Application of CAD-CAM Technologies for Maxillofacial Bone Regeneration: A Narrative Review of the Clinical Studies


Cite item

Full Text

Abstract

The application of regenerative methods in treating maxillofacial defects can be categorized as functional bone regeneration in which scaffolds without protection are used and in-situ bone regeneration in which a protected healing space is created to induce bone formation. It has been shown that functional bone regeneration can reduce surgical time and obviate the necessity of autogenous bone grafting. However, studies mainly focused on applying this method to reconstruct minor bone effects, and more investigation concerning the large defects is required. In terms of in situ maxillofacial bone regeneration with the help of CAD-CAM technologies, the present data have suggested feasible mesh rigidity, perseverance of the underlying space, and apt augmentative results with CAD-CAM-based individualized Ti meshes. However, complications, including dehiscence and mesh exposure, coupled with consequent graft loss, infection and impeded regenerative rates have also been reported

About the authors

Helia Sadat Boroojeni

Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Sadra Mohaghegh

Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Arash Khojasteh

Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kumar VV, Rometsch E, Thor A, Wolvius E, Hurtado CA. Segmental mandibular reconstruction using tissue engineering strategies: A systematic review of individual patient data. Craniomaxillofac Trauma Reconstr 2020; 13(4): 267-84. doi: 10.1177/1943387520917511 PMID: 33456698
  2. Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity defects: A systematic approach to the literature. Tissue Eng Part B Rev 2014; 20(2): 147-62. doi: 10.1089/ten.teb.2013.0131 PMID: 23865639
  3. Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantology 2014; 7 (Suppl. 2): S203-17. PMID: 24977256
  4. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125(5): 315-37. doi: 10.1111/eos.12364 PMID: 28833567
  5. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res 2018; 62(2): 152-61. doi: 10.1016/j.jpor.2017.08.010 PMID: 28927994
  6. Melville JC, Mañón VA, Blackburn C, Young S. Current methods of maxillofacial tissue engineering. Oral Maxillofac Surg Clin North Am 2019; 31(4): 579-91. doi: 10.1016/j.coms.2019.07.003 PMID: 31445759
  7. Aghaloo T, Misch C, Lin GH, Iacono V, Wang HL. Bone Augmentation of the edentulous maxilla for implant placement: A systematic review. Int J Oral Maxillofac Implants 2017; 31 (Suppl.): s19-30. doi: 10.11607/jomi.16suppl.g1 PMID: 27228250
  8. Aghaloo TL, Hadaya D. Basic principles of bioengineering and regeneration. Oral Maxillofac Surg Clin North Am 2017; 29(1): 1-7. doi: 10.1016/j.coms.2016.08.008 PMID: 27890223
  9. Diño MJS, Ong IL. Research, technology, education & scholarship in the fourth industrial revolution 4IR: Influences in nursing and the health sciences. J Med Invest 2019; 66(1 .2): 3-7.
  10. Han S. The fourth industrial revolution and oral and maxillofacial surgery. J Korean Assoc Oral Maxillofac Surg 2018; 44(5): 205-6. doi: 10.5125/jkaoms.2018.44.5.205 PMID: 30402410
  11. Tanveer W, Ridwan PA, Molinero MP, Koolstra JH, Forouzanfar T. Systematic review of clinical applications of CAD/CAM technology for craniofacial implants placement and manufacturing of nasal prostheses. Int J Environ Res Public Health 2021; 18(7): 3756. doi: 10.3390/ijerph18073756 PMID: 33916853
  12. Ismail MB, Darwich K. Reconstruction of large mandibular bone defects extended to the condyle using patient-specific implants based on CAD-CAM technology and 3D printing. Adv Oral Maxillofac Surg 2022; 5: 100229. doi: 10.1016/j.adoms.2021.100229
  13. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 2018; 9(1): 17. doi: 10.3390/jfb9010017 PMID: 29414913
  14. Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater Sci Eng C 2017; 78: 1246-62. doi: 10.1016/j.msec.2017.05.017 PMID: 28575964
  15. Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: A systematic review. Int J Oral Maxillofac Implants 2014; 29 (Suppl.): 25-42. doi: 10.11607/jomi.2014suppl.g1.2 PMID: 24660188
  16. Cui J, Chen L, Guan X, Ye L, Wang H, Liu L. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg 2014; 72(6): 1138.e1-1138.e14. doi: 10.1016/j.joms.2014.02.023
  17. Vera C, Barrero C, Shockley W, Rothenberger S, Minsley G, Drago C. Prosthetic reconstruction of a patient with an acquired nasal defect using extraoral implants and a CAD/CAM copy-milled bar. J Prosthodont 2014; 23(7): 582-7.
  18. Milovanovic JR, Stojkovic MS, Husain KN, Korunovic ND, Arandjelovic J. Holistic Approach in designing the personalized bone scaffold: The case of reconstruction of large missing piece of mandible caused by congenital anatomic anomaly. J Healthc Eng 2020; 2020: 6689961. doi: 10.1155/2020/6689961 PMID: 33299535
  19. Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent 2019; 80: 1-14. doi: 10.1016/j.jdent.2018.11.004 PMID: 30439546
  20. Garot C, Bettega G, Picart C. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Adv Funct Mater 2021; 31(5): 2006967. doi: 10.1002/adfm.202006967 PMID: 33531885
  21. Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH. Novel 3D polycaprolactone scaffold for ridge preservation – A pilot randomised controlled clinical trial. Clin Oral Implants Res 2015; 26(3): 271-7. doi: 10.1111/clr.12486 PMID: 25263527
  22. Rasperini G, Pilipchuk SP, Flanagan CL, et al. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res 2015; 94(9) (Suppl.): 153S-7S. doi: 10.1177/0022034515588303 PMID: 26124215
  23. Mangano FG, Zecca PA, Van Noort R, et al. Custom-made computer-aided-design/computer-aided-manufacturing biphasic calcium-phosphate scaffold for augmentation of an atrophic mandibular anterior ridge. Case Rep Dent 2015; 2015: 1-11. doi: 10.1155/2015/941265 PMID: 26064701
  24. Luongo F, Mangano FG, Macchi A, Luongo G, Mangano C. Custom-made synthetic scaffolds for bone reconstruction: A retrospective, multicenter clinical study on 15 patients. BioMed Res Int 2016; 2016: 5862586. doi: 10.1155/2016/5862586 PMID: 28070512
  25. Mangano C, Giuliani A, De Tullio I, Raspanti M, Piattelli A, Iezzi G. Case report: Histological and histomorphometrical results of a 3-D printed biphasic calcium phosphate ceramic 7 years after insertion in a human maxillary alveolar ridge. Front Bioeng Biotechnol 2021; 9: 614325. doi: 10.3389/fbioe.2021.614325 PMID: 33937211
  26. Figliuzzi M, Mangano FG, Fortunato L, et al. Vertical ridge augmentation of the atrophic posterior mandible with custom-made, computer-aided design/computer-aided manufacturing porous hydroxyapatite scaffolds. J Craniofac Surg 2013; 24(3): 856-9. doi: 10.1097/SCS.0b013e31827ca3a7 PMID: 23714896
  27. Garagiola U, Grigolato R, Soldo R, et al. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: A systematic review and case report. Maxillofac Plast Reconstr Surg 2016; 38(1): 2. doi: 10.1186/s40902-015-0048-7 PMID: 26767187
  28. Mangano F, Macchi A, Shibli JA, et al. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J Oral Implantol 2014; 40(5): 561-9. doi: 10.1563/AAID-JOI-D-12-00122 PMID: 23343341
  29. Jacotti M, Barausse C, Felice P. Posterior atrophic mandible rehabilitation with onlay allograft created with CAD-CAM procedure: A case report. Implant Dent 2014; 23(1): 22-8. doi: 10.1097/ID.0000000000000023 PMID: 24378654
  30. Blume O, Hoffmann L, Donkiewicz P, et al. Treatment of severely resorbed maxilla due to peri-implantitis by guided bone regeneration using a customized allogenic bone block: A case report. Materials 2017; 10(10): 1213. doi: 10.3390/ma10101213 PMID: 29065477
  31. Grassi FR, Grassi R, Vivarelli L, et al. Design techniques to optimize the scaffold performance: Freeze-dried bone custom-made allografts for maxillary alveolar horizontal ridge augmentation. Materials 2020; 13(6): 1393. doi: 10.3390/ma13061393 PMID: 32204393
  32. Venet L, Perriat M, Mangano FG, Fortin T. Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique - A case series. BMC Oral Health 2017; 17(1): 146. doi: 10.1186/s12903-017-0423-0 PMID: 29216869
  33. Blume O, Back M, Martin K, Windisch P. A customized allogenic bone block for alveolar reconstruction quantitated by a 3D matching technique: A case report. Clin Case Rep 2021; 9(9): e04771.
  34. Kloss FR, Offermanns V, Donkiewicz P, Kloss BA. Customized allogeneic bone grafts for maxillary horizontal augmentation: A 5‐year follow‐up radiographic and histologic evaluation. Clin Case Rep 2020; 8(5): 886-93. doi: 10.1002/ccr3.2777 PMID: 32477540
  35. Mirković S, Budak I, Puskar T, et al. Application of modern computer-aided technologies in the production of individual bone graft: A case report Vojnosanitetski pregled 2015; 72(12): 1126-31. doi: 10.2298/VSP140915117M
  36. Schlee M, Rothamel D. Ridge augmentation using customized allogenic bone blocks: Proof of concept and histological findings. Implant Dent 2013; 22(3): 212-8. doi: 10.1097/ID.0b013e3182885fa1 PMID: 23615661
  37. Mangano F, Zecca P, Pozzi TS, et al. Maxillary sinus augmentation using Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) technology. Int J Med Robot 2013; 9(3): 331-8. doi: 10.1002/rcs.1460 PMID: 22961733
  38. Probst FA, Hutmacher DW, Müller DF, Machens HG, Schantz JT. Calvarial reconstruction by customized bioactive implant. Handchir Mikrochir Plast Chir 2010; 42(6): 369-73.
  39. Han HH, Shim JH, Lee H, et al. Reconstruction of complex maxillary defects using patient-specific 3D-printed biodegradable scaffolds. Plast Reconstr Surg Glob Open 2018; 6(11): e1975-e.
  40. Kanno Y, Nakatsuka T, Saijo H, et al. Computed tomographic evaluation of novel custom-made artificial bones, "CT-bone", applied for maxillofacial reconstruction. Regen Ther 2016; 5: 114978062. doi: 10.1016/j.reth.2016.05.002 PMID: 31245494
  41. Ghobeira R, Philips C, Declercq H, et al. Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films. Biomed Mater 2017; 12(1): 015017. doi: 10.1088/1748-605X/aa51d5 PMID: 28117304
  42. Zhao Y, Zhu B, Wang Y, Liu C, Shen C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater Sci Eng C 2019; 105: 110041. doi: 10.1016/j.msec.2019.110041 PMID: 31546462
  43. O’Connell CD, Onofrillo C, Duchi S, et al. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. Biofabrication 2019; 11(3): 035003. doi: 10.1088/1758-5090/ab0b7c PMID: 30818298
  44. Monaco G, Cholas R, Salvatore L, Madaghiele M, Sannino A. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Mater Sci Eng C 2017; 71: 335-44. doi: 10.1016/j.msec.2016.10.030 PMID: 27987715
  45. Tipnis NP, Burgess DJ. Sterilization of implantable polymer-based medical devices: A review. Int J Pharm 2018; 544(2): 455-60. doi: 10.1016/j.ijpharm.2017.12.003 PMID: 29274370
  46. Costa PF, Vaquette C, Baldwin J, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication 2014; 6(3): 035006. doi: 10.1088/1758-5082/6/3/035006 PMID: 24809431
  47. Hikita A, Chung U, Hoshi K, Takato T. Bone regenerative medicine in oral and maxillofacial region using a three-dimensional printer. Tissue Eng Part A 2017; 23(11-12): 515-21. doi: 10.1089/ten.tea.2016.0543 PMID: 28351222
  48. Cheah CW, Al-Namnam NM, Lau MN, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: Where are we now, and where are we heading next? Materials 2021; 14(20): 6123. doi: 10.3390/ma14206123 PMID: 34683712
  49. Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: More than the barrier effect? J Clin Periodontol 2019; 46(S21) (Suppl. 21): 103-23. doi: 10.1111/jcpe.13068 PMID: 30667525
  50. Briguglio F, Falcomatà D, Marconcini S, Fiorillo L, Briguglio R, Farronato D. The use of titanium mesh in guided bone regeneration: A systematic review. Int J Dent 2019; 2019: 9065423. doi: 10.1155/2019/9065423 PMID: 30881455
  51. Cucchi A, Giavatto MA, Giannatiempo J, Lizio G, Corinaldesi G. Custom-made titanium mesh for maxillary bone augmentation with immediate implants and delayed loading. J Oral Implantol 2019; 45(1): 59-64. doi: 10.1563/aaid-joi-D-18-00141 PMID: 30091941
  52. Abrahamsson P, Wälivaara DÅ, Isaksson S, Andersson G. Periosteal expansion before local bone reconstruction using a new technique for measuring soft tissue profile stability: A clinical study. J Oral Maxillofac Surg 2012; 70(10): e521-30. doi: 10.1016/j.joms.2012.06.003 PMID: 22871307
  53. Miyamoto I, Funaki K, Yamauchi K, Kodama T, Takahashi T. Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity. Clin Implant Dent Relat Res 2012; 14(2): 304-11. doi: 10.1111/j.1708-8208.2009.00257.x PMID: 21453391
  54. Nickenig HJ, Riekert M, Zirk M, Lentzen MP, Zöller JE, Kreppel M. 3D-based buccal augmentation for ideal prosthetic implant alignment—an optimized method and report on 7 cases with pronounced buccal concavities. Clin Oral Investig 2022; 26(5): 3999-4010. doi: 10.1007/s00784-022-04369-1 PMID: 35066689
  55. Seiler M, Kämmerer PW, Peetz M, Hartmann A. Customized lattice structure in reconstruction of three-dimensional alveolar defects. Int J Comput Dent 2018; 21(3): 261-7. PMID: 30264055
  56. Sagheb K, Schiegnitz E, Moergel M, Walter C, Al-Nawas B, Wagner W. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh. Int J Implant Dent 2017; 3(1): 36. doi: 10.1186/s40729-017-0097-z PMID: 28748521
  57. Sumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg 2015; 43(10): 2183-8.
  58. Mounir M, Shalash M, Mounir S, Nassar Y, El Khatib O. Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized Poly‐Ether‐Ether‐Ketone (PEEK) mesh: A randomized clinical trial. Clin Implant Dent Relat Res 2019; 21(5): 960-7. doi: 10.1111/cid.12748 PMID: 30895678
  59. Connors C, Liacouras P, Grant G. Custom Titanium Ridge Augmentation Matrix (CTRAM): A case report. Int J Periodont Restor Dent 2016; 36(5): 707-14. doi: 10.11607/prd.2620 PMID: 27560675
  60. Tallarico M, Park CJ, Lumbau AI, et al. Customized 3D-printed titanium mesh developed to regenerate a complex bone defect in the aesthetic zone: A case report approached with a fully digital workflow. Materials 2020; 13(17): 3874. doi: 10.3390/ma13173874 PMID: 32887390
  61. Ciocca L, Lizio G, Baldissara P, Sambuco A, Scotti R, Corinaldesi G. Prosthetically CAD-CAM–guided bone augmentation of atrophic jaws using customized titanium mesh: Preliminary results of an open prospective study. J Oral Implantol 2018; 44(2): 131-7. doi: 10.1563/aaid-joi-D-17-00125 PMID: 29303418
  62. Dellavia C, Canciani E, Pellegrini G, Tommasato G, Graziano D, Chiapasco M. Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer‐aided design/computer‐assisted manufacture titanium mesh in humans: A cohort study. Clin Implant Dent Relat Res 2021; 23(4): 600-11. doi: 10.1111/cid.13025 PMID: 34139056
  63. Chiapasco M, Casentini P, Tommasato G, Dellavia C, Del Fabbro M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: Preliminary results of a retrospective clinical study in humans. Clin Oral Implants Res 2021; 32(4): 498-510. doi: 10.1111/clr.13720 PMID: 33548069
  64. Li L, Wang C, Li X, Fu G, Chen D, Huang Y. Research on the dimensional accuracy of customized bone augmentation combined with 3D ‐printing individualized titanium mesh: A retrospective case series study. Clin Implant Dent Relat Res 2021; 23(1): 5-18. doi: 10.1111/cid.12966 PMID: 33336492
  65. Al-Ardah AJ, Alqahtani N, AlHelal A, et al. Using virtual ridge augmentation and 3-dimensional printing to fabricate a titanium mesh positioning device: A novel technique letter. J Oral Implantol 2018; 44(4): 293-9. doi: 10.1563/aaid-joi-D-17-00160 PMID: 29498903
  66. Hartmann A, Seiler M. Minimizing risk of customized titanium mesh exposures – A retrospective analysis. BMC Oral Health 2020; 20(1): 36. doi: 10.1186/s12903-020-1023-y PMID: 32013940
  67. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R. Direct Metal Laser Sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 2011; 49(11): 1347-52. doi: 10.1007/s11517-011-0813-4 PMID: 21779902
  68. Navarro CC, Tousidonis Rial M, Antúnez CR, et al. Virtual surgical planning, stereolitographic models and CAD/CAM titanium mesh for three-dimensional reconstruction of fibula flap with iliac crest graft and dental implants. J Clin Med 2021; 10(9): 1922. doi: 10.3390/jcm10091922 PMID: 33946731
  69. Antúnez CR, Salmerón JI, Díez MA, et al. Mandibular reconstruction with fibula flap and dental implants through virtual surgical planning and three different techniques: Double-barrel flap, implant dynamic navigation and CAD/CAM mesh with iliac crest graft. Front Oncol 2021; 11: 719712. doi: 10.3389/fonc.2021.719712 PMID: 34676161
  70. Lee W, Choi W, Lee H, Choi N, Hwang D, Kim U. Mandibular reconstruction with a ready-made type and a custom-made type titanium mesh after mandibular resection in patients with oral cancer. Maxillofac Plast Reconstr Surg 2018; 40(1): 35. doi: 10.1186/s40902-018-0175-z PMID: 30538971
  71. Farid SM, Hamid NMA, Askar NA, Elmardenly AM. Immediate mandibular reconstruction via patient-specific titanium mesh tray using electron beam melting/CAD/rapid prototyping techniques: One-year follow-up. Int J Med Robot 2018; 14(3): e1895. doi: 10.1002/rcs.1895 PMID: 29464889
  72. Ma J, Ma L, Wang Z, Zhu X, Wang W. The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures: A case report. Medicine 2017; 96(27): e7250-e.
  73. Shan XF, Chen HM, Liang J, Huang JW, Cai ZG. Surgical reconstruction of maxillary and mandibular defects using a printed titanium mesh. J Oral Maxillofac Surg 2015; 73(7): 1437.e1-9. doi: 10.1016/j.joms.2015.02.025
  74. Tarsitano A, Battaglia S, Ciocca L, Scotti R, Cipriani R, Marchetti C. Surgical reconstruction of maxillary defects using a computer-assisted design/computer-assisted manufacturing-produced titanium mesh supporting a free flap. J Cranio-Maxillo-Fac Surg 2016; 44(9): 1320-6.
  75. Fu K, Liu Y, Gao N, Cai J, He W, Qiu W. Reconstruction of maxillary and orbital floor defect with free fibula flap and whole individualized titanium mesh assisted by computer techniques. J Oral Maxillofac Surg 2017; 75(8): 1791.e1-.e9. doi: 10.1016/j.joms.2017.03.054
  76. Ciocca L, Ragazzini S, Fantini M, Corinaldesi G, Scotti R. Work flow for the prosthetic rehabilitation of atrophic patients with a minimal-intervention CAD/CAM approach. J Prosthet Dent 2015; 114(1): 22-6. doi: 10.1016/j.prosdent.2014.11.014 PMID: 25862269
  77. Cucchi A, Vignudelli E, Franceschi D, et al. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial. Clin Oral Implants Res 2021; 32(12): 1411-24. doi: 10.1111/clr.13841 PMID: 34551168
  78. Garcia J, Dodge A, Luepke P, Wang HL, Kapila Y, Lin GH. Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis. Clin Oral Implants Res 2018; 29(3): 328-38. doi: 10.1111/clr.13121 PMID: 29368353
  79. Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 2013; 57(1): 3-14. doi: 10.1016/j.jpor.2012.12.001 PMID: 23347794

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers