. J Photochem Photobiol B 2011; 105(3): 207-15. doi: 10.1016/j.jphotobiol.2011.09.005 PMID: 22024356
  20. Marques MM, Diniz IMA, de Cara SPHM, et al. Photobiomodulation of dental derived mesenchymal stem cells: A systematic review. Photomed Laser Surg 2016; 34(11): 500-8. doi: 10.1089/pho.2015.4038 PMID: 27058214
  21. Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; A systemic review. J Photochem Photobiol B 2016; 162: 577-82. doi: 10.1016/j.jphotobiol.2016.07.022 PMID: 27475781
  22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(n71) doi: 10.1136/bmj.n71 PMID: 33782057
  23. Yan W, Yaoyao Y, Yao W. Effects of red light-emitting diodes with different light energies on proliferation of human periodontal ligament stem cells and apical papillary stem cells. Chinese J Tissue Eng Res 2019; 23(21): 3289-93. doi: 10.3969/j.issn.2095-4344.1744
  24. Prado MTO, Vitor LLR, Neto NL, et al. Effects of different culture media, cell densities and adhesion periods on stem cells from human exfoliated deciduous teeth after photobiomodulation. Laser Phys Lett 2019; 16(9): 095601. doi: 10.1088/1612-202X/ab3452
  25. Hadis MA, Cooper PR, Milward MR, et al. Development and application of LED arrays for use in phototherapy research. J Biophotonics 2017; 10(11): 1514-25. doi: 10.1002/jbio.201600273 PMID: 28164460
  26. Ali Roozegar M, Pakzad I, Mohammadi TM, Hoshmand B. Analyzing the osteogenic stimulatory effect of the combination dexamethasone and low levelled laser irradiation(L.L.L.I) on periodontal ligament stem cell(PDLSc). Der Pharma Chem 2015; 7(11): 226-30.
  27. Chiang CP, Hsieh O, Tai WC, Chen YJ, Chang PC. Clinical outcomes of adjunctive indocyanine green-diode lasers therapy for treating refractory periodontitis: A randomized controlled trial with in vitro assessment. J Formos Med Assoc 2020; 119(2): 652-9. doi: 10.1016/j.jfma.2019.08.021 PMID: 31543299
  28. Niyazi M, Zibaii MI, Chavoshinezhad S, et al. Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. J Chem Neuroanat 2020; 109: 101821. doi: 10.1016/j.jchemneu.2020.101821 PMID: 32512152
  29. Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 2014; 6(238): 238ra69. doi: 10.1126/scitranslmed.3008234 PMID: 24871130
  30. Yaghoobi MM, Sheikoleslami M, Ebrahimi M. Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. Arch Oral Biol 2020; 117: 104819. doi: 10.1016/j.archoralbio.2020.104819 PMID: 32592933
  31. Pedroni ACF, Diniz IMA, Abe GL, Moreira MS, Sipert CR, Marques MM. Photobiomodulation therapy and vitamin C on longevity of cell sheets of human dental pulp stem cells. J Cell Physiol 2018; 233(10): 7026-35. doi: 10.1002/jcp.26626 PMID: 29744863
  32. Ferreira LS, Diniz IMA, Maranduba CMS, et al. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci 2019; 34(4): 659-66. doi: 10.1007/s10103-018-2637-z PMID: 30250986
  33. Eduardo FP, Bueno DF, de Freitas PM, et al. Stem cell proliferation under low intensity laser irradiation: A preliminary study. Lasers Surg Med 2008; 40(6): 433-8. doi: 10.1002/lsm.20646 PMID: 18649378
  34. Lucaciu O, Crisan B, Hedesiu M, et al. The role of BMP-2, low-level laser therapy and low x-ray doses in dental follicle stem cell migration. Particul Sci Technol 2018; 36(8): 981-8. doi: 10.1080/02726351.2017.1331287
  35. Moura-Netto C, Ferreira LS, Maranduba CM, Mello-Moura ACV, Marques MM. Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency. Braz Oral Res 2016; 30(1): S1806-83242016000100265. doi: 10.1590/1807-3107BOR-2016.vol30.0080 PMID: 27253140
  36. Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR. Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res 2012; 91(10): 961-6. doi: 10.1177/0022034512456040 PMID: 22879579
  37. da Silva PCS, Marques NP, Farina MT, et al. Laser treatment contributes to maintain membrane integrity in stem cells from human exfoliated deciduous teeth (shed) under nutritional deficit. Lasers Med Sci 2019; 34(1): 15-21. doi: 10.1007/s10103-018-2574-x PMID: 29980944
  38. Gholami L, Hendi SS, Saidijam M, et al. Near-infrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells. Lasers Med Sci 2022; 37(1): 449-59. doi: 10.1007/s10103-021-03282-5 PMID: 33740139
  39. Moreira MS, Sarra G, Carvalho GL, et al. Physical and biological properties of a chitosan hydrogel scaffold associated to photobiomodulation therapy for dental pulp regeneration: An in vitro and In vivo study. BioMed Res Int 2021; 2021: 6684667. doi: 10.1155/2021/6684667 PMID: 33575339
  40. Garrido PR, Pedroni ACF, Cury DP, et al. Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. J Photochem Photobiol B 2019; 194: 149-57. doi: 10.1016/j.jphotobiol.2019.03.017 PMID: 30954874
  41. Mohamed Abdelgawad L, Abd El-Hamed MM, Sabry D, Abdelgwad M. Efficacy of photobiomodulation and metformin on diabetic cell line of human periodontal ligament stem cells through Keap1/Nrf2/Ho-1 pathway. Rep Biochem Mol Biol 2021; 10(1): 30-40. doi: 10.52547/rbmb.10.1.30 PMID: 34277866
  42. Abdelgawad LM, Abdelaziz AM, Sabry D, Abdelgwad M. Influence of photobiomodulation and vitamin D on osteoblastic differentiation of human periodontal ligament stem cells and bone-like tissue formation through enzymatic activity and gene expression. Biomol Concepts 2020; 11(1): 172-81. doi: 10.1515/bmc-2020-0016 PMID: 34233429
  43. Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 2018; 33(1): 95-102. doi: 10.1007/s10103-017-2355-y PMID: 29027031
  44. Marques NP, Lopes CS, Marques NCT, et al. A preliminary comparison between the effects of red and infrared laser irradiation on viability and proliferation of SHED. Lasers Med Sci 2019; 34(3): 465-71. doi: 10.1007/s10103-018-2615-5 PMID: 30121722
  45. Oliveira Prado Bergamo MT, Vitor LLR, Lopes NM, et al. Angiogenic protein synthesis after photobiomodulation therapy on SHED: A preliminary study. Lasers Med Sci 2020; 35(9): 1909-18. doi: 10.1007/s10103-020-02975-7 PMID: 32056077
  46. Ballini A, Mastrangelo F, Gastaldi G, et al. Osteogenic differentiation and gene expression of dental pulp stem cells under low-level laser irradiation: A good promise for tissue engineering. J Biol Regul Homeost Agents 2015; 29(4): 813-22. PMID: 26753641
  47. Kim HB, Baik KY, Seonwoo H, et al. Effects of pulsing of light on the dentinogenesis of dental pulp stem cells in vitro. Sci Rep 2018; 8(1): 2057. doi: 10.1038/s41598-018-19395-x PMID: 29391502
  48. Almeida-Junior LA, Marques NCT, Prado MTO, Oliveira TM, Sakai VT. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 2019; 34(9): 1917-24. doi: 10.1007/s10103-019-02836-y PMID: 31267320
  49. Turrioni AP, Basso FG, Montoro LA, Almeida LFD, de Souza Costa CA, Hebling J. Transdentinal photobiostimulation of stem cells from human exfoliated primary teeth. Int Endod J 2017; 50(6): 549-59. doi: 10.1111/iej.12665 PMID: 27238557
  50. Zaccara IM, Mestieri LB, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Photobiomodulation therapy improves multilineage differentiation of dental pulp stem cells in three-dimensional culture model. J Biomed Opt 2018; 23(9): 1-9. doi: 10.1117/1.JBO.23.9.095001 PMID: 30203632
  51. Theocharidou A, Bakopoulou A, Kontonasaki E, et al. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 2017; 32(1): 201-10. doi: 10.1007/s10103-016-2102-9 PMID: 27785631
  52. Kim HB, Baik KY, Choung PH, Chung JH. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 2017; 7(1): 15927. doi: 10.1038/s41598-017-15754-2 PMID: 29162863
  53. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 2015; 30(9): 2259-64. doi: 10.1007/s10103-015-1803-9 PMID: 26341379
  54. Fernandes AP, Junqueira MA, Marques NCT, et al. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2016; 24(4): 332-7. doi: 10.1590/1678-775720150275 PMID: 27556203
  55. Gholami L, Parsamanesh G, Shahabi S, Jazaeri M, Baghaei K, Fekrazad R. The effect of laser photobiomodulation on periodontal ligament stem cells. Photochem Photobiol 2021; 97(4): 851-9. doi: 10.1111/php.13367 PMID: 33305457
  56. Wu Y, Zhu T, Yang Y, et al. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021; 36(7): 1535-43. doi: 10.1007/s10103-021-03278-1 PMID: 33719020
  57. Soares DM, Ginani F, Henriques ÁG, Barboza CAG. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 2015; 30(3): 1171-4. doi: 10.1007/s10103-013-1436-9 PMID: 24013624
  58. İslam A, Özverel CS, Yilmaz HG. Comparative evaluation of low-level laser therapy on proliferation of long-term cryopreserved human dental pulp cells isolated from deciduous and permanent teeth. Lasers Med Sci 2021; 36(2): 421-7. doi: 10.1007/s10103-020-03090-3 PMID: 32613417
  59. Turrioni APS, Montoro LA, Basso FG, de Almeida LF, Costa CA, Hebling J. Dose-responses of stem cells from human exfoliated teeth to infrared LED irradiation. Braz Dent J 2015; 26(4): 409-15. doi: 10.1590/0103-6440201300148 PMID: 26312982
  60. Paschalidou M, Athanasiadou E, Arapostathis K, et al. Biological effects of low-level laser irradiation (LLLI) on stem cells from human exfoliated deciduous teeth (SHED). Clin Oral Investig 2020; 24(1): 167-80. doi: 10.1007/s00784-019-02874-4 PMID: 31069538
  61. Bidar M, Bahlakeh A, Mahmoudi M, Ahrari F, Shahmohammadi R, Jafarzadeh H. Does the application of GaAlAs laser and platelet-rich plasma induce cell proliferation and increase alkaline phosphatase activity in human dental pulp stem cells? Lasers Med Sci 2021; 36(6): 1289-95. doi: 10.1007/s10103-020-03239-0 PMID: 33459924
  62. Vale KLD, Maria DA, Picoli LC, et al. The effects of photobiomodulation delivered by light-emitting diode on stem cells from human exfoliated deciduous teeth: A study on the relevance to pluripotent stem cell viability and proliferation. Photomed Laser Surg 2017; 35(12): 659-65. doi: 10.1089/pho.2017.4279 PMID: 28937927
  63. Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling. Lasers Med Sci 2022; 37(2): 941-8. doi: 10.1007/s10103-021-03338-6 PMID: 34247314
  64. Pinheiro CCG, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. Low power laser therapy: A strategy to promote the osteogenic differentiation of deciduous dental pulp stem cells from cleft lip and palate patients. Tissue Eng Part A 2018; 24(7-8): 569-75. doi: 10.1089/ten.tea.2017.0115 PMID: 28699387
  65. Turrioni APS, Basso FG, Montoro LA, Almeida LF, Costa CADS, Hebling J. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth. J Dent 2014; 42(10): 1292-9. doi: 10.1016/j.jdent.2014.07.014 PMID: 25064041
  66. Vitor LLR, Prado MTO, Lourenço Neto N, et al. Does photobiomodulation change the synthesis and secretion of angiogenic proteins by different pulp cell lineages? J Photochem Photobiol B 2020; 203: 111738. doi: 10.1016/j.jphotobiol.2019.111738 PMID: 31954290
  67. Yamauchi N, Taguchi Y, Kato H, Umeda M. High-power, red-light-emitting diode irradiation enhances proliferation, osteogenic differentiation, and mineralization of human periodontal ligament stem cells via ERK signaling pathway. J Periodontol 2018; 89(3): 351-60. doi: 10.1002/JPER.17-0365 PMID: 29528486
  68. Chaweewannakorn C, Santiwong P, Surarit R, Sritanaudomchai H, Chintavalakorn R. The effect of LED photobiomodulation on the proliferation and osteoblastic differentiation of periodontal ligament stem cells: In vitro. J World Fed Orthod 2021; 10(2): 79-85. doi: 10.1016/j.ejwf.2021.03.003 PMID: 33888447
  69. Zaccara IM, Mestieri LB, Pilar EFS, et al. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020; 35(3): 741-9. doi: 10.1007/s10103-019-02931-0 PMID: 32095920
  70. Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A. Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys 2015; 25(9): 095602. doi: 10.1088/1054-660X/25/9/095602
  71. Tunç H, Islam A, Kabadayı H, Vatansever HS, Çetiner S, Yilmaz HG. Evaluation of low-level diode laser irradiation and various irrigant solutions on the biological response of stem cells from exfoliated deciduous teeth. J Photochem Photobiol B 2019; 191: 156-63. doi: 10.1016/j.jphotobiol.2019.01.001 PMID: 30640142
  72. Yang Y, Zhu T, Wu Y, et al. Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 2020; 35(9): 1981-8. doi: 10.1007/s10103-020-02995-3 PMID: 32173788
  73. Malthiery E, Chouaib B, Hernandez-Lopez AM, et al. Effects of green light photobiomodulation on dental pulp stem cells: Enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 2021; 36(2): 437-45. doi: 10.1007/s10103-020-03092-1 PMID: 32621128
  74. Tunç H, Islam A, Çetiner S. Long-term effect of low-level diode laser irradiation on proliferation of stem cells from human exfoliated deciduous teeth after cryopreservation protocol. Laser Phys 2019; 29(10): 105602. doi: 10.1088/1555-6611/ab3c4a
  75. De Souza LM, Rinco UGR, Aguiar DAT, et al. Effect of photobiomodulation on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions. Laser Phys 2018; 28(2): 025603. doi: 10.1088/1555-6611/aa8e79
  76. Özverel CS, Islam A, Yllmaz HG. The biostimulative effectiveness of photobiomodulation therapy application on thawed dental pulp stem cells. J Innov Opt Health Sci 2021; 14(3): 2150006. doi: 10.1142/S1793545821500061
  77. Yurtsever MÇ, Kiremitci A, Gümüşderelioğlu M. Dopaminergic induction of human dental pulp stem cells by photobiomodulation: Comparison of 660nm laser light and polychromatic light in the nir. J Photochem Photobiol B 2020; 204: 111742. doi: 10.1016/j.jphotobiol.2019.111742 PMID: 31982670
  78. Pereira LO, Longo JPF, Azevedo RB. Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 2012; 57(8): 1079-85. doi: 10.1016/j.archoralbio.2012.02.012 PMID: 22469390
  79. Ahmed GM, Abouauf EA, AbuBakr N, Dörfer CE, El-Sayed KF. Tissue engineering approaches for enamel, dentin, and pulp regeneration: An update. Stem Cells Int 2020; 2020: 5734539. doi: 10.1155/2020/5734539 PMID: 32184832
  80. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019. doi: 10.1186/s13287-019-1165-5
  81. Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017. doi: 10.1177/2041731417702531
  82. Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM. Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 2016; 34(11): 533-42. doi: 10.1089/pho.2015.4029 PMID: 27070113
  83. Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12. doi: 10.1073/pnas.0937635100 PMID: 12716973
  84. Smith KC. The photobiological basis of low level laser radiation therapy. Laser Ther 1991; 3(1): 19-24. doi: 10.5978/islsm.91-OR-03
  85. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 1999; 49(1): 1-17. doi: 10.1016/S1011-1344(98)00219-X PMID: 10365442
  86. Flores Luna GL, de Andrade ALM, Brassolatti P, et al. Biphasic dose/response of photobiomodulation therapy on culture of human fibroblasts. Photobiomodul Photomed Laser Surg 2020; 38(7): 413-8. doi: 10.1089/photob.2019.4729 PMID: 32208063
  87. Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 2014; 140: 344-58. doi: 10.1016/j.jphotobiol.2014.07.021 PMID: 25226343
  88. Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 2018; 94(2): 199-212. doi: 10.1111/php.12864
  89. Hudson DE, Hudson DO, Wininger JM, Richardson BD. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 2013; 31(4): 163-8. doi: 10.1089/pho.2012.3284 PMID: 23441909
  90. Heiskanen V. Photobiomodulation: Lasers vs. light emitting diodes. Photochem Photobiol Sci 2017; 17(8): 1003-17.
  91. Keshri GK, Gupta A, Yadav A, Sharma SK, Singh SB. Photobiomodulation with pulsed and continuous wave near-infrared laser (810 nm, Al-Ga-As) augments dermal wound healing in immunosuppressed rats. PLoS One 2016; 11(11): e0166705. doi: 10.1371/journal.pone.0166705 PMID: 27861614
  92. Ando T, Xuan W, Xu T, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 2011; 6(10): e26212. doi: 10.1371/journal.pone.0026212 PMID: 22028832
  93. Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009; 7(4): 358-83. doi: 10.2203/dose-response.09-027.Hamblin PMID: 20011653
  94. Liu J, Zhao Z, Ruan J, et al. Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex. J Dent 2020; 92: 103259. doi: 10.1016/j.jdent.2019.103259 PMID: 31809792
  95. Iwasaki K, Akazawa K, Nagata M, et al. Angiogenic effects of secreted factors from periodontal ligament stem cells. Dent J 2021; 9(1): 9. doi: 10.3390/dj9010009 PMID: 33467531
  96. Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: Dive into complexity. J Biomed Opt 2018; 23(12): 1-17. doi: 10.1117/1.JBO.23.12.120901 PMID: 30550048
  97. Nada OA, El Backly RM. Stem Cells From the Apical Papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol 2018; 103. doi: 10.3389/fbioe.2018.00103
  98. Zhu T, Wu Y, Zhou X, Yang Y, Wang Y. Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 2019; 34(7): 1473-81. doi: 10.1007/s10103-019-02750-3 PMID: 30826951
  99. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 1999; 14(6): 893-903. doi: 10.1359/jbmr.1999.14.6.893 PMID: 10352097

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers