The Potential of Stem Cells in Treating Breast Cancer


Cite item

Full Text

Abstract

There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.

About the authors

Deepika Yadav

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Email: info@benthamscience.net

Pramod Sharma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Prem Mishra

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94(2): 153-6. doi: 10.1002/ijc.1440 PMID: 11668491
  2. Roukos DH, Murray S, Briasoulis E. Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer Biol Ther 2007; 6(3): 308-12. doi: 10.4161/cbt.6.3.3994 PMID: 17387266
  3. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121(7): 2750-67. doi: 10.1172/JCI45014 PMID: 21633166
  4. Akashi K, Weissman IL. Developmental Biology of HematopoiesisedZon, LI. New York Oxford University Press 2001; pp. 15-34.
  5. Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60(2): 73-100. doi: 10.1002/mc.23277 PMID: 33428807
  6. Tu SM, Lin SH, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol 2002; 3(8): 508-13. doi: 10.1016/S1470-2045(02)00820-3 PMID: 12147437
  7. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414(6859): 92-7. doi: 10.1038/35102154 PMID: 11689953
  8. Zhang T, Zhou H, Wang K, et al. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. In: Biomedicine & Pharmacotherapy. Amsterdam Elsevie 2022; Vol. 147: p. 112616. doi: 10.1016/j.biopha.2022.112616
  9. Forbes SA, Bindal N, Bamford S, et al. COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2011; 39: D945-50. doi: 10.1093/nar/gkq929 PMID: 20952405
  10. Bergamaschi A, Kim YH, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006; 45(11): 1033-40. doi: 10.1002/gcc.20366 PMID: 16897746
  11. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: The important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2018; 25(4): 392-401. doi: 10.1007/s12282-017-0812-x PMID: 29086897
  12. Paplomata E, O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Ther Adv Med Oncol 2014; 6(4): 154-66. doi: 10.1177/1758834014530023 PMID: 25057302
  13. Van Keymeulen A, Lee MY, Ousset M, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 2015; 525(7567): 119-23. doi: 10.1038/nature14665 PMID: 26266985
  14. Lawson DA, Bhakta NR, Kessenbrock K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 2015; 526(7571): 131-5. doi: 10.1038/nature15260 PMID: 26416748
  15. Young A, Quandt Z, Bluestone JA. The balancing act between cancer immunity and autoimmunity in response to immunotherapy. Cancer Immunol Res 2018; 6(12): 1445-52. doi: 10.1158/2326-6066.CIR-18-0487 PMID: 30510057
  16. Gomes JPA, Assoni AF, Pelatti M, Coatti G, Okamoto OK, Zatz M. Deepening a simple question: Can MSCs be used to treat cancer? Anticancer Res 2017; 37(9): 4747-58. PMID: 28870893
  17. Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2003; 22(21): 3205-12. doi: 10.1038/sj.onc.1206394 PMID: 12761490
  18. (a) Malumbres M. Cyclins and related kinases in cancer cells. J Buon 2016; 12 (Suppl. 1): 45-52.; (b) Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res 2016; 18: 17.
  19. Said MA, Abdelrahman MA, Abourehab MAS, Fares M, Eldehna WM. A patent review of anticancer CDK2 inhibitors (2017–present). Expert Opin Ther Pat 2022; 32(8): 885-98. doi: 10.1080/13543776.2022.2078193 PMID: 35583393
  20. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132(3): 344-62. doi: 10.1016/j.cell.2008.01.020 PMID: 18267068
  21. Poma P, Labbozzetta M, D’Alessandro N, Notarbartolo M. NF-κB is a potential molecular drug target in triple-negative breast cancers. OMICS 2017; 21(4): 225-31. doi: 10.1089/omi.2017.0020 PMID: 28388298
  22. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 2018; 23(2): 181-192.e5. doi: 10.1016/j.stem.2018.06.002 PMID: 30082067
  23. Kooreman NG, Kim Y, de Almeida PE, et al. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 2018; 22(4): 501-513.e7. doi: 10.1016/j.stem.2018.01.016 PMID: 29456158
  24. Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15(8): 907-13. doi: 10.1038/nm.2000 PMID: 19648928
  25. Lou W, Liu J, Gao Y, et al. MicroRNA regulation of liver cancer stem cells. Am J Cancer Res 2018; 8(7): 1126-41. PMID: 30094089
  26. Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resist 2021; 4(2): 321-42. doi: 10.20517/cdr.2020.106 PMID: 35582030
  27. Akbarzadeh M, Maroufi NF, Tazehkand AP, et al. Current approaches in identification and isolation of cancer stem cells. J Cell Physiol 2019; 234(9): 14759-72. doi: 10.1002/jcp.28271 PMID: 30741412
  28. Ouyang X, Telli ML, Wu JC. Induced pluripotent stem cell-based cancer vaccines. Front Immunol 2019; 10: 1510. doi: 10.3389/fimmu.2019.01510 PMID: 31338094
  29. Wicha MS. Breast cancer stem cells: The other side of the story. Stem Cell Rev 2007; 3(2): 110-2. doi: 10.1007/s12015-007-0016-4 PMID: 17873342
  30. Dick JE. Looking ahead in cancer stem cell research. Nat Biotechnol 2009; 27(1): 44-6. doi: 10.1038/nbt0109-44 PMID: 19131997
  31. Neveu P, Kye MJ, Qi S, et al. MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 2010; 7(6): 671-81. doi: 10.1016/j.stem.2010.11.012 PMID: 21112562
  32. Qian S, Ding J, Xie R, et al. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem Biophys Res Commun 2008; 377(2): 668-73. doi: 10.1016/j.bbrc.2008.10.052 PMID: 18948085
  33. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901-6. doi: 10.1038/35002607 PMID: 10706289
  34. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009; 324(5935): 1670-3. doi: 10.1126/science.1171837 PMID: 19556499
  35. Zhang H, Wang ZZ. Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem 2008; 103(3): 709-18. doi: 10.1002/jcb.21460 PMID: 17647265
  36. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  37. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1(1): 55-70. doi: 10.1016/j.stem.2007.05.014 PMID: 18371336
  38. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448(7151): 313-7. doi: 10.1038/nature05934 PMID: 17554338
  39. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95(3): 379-91. doi: 10.1016/S0092-8674(00)81769-9 PMID: 9814708
  40. Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochim Biophys Acta Gene Regul Mech 2014; 1839(3): 138-54. doi: 10.1016/j.bbagrm.2013.10.001 PMID: 24145198
  41. Du Z, Jia D, Liu S, et al. Oct4 is expressed in human gliomas and promotes colony formation in glioma cells. Glia 2009; 57(7): 724-33. doi: 10.1002/glia.20800 PMID: 18985733
  42. Murakami S, Ninomiya W, Sakamoto E, Shibata T, Akiyama H, Tashiro F. SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets. Stem Cells 2015; 33(9): 2652-63. doi: 10.1002/stem.2059 PMID: 26013162
  43. Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, et al. Sox2: A possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 2007; 20(4): 474-81. doi: 10.1038/modpathol.3800760 PMID: 17334350
  44. Hägerstrand D, He X, Bradic Lindh M, et al. Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile. Neuro-oncol 2011; 13(11): 1178-91. doi: 10.1093/neuonc/nor113 PMID: 21940738
  45. Gwak JM, Kim M, Kim HJ, Jang MH, Park SY. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance. Oncotarget 2017; 8(22): 36305-18. doi: 10.18632/oncotarget.16750 PMID: 28422735
  46. Song B, Kim DK, Shin J, et al. OCT4 directly regulates stemness and extracellular matrix-related genes in human germ cell tumours. Biochem Biophys Res Commun 2018; 503(3): 1980-6. doi: 10.1016/j.bbrc.2018.07.145 PMID: 30078675
  47. Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65(13): 5506-11. doi: 10.1158/0008-5472.CAN-05-0626 PMID: 15994920
  48. Chen YC, Hsu HS, Chen YW, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008; 3(7): e2637. doi: 10.1371/journal.pone.0002637 PMID: 18612434
  49. Gangemi RMR, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009; 27(1): 40-8. doi: 10.1634/stemcells.2008-0493 PMID: 18948646
  50. Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 2012; 31(18): 2270-82. doi: 10.1038/onc.2011.405 PMID: 21927024
  51. Boumahdi S, Driessens G, Lapouge G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511(7508): 246-50. doi: 10.1038/nature13305 PMID: 24909994
  52. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113(5): 643-55. doi: 10.1016/S0092-8674(03)00392-1 PMID: 12787505
  53. Nagata T, Shimada Y, Sekine S, et al. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer 2014; 21(1): 96-101. doi: 10.1007/s12282-012-0357-y PMID: 22528804
  54. Lin T, Ding YQ, Li JM. Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol 2012; 29(2): 878-85. doi: 10.1007/s12032-011-9860-9 PMID: 21336986
  55. Yu CC, Chen YW, Chiou GY, et al. MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol 2011; 47(3): 202-10. doi: 10.1016/j.oraloncology.2010.12.001 PMID: 21292542
  56. Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010; 70(24): 10433-44. doi: 10.1158/0008-5472.CAN-10-2638 PMID: 21159654
  57. Meng HM, Zheng P, Wang XY, et al. Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 2010; 9(4): 295-302. doi: 10.4161/cbt.9.4.10666 PMID: 20026903
  58. Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 2012; 30(10): 2076-87. doi: 10.1002/stem.1182 PMID: 22851508
  59. Wang XQ, Ng RK, Ming X, et al. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines. PLoS One 2013; 8(9): e72435. doi: 10.1371/journal.pone.0072435 PMID: 24023739
  60. Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27(5): 993-1005. doi: 10.1002/stem.29 PMID: 19415763
  61. Lu Y, Zhu H, Shan H, et al. Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Lett 2013; 340(1): 113-23. doi: 10.1016/j.canlet.2013.07.009 PMID: 23872274
  62. Flandez M, Guilmeau S, Blache P, Augenlicht LH. KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res 2008; 314(20): 3712-23. doi: 10.1016/j.yexcr.2008.10.004 PMID: 18977346
  63. Cho YG, Song JH, Kim CJ, et al. Genetic and epigenetic analysis of the KLF4 gene in gastric cancer. Acta Pathol Microbiol Scand Suppl 2007; 115(7): 802-8. doi: 10.1111/j.1600-0463.2007.apm_643.x PMID: 17614846
  64. Bianchi F, Hu J, Pelosi G, et al. Lung cancers detected by screening with spiral computed tomography have a malignant phenotype when analyzed by cDNA microarray. Clin Cancer Res 2004; 10(18): 6023-8. doi: 10.1158/1078-0432.CCR-04-0619 PMID: 15447986
  65. Li Q, et al. Dysregulated Kruppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma. Gastroenterology 2012; 143(3): 799-810.
  66. Zhou W, Wang G, Guo S. Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta 2013; 1836(2): 304-20. PMID: 24183943
  67. Okita K, Izumi N, Matsui O, et al. Peretinoin after curative therapy of hepatitis C-related hepatocellular carcinoma: A randomized double-blind placebo-controlled study. J Gastroenterol 2015; 50(2): 191-202. doi: 10.1007/s00535-014-0956-9 PMID: 24728665
  68. Venook AP, Papandreou C, Furuse J, Ladrón de Guevara L. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist 2010; 15 (Suppl. 4): 5-13. doi: 10.1634/theoncologist.2010-S4-05 PMID: 21115576
  69. Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45(4): 529-38. doi: 10.1016/j.jhep.2006.05.013 PMID: 16879891
  70. Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499(7456): 97-101. doi: 10.1038/nature12347
  71. Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479(7374): 547-51. doi: 10.1038/nature10599 PMID: 22080947
  72. Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531(7593): 253-7. doi: 10.1038/nature16969 PMID: 26934227
  73. Zeng H, Zheng R, Guo Y, et al. Cancer survival in China, 2003-2005: A population-based study. Int J Cancer 2015; 136(8): 1921-30. doi: 10.1002/ijc.29227 PMID: 25242378
  74. Leong KG, Niessen K, Kulic I, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 2007; 204(12): 2935-48. doi: 10.1084/jem.20071082 PMID: 17984306
  75. Zardawi SJ, Zardawi I, McNeil CM, et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology 2010; 56(3): 286-96. doi: 10.1111/j.1365-2559.2009.03475.x PMID: 20459529
  76. Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res 2010; 16(12): 3141-52. doi: 10.1158/1078-0432.CCR-09-2823 PMID: 20530696
  77. Maroufi NF, Rashidi M, Vahedian V, et al. Effect of Apatinib plus melatonin on vasculogenic mimicry formation by cancer stem cells from breast cancer cell line. Breast Cancer 2022; 29(2): 260-73. doi: 10.1007/s12282-021-01310-4 PMID: 34725795
  78. Harrison H, Farnie G, Howell SJ, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 2010; 70(2): 709-18. doi: 10.1158/0008-5472.CAN-09-1681 PMID: 20068161
  79. Kim W, Khan SK, Gvozdenovic-Jeremic J, et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2016; 127(1): 137-52. doi: 10.1172/JCI88486 PMID: 27869648
  80. Nandi SK, Roychowdhury T, Chattopadhyay S, et al. Deregulation of the CD44-NANOG-MDR1 associated chemoresistance pathways of breast cancer stem cells potentiates the anti-cancer effect of Kaempferol in synergism with Verapamil. Toxicol Appl Pharmacol 2022; 437: 115887. doi: 10.1016/j.taap.2022.115887
  81. O’Brien CS, Farnie G, Howell SJ, Clarke RB. Breast cancer stem cells and their role in resistance to endocrine therapy. Horm Cancer 2011; 2(2): 91-103. doi: 10.1007/s12672-011-0066-6 PMID: 21761332
  82. Li N, Singh S, Cherukuri P, et al. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 2008; 26(5): 1253-64. doi: 10.1634/stemcells.2007-0691 PMID: 18292212
  83. Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: A review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front Oncol 2022; 12: 856974. doi: 10.3389/fonc.2022.856974 PMID: 35392236
  84. Iwasaki H. Leukemia stem cell. Gan To Kagaku Ryoho 2014; 41(3): 280-4. PMID: 24743272
  85. Elliott A, Adams J, Al-Hajj M. The ABCs of cancer stem cell drug resistance. IDrugs 2010; 13(9): 632-5. PMID: 20799146
  86. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120(1): 41-50. doi: 10.1172/JCI41004 PMID: 20051635
  87. Malanchi I. Tumour cells coerce host tissue to cancer spread. Bonekey Rep 2013; 2: 371. doi: 10.1038/bonekey.2013.105 PMID: 24422098
  88. Burnett JP, Lim G, Li Y, et al. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett 2017; 394: 52-64. doi: 10.1016/j.canlet.2017.02.023 PMID: 28254410
  89. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011; 121(10): 3804-9. doi: 10.1172/JCI57099 PMID: 21965337
  90. Kishimoto T. IL-6: From its discovery to clinical applications. Int Immunol 2010; 22(5): 347-52. doi: 10.1093/intimm/dxq030 PMID: 20410258
  91. (a) Lagadec C, Vlashi E, Della Donna L, et al. Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 2010; 12(1): R13. doi: 10.1186/bcr2479 PMID: 20158881; (b) Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98(24): 1777-85. doi: 10.1093/jnci/djj495 PMID: 17179479
  92. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780-3. doi: 10.1038/nature07733 PMID: 19194462
  93. Yin H, Glass J. The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 2011; 6(9): e24080. doi: 10.1371/journal.pone.0024080 PMID: 21935375
  94. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30. doi: 10.3322/caac.21442 PMID: 29313949
  95. Honeth G, Bendahl PO, Ringnér M, et al. The CD44+/CD24-phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10(3): R53. doi: 10.1186/bcr2108 PMID: 18559090
  96. Niknam MR, Attari F. The potential applications of stem cells for cancer treatment. Curr Stem Cell Res Ther 2022; 17(1): 26-42. doi: 10.2174/1574888X16666210810100858
  97. Yildiz Kabak V, Gursen C, Aytar A, Akbayrak T, Duger T. Physical activity level, exercise behavior, barriers, and preferences of patients with breast cancer–related lymphedema. Support Care Cancer 2021; 29(7): 3593-602. doi: 10.1007/s00520-020-05858-3 PMID: 33170403
  98. Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27(47): 6120-30. doi: 10.1038/onc.2008.207 PMID: 18591932
  99. Luo M, Shang L, Brooks MD, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab 2018; 28(1): 69-86.e6. doi: 10.1016/j.cmet.2018.06.006 PMID: 29972798
  100. Lee A, Djamgoz MBA. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 2018; 62: 110-22. doi: 10.1016/j.ctrv.2017.11.003 PMID: 29202431
  101. Bhat V, Allan AL, Raouf A. Role of the microenvironment in regulating normal and cancer stem cell activity: Implications for breast cancer progression and therapy response. Cancers (Basel) 2019; 11(9): 1240. doi: 10.3390/cancers11091240 PMID: 31450577
  102. Palomeras S, Ruiz-Martínez S, Puig T. Targeting breast cancer stem cells to overcome treatment resistance. Molecules 2018; 23(9): 2193. doi: 10.3390/molecules23092193 PMID: 30200262
  103. Yin S, Xu L, Bandyopadhyay S, Sethi S, Reddy KB. Cisplatin and TRAIL enhance breast cancer stem cell death. Int J Oncol 2011; 39(4): 891-8. PMID: 21687939
  104. Tanei T, Choi DS, Rodriguez AA, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res 2016; 18(1): 6. doi: 10.1186/s13058-015-0662-4 PMID: 26757880
  105. Liu J, Pan S, Hsieh MH, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA 2013; 110(50): 20224-9. doi: 10.1073/pnas.1314239110 PMID: 24277854
  106. Pradhan AU, Uwishema O, Onyeaka H, Adanur I, Dost B. A review of stem cell therapy: An emerging treatment for dementia in Alzheimer’s and Parkinson’s disease. Brain Behav 2022; 12(9): e2740. doi: 10.1002/brb3.2740 PMID: 35971625
  107. Sridharan S, Robeson M, Bastihalli-Tukaramrao D, et al. targeting of the eukaryotic translation initiation factor 4a against breast cancer stemness. Front Oncol 2019; 9: 1311. doi: 10.3389/fonc.2019.01311 PMID: 31867270
  108. Gonçalves A, Pierga J-Y, Brain E, et al. Abstract OT2-3-05: AVASTEM: A phase II randomized trial evaluating anti-cancer stem cell activity of pre-operative bevacizumab and chemotherapy in breast cancer. Cancer Res 2012; 72(24_Supplement): OT2-3-05. doi: 10.1158/0008-5472.SABCS12-OT2-3-05
  109. Pei J, Wang Y, Li Y. Identification of key genes controlling breast cancer stem cell characteristics via stemness indices analysis. J Transl Med 2020; 18(1): 74. doi: 10.1186/s12967-020-02260-9 PMID: 32050983
  110. Fonseca NA, Rodrigues AS, Rodrigues-Santos P, et al. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials 2015; 69: 76-88. doi: 10.1016/j.biomaterials.2015.08.007 PMID: 26283155

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers