The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders


Cite item

Full Text

Abstract

Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.

About the authors

Raziyeh Ghorbani

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Simzar Hosseinzadeh

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Arezo Azari

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Niloofar Taghipour

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Masoud Soleimani

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Azam Rahimpour

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine,, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Hojjat Abbaszadeh

Laser Application in Medical Sciences Research Center,, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Montagna W. The structure and function of skin. (3rd ed.), AmsterdamElsevier 2012.
  2. Halata Z, Grim M, Baumann KI. Current understanding of Merkel cells, touch reception and the skin. Expert Rev Dermatol 2010; 5(1): 109-16. doi: 10.1586/edm.09.70
  3. Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 2002; 50(2): 125-33. doi: 10.1177/002215540205000201 PMID: 11799132
  4. Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans cells—programmed by the epidermis. Front Immunol 2017; 8: 1676. doi: 10.3389/fimmu.2017.01676 PMID: 29238347
  5. Benson HA, Watkinson AC. Topical and transdermal drug delivery: principles and practice. Hoboken, New Jersey John Wiley & Sons 2012.
  6. Gupta RK. Adipocytes. Curr Biol 2014; 24(20): R988-93. doi: 10.1016/j.cub.2014.09.003 PMID: 25442852
  7. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35-43. doi: 10.1159/000339613 PMID: 22797712
  8. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. s. Eur Surg Res 2017; 58(1-2): 81-94. doi: 10.1159/000454919 PMID: 27974711
  9. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20. doi: 10.1016/S0021-9258(18)48095-7 PMID: 3597417
  10. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25. doi: 10.1016/j.ceb.2014.05.004 PMID: 24959705
  11. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cellderived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23. doi: 10.1038/mt.2015.44 PMID: 25868399
  12. Lindenbergh MFS, Wubbolts R, Borg EGF. ’T Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles 2020; 9(1): 1798606. doi: 10.1080/20013078.2020.1798606 PMID: 32944186
  13. Manchon E, Hirt N, Bouaziz JD, Jabrane-Ferrat N, Al-Daccak R. Stem cells-derived extracellular vesicles: Potential therapeutics for wound healing in chronic inflammatory skin diseases. Int J Mol Sci 2021; 22(6): 3130. doi: 10.3390/ijms22063130 PMID: 33808520
  14. Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: New molecular targets of diseases. Acta Pharmacol Sin 2018; 39(4): 501-13. doi: 10.1038/aps.2017.162 PMID: 29219950
  15. Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res 2019; 17(2): 337-47. doi: 10.1158/1541-7786.MCR-18-0891 PMID: 30487244
  16. Harischandra DS, Ghaisas S, Rokad D, Kanthasamy AG. Exosomes in toxicology: Relevance to chemical exposure and pathogenesis of environmentally linked diseases. Toxicol Sci 2017; 158(1): 3-13. doi: 10.1093/toxsci/kfx074 PMID: 28505322
  17. Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease βamyloid peptides are released in association with exosomes. Proc Natl Acad Sci 2006; 103(30): 11172-7. doi: 10.1073/pnas.0603838103 PMID: 16837572
  18. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527(7578): 329-35. doi: 10.1038/nature15756 PMID: 26524530
  19. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Badiavas EV. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635-47. doi: 10.1089/scd.2014.0316 PMID: 25867197
  20. Ferreira AF, Cunha PS, Carregal VM, et al. Extracellular vesicles from adipose-derived mesenchymal stem/stromal cells accelerate migration and activate AKT pathway in human keratinocytes and fibroblasts independently of miR-205 activity. Stem Cells Int 2017; 2017: 1-14. doi: 10.1155/2017/9841035 PMID: 29358958
  21. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97(2): 329-39. doi: 10.1083/jcb.97.2.329 PMID: 6309857
  22. Batista BS, Eng WS, Pilobello KT, Hendricks-Muñoz KD, Mahal LK. Identification of a conserved glycan signature for microvesicles. J Proteome Res 2011; 10(10): 4624-33. doi: 10.1021/pr200434y PMID: 21859146
  23. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40: 41-51. doi: 10.1016/j.semcdb.2015.02.010
  24. Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9. doi: 10.1016/j.devcel.2010.12.003 PMID: 21238931
  25. Record M. Intercellular communication by exosomes in placenta: A possible role in cell fusion? Placenta 2014; 35(5): 297-302. doi: 10.1016/j.placenta.2014.02.009 PMID: 24661568
  26. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell 2011; 21(1): 77-91. doi: 10.1016/j.devcel.2011.05.015 PMID: 21763610
  27. Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 2013; 5(9): a016766. doi: 10.1101/cshperspect.a016766 PMID: 24003212
  28. Juan T, Fürthauer M. Biogenesis and function of ESCRTdependent extracellular vesicles. Semin Cell Dev Biol 2018; 74: 66-77. doi: 10.1016/j.semcdb.2017.08.022
  29. Tschuschke M, Kocherova I, Bryja A, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med 2020; 9(2): 436. doi: 10.3390/jcm9020436 PMID: 32041096
  30. Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2008; 7(12): 5157-66. doi: 10.1021/pr8004887 PMID: 19367702
  31. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20. doi: 10.1194/jlr.M003657 PMID: 20424270
  32. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5. doi: 10.1038/nbt.1807 PMID: 21423189
  33. Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166(12): 7309-18. doi: 10.4049/jimmunol.166.12.7309 PMID: 11390481
  34. Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12): e1001450. doi: 10.1371/journal.pbio.1001450 PMID: 23271954
  35. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9. doi: 10.1038/ncb1596 PMID: 17486113
  36. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81(10): 1171-82. doi: 10.1016/j.bcp.2011.02.011 PMID: 21371441
  37. Futter CE, White IJ. Annexins and Endocytosis. Traffic 2007; 8(8): 951-8. doi: 10.1111/j.1600-0854.2007.00590.x PMID: 17547702
  38. Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 2005; 65(12): 5238-47. doi: 10.1158/0008-5472.CAN-04-3804 PMID: 15958569
  39. Nguyen DG, Booth A, Gould SJ, Hildreth JEK. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 2003; 278(52): 52347-54. doi: 10.1074/jbc.M309009200 PMID: 14561735
  40. Mears R, Craven RA, Hanrahan S, et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 2004; 4(12): 4019-31. doi: 10.1002/pmic.200400876 PMID: 15478216
  41. Hegmans JPJJ, Bard MPL, Hemmes A, et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 2004; 164(5): 1807-15. doi: 10.1016/S0002-9440(10)63739-X PMID: 15111327
  42. de Gassart A, Géminard C, Février B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood 2003; 102(13): 4336-44. doi: 10.1182/blood-2003-03-0871 PMID: 12881314
  43. Antimisiaris S, Mourtas S, Marazioti A. Exosomes and exosomeinspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4): 218. doi: 10.3390/pharmaceutics10040218 PMID: 30404188
  44. Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284(49): 34211-22. doi: 10.1074/jbc.M109.041152 PMID: 19801663
  45. Piccin A, Murphy WG, Smith OP. Circulating microparticles: Pathophysiology and clinical implications. Blood Rev 2007; 21(3): 157-71. doi: 10.1016/j.blre.2006.09.001 PMID: 17118501
  46. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007; 89(2): 205-12. doi: 10.1016/j.biochi.2006.10.014
  47. Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells 2021; 10(8): 1959. doi: 10.3390/cells10081959 PMID: 34440728
  48. Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immun 2002; 168(7): 3235-41. doi: 10.4049/jimmunol.168.7.3235
  49. Monypenny J, Milewicz H, Flores-Borja F, et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep 2018; 24(3): 630-41. doi: 10.1016/j.celrep.2018.06.066 PMID: 30021161
  50. Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res 2015; 25(4): 412-28. doi: 10.1038/cr.2015.29 PMID: 25732677
  51. Liu H, Chen L, Peng Y, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget 2018; 9(2): 2887-94. doi: 10.18632/oncotarget.20812 PMID: 29416821
  52. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Curr Protoc Cell Biol 2006; 30(1): 3.22.1-3.22.29. doi: 10.1002/0471143030.cb0322s30
  53. Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015; 5(1): 17319. doi: 10.1038/srep17319 PMID: 26616523
  54. Momen-Heravi F. Isolation of extracellular vesicles by ultracentrifugation, Extracellular Vesicles. Methods Mol Biol 2017; 1660: 25-32. doi: 10.1007/978-1-4939-7253-1_3 PMID: 28828645
  55. Kang YT, Kim YJ, Bu J, Cho YH, Han SW, Moon BI. High-purity capture and release of circulating exosomes using an exosomespecific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 2017; 9(36): 13495-505. doi: 10.1039/C7NR04557C PMID: 28862274
  56. Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS nano 2017; 11(11): 10712-23. 7 doi: 10.1021/acsnano.7b04878
  57. Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol 2016; 11(11): 936-40. doi: 10.1038/nnano.2016.134 PMID: 27479757
  58. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106((Pt A)): 148-56. doi: 10.1016/j.addr.2016.02.006 PMID: 26928656
  59. Gu Y, Chen C, Mao Z, et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci Adv 2021; 7(1): eabc0467. doi: 10.1126/sciadv.abc0467 PMID: 33523836
  60. Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. Lab Chip 2019; 19(21): 3726-34. doi: 10.1039/C9LC00902G PMID: 31588942
  61. Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-free isolation of exosomes using microfluidic technologies. ACS Nano 2021; 15(11): 17047-79. doi: 10.1021/acsnano.1c03469 PMID: 34723478
  62. Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods 2018; 2(9): 1800021. doi: 10.1002/smtd.201800021
  63. Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. J Control Release 2019; 308: 119-29. doi: 10.1016/j.jconrel.2019.07.021 PMID: 31325471
  64. Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2014; 3(1): 23430.
  65. Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014; 3(1): 23111. doi: 10.3402/jev.v3.23111 PMID: 24678386
  66. Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012; 56(2): 293-304. doi: 10.1016/j.ymeth.2012.01.002 PMID: 22285593
  67. Xu X, Liu Y, Li Y, et al. Selective exosome exclusion of miR-375 by glioma cells promotes glioma progression by activating the CTGF-EGFR pathway. J Exp Clin Cancer Res 2021; 40(1): 16. doi: 10.1186/s13046-020-01810-9 PMID: 33407703
  68. Doldán. Fagúndez, Cayota A, Laíz J, Tosar JP. Electrochemical sandwich immunosensor for determination of exosomes based on surface markermediated signal amplification. Anal Chem 2016; 88: 10466-73. doi: 10.1021/acs.analchem.6b02421 PMID: 27734678
  69. Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 2007; 292(5): F1657-61. doi: 10.1152/ajprenal.00434.2006 PMID: 17229675
  70. Takov K, Yellon DM, Davidson SM. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: Yield, purity and functional potential. J Extracell Vesicles 2019; 8(1): 1560809. doi: 10.1080/20013078.2018.1560809 PMID: 30651940
  71. Bohmer N, Demarmels N, Tsolaki E, et al. Removal of cells from body fluids by magnetic separation in batch and continuous mode: Influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9(35): 29571-9. doi: 10.1021/acsami.7b10140 PMID: 28805365
  72. Lee S, Tae S, Jee N, Shin S. LDA-based model for measuring impact of change orders in apartment projects and its application for prerisk assessment and postevaluation. J Constr Eng Manage 2015; 141(7): 04015011. doi: 10.1061/(ASCE)CO.1943-7862.0000971
  73. Aghilinejad A, Aghaamoo M, Chen X, Xu J. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Electrophoresis 2018; 39(5-6): 869-77. doi: 10.1002/elps.201700264 PMID: 28975645
  74. Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 2017; 11(7): 6641-51. doi: 10.1021/acsnano.7b00549 PMID: 28671449
  75. Zeming KK, Thakor NV, Zhang Y, Chen CH. Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip 2016; 16(1): 75-85. doi: 10.1039/C5LC01051A PMID: 26575003
  76. Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol 2016; 11(11): 936-40. doi: 10.1038/nnano.2016.134 PMID: 27479757
  77. Malhotra H, Sheokand N, Kumar S, et al. Exosomes: Tunable nano vehicles for macromolecular delivery of transferrin and lactoferrin to specific intracellular compartment. JBN 2016; 12(5): 1101-14. doi: 10.1166/jbn.2016.2229
  78. Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta, Gen Subj 2017; 1861(1): 3164-79. doi: 10.1016/j.bbagen.2016.07.028 PMID: 27495390
  79. Zhang M, Zang X, Wang M, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J Mater Chem B Mater Biol Med 2019; 7(15): 2421-33. doi: 10.1039/C9TB00170K PMID: 32255119
  80. Peng H, Ji W, Zhao R, et al. Exosome: A significant nano-scale drug delivery carrier. J Mater Chem B Mater Biol Med 2020; 8(34): 7591-608. doi: 10.1039/D0TB01499K PMID: 32697267
  81. Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019; 20(19): 4684. doi: 10.3390/ijms20194684 PMID: 31546622
  82. Lee M, Ban JJ, Im W, Kim M. Influence of storage condition on exosome recovery. Biotechnol Bioprocess Eng; BBE 2016; 21(2): 299-304. doi: 10.1007/s12257-015-0781-x
  83. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1-2): 1-7. doi: 10.1016/j.ijpharm.2018.10.032 PMID: 30316791
  84. Shin K-O, Ha DH, Kim JO, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells 2020; 9(3): 680.
  85. Sophie N. Dermatitis atópica: Epidemiología global y factores de riesgo. Ann Nutr Metab 2015; 66(S1): 8-16.
  86. Leung DYM. Atopic dermatitis: New insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000; 105(5): 860-76. doi: 10.1067/mai.2000.106484 PMID: 10808164
  87. Leung DYM. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 2013; 62(2): 151-61. doi: 10.2332/allergolint.13-RAI-0564 PMID: 23712284
  88. Sullivan M, Silverberg NB. Current and emerging concepts in atopic dermatitis pathogenesis. Clin Dermatol 2017; 35(4): 349-53. doi: 10.1016/j.clindermatol.2017.03.006 PMID: 28709564
  89. Irvine AD, Irwin McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol 2006; 126(6): 1200-2. doi: 10.1038/sj.jid.5700365 PMID: 16702964
  90. Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): e99263. doi: 10.1172/jci.insight.99263 PMID: 29669940
  91. Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9(1): 187. doi: 10.1186/s13287-018-0939-5 PMID: 29996938
  92. Snast I, Reiter O, Hodak E, Friedland R, Mimouni D, Leshem YA. Are biologics efficacious in atopic dermatitis? A systematic review and meta-analysis. Am J Clin Dermatol 2018; 19(2): 145-65. doi: 10.1007/s40257-017-0324-7 PMID: 29098604
  93. Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 2003; 111(2): S486-94. doi: 10.1067/mai.2003.120
  94. Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 2011; 41(3): 298-310. doi: 10.1007/s12016-011-8252-4 PMID: 21249468
  95. Wollenberg A, Oppel T, Schottdorf E-M, Günther S, Moderer M, Mommaas M. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 2002; 118(2): 327-34. doi: 10.1046/j.0022-202x.2001.01665.x PMID: 11841552
  96. Schuller E, Teichmann B, Haberstok J, Moderer M, Bieber T, Wollenberg A. In situ expression of the costimulatory molecules CD80 and CD86 on Langerhans cells and inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. Arch Dermatol Res 2001; 293(9): 448-54. doi: 10.1007/s004030100263 PMID: 11758787
  97. Proksch E, Brandner JM, Jensen JM. The skin: An indispensable barrier. Exp Dermatol 2008; 17(12): 1063-72. doi: 10.1111/j.1600-0625.2008.00786.x PMID: 19043850
  98. Wang M, Zhao Y, Zhang Q. Human mesenchymal stem cellderived exosomes accelerate wound healing of mice eczema. J Dermatolog Treat 2020; 1-5. doi: 10.1080/09546634.2020.1820935 PMID: 32893705
  99. Verhagen J, Akdis M, Traidlhoffmann C, et al. Absence of Tregulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117(1): 176-83. doi: 10.1016/j.jaci.2005.10.040 PMID: 16387603
  100. Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. The role of FOXP3+ regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol 2019; 197(1): 24-35. doi: 10.1111/cei.13288
  101. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366(9498): 1736-43. doi: 10.1016/S0140-6736(05)67700-8 PMID: 16291068
  102. Park KY, Han HS, Park JW, Kwon HH, Park GH, Seo SJ. Exosomes derived from human adipose tissue derived mesenchymal stem cells for the treatment of dupilumab‐related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 2022; 21(2): 844-9. doi: 10.1111/jocd.14153
  103. Mallipeddi R. Epidermolysis bullosa and cancer. Clin Exp Dermatol 2002; 27(8): 616-23. doi: 10.1046/j.1365-2230.2002.01130.x PMID: 12472531
  104. Pitt JM, André F, Amigorena S, et al. Dendritic cell–derived exosomes for cancer therapy. JCI 2016 Apr 1; 126(4): 1224-32.
  105. Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: A review. Endocrine 2017; 57(1): 9-17. doi: 10.1007/s12020-017-1280-y PMID: 28349362
  106. Slominski A, Paus R, Plonka P, et al. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol 1994; 102(6): 862-9. doi: 10.1111/1523-1747.ep12382606 PMID: 8006449
  107. Cash TF. The psychosocial consequences of androgenetic alopecia: A review of the research literature. Br J Dermatol 1999; 141(3): 398-405. doi: 10.1046/j.1365-2133.1999.03030.x PMID: 10583042
  108. Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human hair reconstruction: Close, but yet so far. Stem Cells Dev 2016; 25(23): 1767-79. doi: 10.1089/scd.2016.0137 PMID: 27649771
  109. Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration. Stem Cells Int 2018; 2018: 1-16. doi: 10.1155/2018/1049641 PMID: 30154860
  110. Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men - short version. J Eur Acad Dermatol Venereol 2018; 32(1): 11-22. doi: 10.1111/jdv.14624 PMID: 29178529
  111. Ajit A, Nair MD, Venugopal B. Exploring the Potential of Mesenchymal Stem Cell–Derived Exosomes for the Treatment of Alopecia. Regen Eng Transl Med 2021; 7(2): 119-28. doi: 10.1007/s40883-021-00204-3
  112. Rajendran RL, Gangadaran P, Bak SS, et al. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 2017; 7(1): 15560. doi: 10.1038/s41598-017-15505-3 PMID: 29138430
  113. Zhou L, Wang H, Jing J, Yu L, Wu X, Lu Z. Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun 2018; 500(2): 325-32. doi: 10.1016/j.bbrc.2018.04.067 PMID: 29654758
  114. Limat A, Breitkreutz D, Stark HJ, et al. Experimental modulation of the differentiated phenotype of keratinocytes from epidermis andhair follicle outer root sheath and matrix cells. Ann N Y Acad Sci 1991; 642(1): 125-46. doi: 10.1111/j.1749-6632.1991.tb24385.x PMID: 1725578
  115. Taylor M, Ashcroft ATT, Westgate GE, Gibson WT, Messenger AG. Glycosaminoglycan synthesis by cultured human hair follicle dermal papilla cells: Comparison with non-follicular dermal fibroblasts. Br J Dermatol 1992; 126(5): 479-84. doi: 10.1111/j.1365-2133.1992.tb15120.x PMID: 1610689
  116. Limat A, Hunziker T, Waelti ER, Inaebnit SP, Wiesmann U, Braathen LR. Soluble factors from human hair papilla cells and dermal fibroblasts dramatically increase the clonal growth of outer root sheath cells. Arch Dermatol Res 1993; 285(4): 205-10. doi: 10.1007/BF00372010 PMID: 8342964
  117. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002; 118(2): 216-25. doi: 10.1046/j.0022-202x.2001.01670.x PMID: 11841536
  118. Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: A potential alternative therapeutic agent in orthopaedics. Stem Cells Int 2016; 2016: 1-6. doi: 10.1155/2016/5802529 PMID: 26904130
  119. Wong T, Gammon L, Liu L, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2008; 128(9): 2179-89. doi: 10.1038/jid.2008.78 PMID: 18385758
  120. Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res 2017; 6(1): 6-20. doi: 10.5582/irdr.2017.01005 PMID: 28357176
  121. Mallipeddi R. Epidermolysis bullosa and cancer. Clin Exp Dermatol 2002; 27(8): 616-23. doi: 10.1046/j.1365-2230.2002.01130.x PMID: 12472531
  122. McBride JD, Rodriguez-Menocal L, Candanedo A, Guzman W, Garcia-Contreras M, Badiavas EV. Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. Biochimie 2018; 155: 50-8. doi: 10.1016/j.biochi.2018.04.007 PMID: 29653141
  123. Tanabe T, Maeda M, Saito K, Katada T. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol Biol Cell 2016; 27(13): 2008-13. doi: 10.1091/mbc.E16-03-0180 PMID: 27170179
  124. Malhotra V, Erlmann P. The pathway of collagen secretion. Annu Rev Cell Dev Biol 2015; 31(1): 109-24. doi: 10.1146/annurev-cellbio-100913-013002 PMID: 26422332
  125. Christiano AM, Amano S, Eichenfield LF, Burgeson RE, Uitto J. Premature termination codon mutations in the type VII collagen gene in recessive dystrophic epidermolysis bullosa result in nonsense-mediated mRNA decay and absence of functional protein. J Invest Dermatol 1997; 109(3): 390-4. doi: 10.1111/1523-1747.ep12336276 PMID: 9284110
  126. Moon JH, Kwak SS, Park G, et al. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells. Stem Cells Dev 2008; 17(4): 713-24. doi: 10.1089/scd.2007.0210 PMID: 18710345
  127. Jannati P, Aref S, Jannati AA, Jannati F, Moravvej H. Comparison of therapeutic response of keloids to cryotherapy plus intralesional triamcinolone acetonide or verapamil hydrochloride. J Skin Stem Cell 2015; 2(1): jssc2928. doi: 10.17795/jssc2928
  128. Bayat A, Arscott G, Ollier WER, Mc Grouther DA, Ferguson MWJ. Keloid disease: Clinical relevance of single versus multiple site scars. Br J Plast Surg 2005; 58(1): 28-37. doi: 10.1016/j.bjps.2004.04.024 PMID: 15629164
  129. Lee G, Hunter-Smith DJ, Rozen WM. Autologous fat grafting in keloids and hypertrophic scars: A review. Scars Burn Heal 2017; 3. doi: 10.1177/2059513117700157 PMID: 29799555
  130. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2010; 18(2): 139-53. doi: 10.1111/j.1524-475X.2009.00553.x PMID: 20002895
  131. Michael O. The search for the genetic basis of african keloids. Ann Ib Postgrad Med 2012; 10(2): 53-5.
  132. Naylor M, Brissett A. Current concepts in the etiology and treatment of keloids. Facial Plast Surg 2012; 28(5): 504-12. doi: 10.1055/s-0032-1325644 PMID: 23027217
  133. Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatol 2009; 9(1): 8. doi: 10.1186/1471-5945-9-8 PMID: 19638218
  134. Rabello FB, Souza CD, Júnior JAF. Update on hypertrophic scar treatment. Clinics 2014; 69(8): 565-73. doi: 10.6061/clinics/2014(08)11 PMID: 25141117
  135. Olaitan P, Olabanji J, Oladele A, Oseni G. Symptomatology of keloids in Africans. J Biomed Res 2013; 5(1): 29-33. PMID: 23554791
  136. Gauglitz G, Ngwane S. Management of keloids and hypertrophic scars: current and emerging options. Clin Cosmet Investig Dermatol 2013; 6(2): 103. doi: 10.2147/CCID.S35252
  137. Goyal S, Saini I, Goyal S. Familial keloid in Indian Scenario: Case report and review of literature. OAlib 2015; 2(7): 1-4. doi: 10.4236/oalib.1101578
  138. Berman B, Elston D. Keloid and Hypertrophic Scar Clinical Presentation Med 2016.
  139. Shaheen A, Khaddam J, Kesh F. Risk factors of keloids in Syrians. BMC Dermatol 2016; 16(1): 13. doi: 10.1186/s12895-016-0050-5 PMID: 27646558
  140. Marneros AG, Norris JEC, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 2004; 122(5): 1126-32. doi: 10.1111/j.0022-202X.2004.22327.x PMID: 15140214
  141. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol Med 2011; 17(1-2): 113-25. doi: 10.2119/molmed.2009.00153 PMID: 20927486
  142. Mandal A, Imran D, Rao GS. Spontaneous keloids in siblings. Ir Med J 2004; 97(8): 250-1. PMID: 15532974
  143. Cheraghi N, Cognetta A Jr, Goldberg D. Radiation therapy for the adjunctive treatment of surgically excised keloids: a review. J Clin Aesthet Dermatol 2017; 10(8): 12-5. PMID: 28979658
  144. Wu ZY, Zhang HJ, Zhou ZH, et al. The effect of inhibiting exosomes derived from adipose-derived stem cells via the TGFβ1/Smad pathway on the fibrosis of keloid fibroblasts. Gland Surg 2021; 10(3): 1046-56. doi: 10.21037/gs-21-4 PMID: 33842249
  145. Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 2016; 8(9): a022061. doi: 10.1101/cshperspect.a022061 PMID: 27449815
  146. Meng XM, Tang PMK, Li J, Lan HY. TGF-Î2/Smad signaling in renal fibrosis. Front Physiol 2015; 6: 82. doi: 10.3389/fphys.2015.00082 PMID: 25852569
  147. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016; 64(3): 157-67. doi: 10.1369/0022155415627681 PMID: 26747705
  148. Fang S, Xu C, Zhang YT, et al. Umbilical cord derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-oblasts fibroblast functionnd healing. Stem Cells Transl Med 2016; 5: 1425-39. doi: 10.5966/sctm.2015-0367 PMID: 27388239
  149. Litin SC. Mayo Clinic Family Health Book. 5th Edition: Completely Revised and Updated. RochesterMN: Mayo Clinic Press 2018.
  150. Berwick M, Erdei E, Hay J. Melanoma epidemiology and public health. Dermatol Clin 2009 Apr 1; 27(2): 205-14.
  151. Balch CM, Gershenwald JE, Soong S, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27(36): 6199-206. doi: 10.1200/JCO.2009.23.4799 PMID: 19917835
  152. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ 2012; 345(jul24 2): e4757. doi: 10.1136/bmj.e4757 PMID: 22833605
  153. Rhodes AR, Weinstock MA, Fitzpatrick TB, Mihm MC Jr, Sober AJ. Risk factors for cutaneous melanoma. A practical method of recognizing predisposed individuals. JAMA 1987; 258(21): 3146-54. doi: 10.1001/jama.1987.03400210088032 PMID: 3312689
  154. Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C. Sun exposure and risk of melanoma. Arch Dis Child 2005; 91(2): 131-8. doi: 10.1136/adc.2005.086918 PMID: 16326797
  155. Azoury SC, Lange JR. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am 2014; 94(5): 945-62. vii doi: 10.1016/j.suc.2014.07.013 PMID: 25245960
  156. Perkins A, Duffy RL. Atypical moles: Diagnosis and management. AFP 2015; 91(11): 762-7. PMID: 26034853
  157. Chin L, Garraway LA, Fisher DE. Malignant melanoma: Genetics and therapeutics in the genomic era. Genes Dev 2006; 20(16): 2149-82. doi: 10.1101/gad.1437206 PMID: 16912270
  158. Balsamo M, Pietra G, Vermi W, Moretta L, Mingari MC, Vitale M. Melanoma immunoediting by NK cells. OncoImmunology 2012; 1(9): 1607-9. doi: 10.4161/onci.21456 PMID: 23264909
  159. Sconocchia G, Arriga R, Tornillo L, Terracciano L, Ferrone S, Spagnoli GC. Melanoma cells inhibit NK cell functions. Cancer Res 2012; 72(20): 5428-9. doi: 10.1158/0008-5472.CAN-12-1181 PMID: 23047870
  160. Kalimuthu S, Gangadaran P, Li XJ, et al. In vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Sci Rep 2016; 6(1): 30418. doi: 10.1038/srep30418 PMID: 27452924
  161. Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derivedexosomes: Results of thefirst phase I clinical trial. J Transl Med 2005; 3(1): 10. doi: 10.1186/1479-5876-3-10 PMID: 15740633
  162. Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 2017; 7(10): 2732-45. doi: 10.7150/thno.18752 PMID: 28819459
  163. Shimasaki N, Coustan-Smith E, Kamiya T, Campana D. Expanded and armed natural killer cells for cancer treatment. Cytotherapy 2016; 18(11): 1422-34. doi: 10.1016/j.jcyt.2016.06.013 PMID: 27497701
  164. Hellström I, Hellström KE. Cytotoxic effect of lymphocytes from pregnant mice on cultivated tumor cells. I. Specificity, nature of effector cells and blocking by serum. Int J Cancer 1975; 15(1): 1-16. doi: 10.1002/ijc.2910150102 PMID: 1168624
  165. Fais S. NK cell-released exosomes. OncoImmunology 2013; 2(1): e22337. doi: 10.4161/onci.22337 PMID: 23482694
  166. Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013; 335(1): 201-4. doi: 10.1016/j.canlet.2013.02.019 PMID: 23419525
  167. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295(5562): 2097-100. doi: 10.1126/science.1068440 PMID: 11896281
  168. Chen X, Han J, Chu J, et al. A combinational therapy of EGFRCAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 2016; 7(19): 27764-77. doi: 10.18632/oncotarget.8526 PMID: 27050072
  169. Augstein P, Heinke P, Schober C, Salzsieder E. Impact of cytokineand FasL-induced apoptosis in the β-cell line NIT-1. Horm Metab Res 2009; 41(3): 207-12. doi: 10.1055/s-0028-1093343 PMID: 18975252
  170. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016; 17(9): 1025-36. doi: 10.1038/ni.3518 PMID: 27540992
  171. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2(10): 735-47. doi: 10.1038/nri911 PMID: 12360212
  172. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: A comprehensive review. J Autoimmun 2015; 64: 66-73. doi: 10.1016/j.jaut.2015.07.008 PMID: 26215033
  173. Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: A comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377-89. doi: 10.1007/s12016-016-8535-x PMID: 27025861
  174. Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020; 323(19): 1945-60. doi: 10.1001/jama.2020.4006 PMID: 32427307
  175. World Health Organization. Global report on psoriasis 2016. Available from http://apps. who. int/iris/handle/10665/204417
  176. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol 2017; 31(2): 205-12. doi: 10.1111/jdv.13854 PMID: 27573025
  177. Boehncke WH, Schön MP. Psoriasis. Lancet 2015; 386(9997): 983-94. doi: 10.1016/S0140-6736(14)61909-7 PMID: 26025581
  178. Augustin M, Glaeske G, Radtke MA, Christophers E, Reich K, Schäfer I. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol 2010; 162(3): 633-6. doi: 10.1111/j.1365-2133.2009.09593.x PMID: 19922529
  179. Huerta C, Rivero E, Rodríguez LAG. Incidence and risk factors for psoriasis in the general population. Arch Dermatol 2007; 143(12): 1559-65. doi: 10.1001/archderm.143.12.1559 PMID: 18087008
  180. Brandon A, Mufti A, Gary Sibbald R. Diagnosis and management of cutaneous psoriasis: a review. Adv Skin Wound Care 2019; 32(2): 58-69. doi: 10.1097/01.ASW.0000550592.08674.43 PMID: 30653184
  181. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475. doi: 10.3390/ijms20061475 PMID: 30909615
  182. Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician 2017; 63(4): 278-85. PMID: 28404701
  183. Malatjalian DA, Ross JB, Williams CN, Colwell SJ, Eastwood BJ. Methotrexate hepatotoxicity in psoriatics: report of 104 patients from Nova Scotia, with analysis of risks from obesity, diabetes and alcohol consumption during long term follow-up. Can J Gastroenterol 1996; 10(6): 369-75. doi: 10.1155/1996/213596 PMID: 9193771
  184. Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Int J Mol Sci 2021; 22(2): 720. doi: 10.3390/ijms22020720 PMID: 33450859
  185. Dahl MV, Lindroos WE, Nelson RD. Chemokinetic and chemotactic factors in psoriasis scale extracts. J Invest Dermatol 1978; 71(6): 402-6. doi: 10.1111/1523-1747.ep12558281 PMID: 722120
  186. Weiss VC, van Den Broek H, Barrett S, West DP. Immunopathology of psoriasis: a comparison with other parakeratotic lesions. J Invest Dermatol 1982; 78(3): 256-60. doi: 10.1111/1523-1747.ep12506623 PMID: 7057057
  187. Terui T, Kato T, Tagami H. Stratum corneum activation of complement through the antibody-independent alternative pathway. J Invest Dermatol 1989; 92(4): 593-7. doi: 10.1111/1523-1747.ep12709634 PMID: 2649596
  188. Zhang Y, Yan J, Li Z, Zheng J, Sun Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasislike skin inflammation. J Interferon Cytokine Res 2022; 42(1): 8-18. doi: 10.1089/jir.2021.0146 PMID: 35041513
  189. Zhu Z, Tang H, Zhu Y, Wang H, Shen Y. Exosomes From ADSCs Attenuate Bleomycin-Induced Skin Fibrosis And Oxidative Stress In Scleroderma via Circ-Zfyve9 Delivery 2021. Available from https://www.researchsquare.com/article/rs-551751/v1 doi: 10.21203/rs.3.rs-551751/v1
  190. Yamamoto T, Takagawa S, Katayama I, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999; 112(4): 456-62. doi: 10.1046/j.1523-1747.1999.00528.x PMID: 10201529
  191. Allanore Y, Distler O. Advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015; 11(2): 72-4. doi: 10.1038/nrrheum.2014.222 PMID: 25561368
  192. Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010; 69(10): 1809-15. doi: 10.1136/ard.2009.114264 PMID: 20551155
  193. Shah AA, Wigley FM. My approach to the treatment of scleroderma. Mayo Clin Proc 2013; 88(4): 377-93. doi: 10.1016/j.mayocp.2013.01.018
  194. Ranque B, Mouthon L. Geoepidemiology of systemic sclerosis. Autoimmun Rev 2010; 9(5): A311-8. doi: 10.1016/j.autrev.2009.11.003 PMID: 19906362
  195. Hussein M, Hassan H, Hofny E, et al. Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor α in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J Clin Pathol 2005; 58(2): 178-84. doi: 10.1136/jcp.2004.019224
  196. Gustafsson R, Tötterman TH, Klareskog L, Hällgren R. Increase in activated T cells and reduction in suppressor inducer T cells in systemic sclerosis. Ann Rheum Dis 1990; 49(1): 40-5. doi: 10.1136/ard.49.1.40 PMID: 2138008
  197. Riccieri V, Parisi G, Spadaro A, et al. Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol 2005; 32(2): 283-6. PMID: 15693088
  198. Masi AT. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980; 23(5): 581-90. doi: 10.1002/art.1780230510 PMID: 7378088
  199. Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology 2006; 45 (Suppl. 3): 23-5. doi: 10.1093/rheumatology/kel285 PMID: 16987826
  200. Artlett CM. Immunology of systemic sclerosis. Front Biosci 2005; 10(1-3): 1707-19. doi: 10.2741/1654 PMID: 15769660
  201. Wei J, Bhattacharyya S, Tourtellotte WG, Varga J. Fibrosis in systemic sclerosis: Emerging concepts and implications for targeted therapy. Autoimmun Rev 2011; 10(5): 267-75. doi: 10.1016/j.autrev.2010.09.015 PMID: 20863909
  202. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117(3): 557-67. doi: 10.1172/JCI31139 PMID: 17332883
  203. Higashi-Kuwata N, Jinnin M, Makino T, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 2010; 12(4): R128. doi: 10.1186/ar3066 PMID: 20602758
  204. Huang J, Maier C, Zhang Y, et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann Rheum Dis 2017; 76(11): 1941-8. doi: 10.1136/annrheumdis-2016-210823 PMID: 28814429
  205. Colletti M, Galardi A. Santis Exosomes in systemic sclerosis: messengers between immune, vascular and fibrotic components? Int J Mol Sci 2019; 20(18): 4337. doi: 10.3390/ijms20184337 PMID: 31487964
  206. Jin J, Qingjian O, Wang Z, et al. BMSC-Derived exosomes intervened the pathogenic changes of scleroderma in mouse through its microRNAs 2021. Available from https://www.researchsquare. com/article/rs-222441/v1 doi: 10.21203/rs.3.rs-222441/v1
  207. Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 2016; 7(2): 100-13. doi: 10.1007/s13238-015-0212-y PMID: 26399619

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers