Induced Pluripotent Stem Cells in the Era of Precise Genome Editing


Цитировать

Полный текст

Аннотация

Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.

Об авторах

Meeti Punetha

Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes

Email: info@benthamscience.net

Sheetal Saini

Animal Physiology and Reproduction Division, Central Institute for Research on Buffaloes

Email: info@benthamscience.net

Suman Chaudhary

Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes

Email: info@benthamscience.net

Prem Yadav

Animal Physiology and Reproduction Division, Central Institute for Research on Buffaloes

Email: info@benthamscience.net

Kristin Whitworth

Division of Animal Sciences,, University of Missouri

Email: info@benthamscience.net

Jonathan Green

Division of Animal Sciences, University of Missouri

Email: info@benthamscience.net

Dharmendra Kumar

Animal Physiology and Reproduction Division,, ICAR-Central Institute for Research on Buffaloes

Автор, ответственный за переписку.
Email: info@benthamscience.net

Wilfried Kues

Department of Biotechnology, Friedrich-Loeffler-Institut,, Federal Research Institute for Animal Health, Stem Cell Physiology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  2. Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells. Cell Biol Toxicol 2017; 33(2): 99-112. doi: 10.1007/s10565-016-9370-9 PMID: 27900567
  3. Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12(7): 527-44. doi: 10.4252/wjsc.v12.i7.527 PMID: 32843912
  4. Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13(1): 1-29. doi: 10.4252/wjsc.v13.i1.1 PMID: 33584977
  5. Punetha M, Bajwa KK, Dua S, et al. Pluripotent stem cells for livestock health and production. Curr Stem Cell Res Ther 2022; 17(3): 252-66. doi: 10.2174/1574888X16666210803162019 PMID: 34344296
  6. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16(2): 115-30. doi: 10.1038/nrd.2016.245 PMID: 27980341
  7. Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341. doi: 10.1186/s13287-019-1455-y PMID: 31753034
  8. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68. doi: 10.1186/s13287-019-1165-5 PMID: 30808416
  9. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 2013; 12(4): 393-4. doi: 10.1016/j.stem.2013.03.006 PMID: 23561441
  10. Bauer DE, Canver MC, Orkin SH. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp 2014; 95(83): e52118. doi: 10.3791/52118 PMID: 25549070
  11. Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2015; 43(3): e21. doi: 10.1093/nar/gku1246 PMID: 25414332
  12. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57. doi: 10.1080/10717544.2018.1474964 PMID: 29801422
  13. Kumar D, Kues WA. Application of genome editing in farm animals. In: Genomics and biotechnological advances in veterinary, poultry, and fisheries. USA Academic Press 2019; pp. 131-49. doi: 10.1016/B978-0-12-816352-8.00005-9
  14. Kumar S, Punetha M, Jose B, et al. Modulation of granulosa cell function via CRISPR-Cas fuelled editing of BMPR-IB gene in goats (Capra hircus). Sci Rep 2020; 10(1): 20446. doi: 10.1038/s41598-020-77596-9 PMID: 33235250
  15. Paul A, Punetha M, Kumar S, et al. Regulation of steroidogenic function of luteal cells by thrombospondin and insulin in water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31(4): 751-9. doi: 10.1071/RD18188 PMID: 30509339
  16. Xiong X, Chen M, Lim WA, Zhao D, Qi LS. Crispr/cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 2016; 17(1): 131-54. doi: 10.1146/annurev-genom-083115-022258 PMID: 27216776
  17. Zarei A, Razban V, Hosseini SE, Tabei SMB. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med 2019; 21(4): e3082. doi: 10.1002/jgm.3082 PMID: 30786106
  18. Martin RM, Fowler JL, Cromer MK, et al. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nat Commun 2020; 11(1): 2713. doi: 10.1038/s41467-020-16455-7 PMID: 32483127
  19. Dua S, Bajwa KK, Prashar A, et al. Empowering of reproductive health of farm animals through genome editing technology. J Reprod Health Med 2021; 2: 4. doi: 10.25259/JRHM_17_2020
  20. Zhang Z, Zhang Y, Gao F, et al. Crispr/cas9 genome-editing system in human stem cells: Current status and future prospects. Mol Ther Nucleic Acids 2017; 9: 230-41. doi: 10.1016/j.omtn.2017.09.009 PMID: 29246302
  21. Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One step into the future: New iPSC tools to advance research in parkinson’s disease and neurological disorders. J Parkinsons Dis 2019; 9(2): 265-81. doi: 10.3233/JPD-181515 PMID: 30741685
  22. Punetha M, Chouhan VS, Sonwane A, et al. Early growth response gene mediates in VEGF and FGF signaling as dissected by CRISPR in corpus luteum of water buffalo. Sci Rep 2020; 10(1): 6849. doi: 10.1038/s41598-020-63804-z PMID: 32321973
  23. Punetha M, Kumar S, Paul A, et al. Deciphering the functional role of EGR1 in Prostaglandin F2 alpha induced luteal regression applying CRISPR in corpus luteum of buffalo. Biol Res 2021; 54(1): 9. doi: 10.1186/s40659-021-00333-7 PMID: 33712084
  24. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020; 27(4): 523-31. doi: 10.1016/j.stem.2020.09.014 PMID: 33007237
  25. Zhou J, Wang C, Zhang K, et al. Generation of human embryonic stem cell line expressing zsGreen in cholinergic neurons using CRISPR/Cas9 system. Neurochem Res 2016; 41(8): 2065-74. doi: 10.1007/s11064-016-1918-9 PMID: 27113041
  26. Li M, Zhao H, Ananiev GE, et al. Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 2017; 35(1): 158-69. doi: 10.1002/stem.2463 PMID: 27422057
  27. Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 2014; 141(1): 219-23. doi: 10.1242/dev.103341 PMID: 24346702
  28. Kim D, Lim K, Kim ST, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 2017; 35(5): 475-80. doi: 10.1038/nbt.3852 PMID: 28398345
  29. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4. doi: 10.1038/nature17946 PMID: 27096365
  30. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770-88. doi: 10.1038/s41576-018-0059-1 PMID: 30323312
  31. Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018; 9(1): 2184. doi: 10.1038/s41467-018-04580-3 PMID: 29872041
  32. Kantor A, McClements M, MacLaren R. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21(17): 6240. doi: 10.3390/ijms21176240 PMID: 32872311
  33. Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367: eaba7365. doi: 10.1126/science.aba7365
  34. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911. doi: 10.1038/s41467-018-04252-2 PMID: 29765029
  35. Ma N, Shan Y, Liao B, et al. Factor-induced reprogramming and zinc finger nuclease-aided gene targeting cause different genome instability in beta-thalassemia induced pluripotent stem cells (IPSCS). J Biol Chem 2015; 290(19): 12079-89. doi: 10.1074/jbc.M114.624999 PMID: 25795783
  36. Supharattanasitthi W, Carlsson E, Sharif U, Paraoan L. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Sci Rep 2019; 9(1): 174. doi: 10.1038/s41598-018-36740-2 PMID: 30655567
  37. Larouche J, Aguilar CA. New technologies to enhance in vivo reprogramming for regenerative medicine. Trends Biotechnol 2019; 37(6): 604-17. doi: 10.1016/j.tibtech.2018.11.003 PMID: 30527703
  38. Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405. doi: 10.1016/j.tibtech.2013.04.004 PMID: 23664777
  39. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096. doi: 10.1126/science.1258096 PMID: 25430774
  40. Thakore PI, D’Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015; 12(12): 1143-9. doi: 10.1038/nmeth.3630 PMID: 26501517
  41. Liu XS, Wu H, Ji X, et al. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1): 233-247.e17. doi: 10.1016/j.cell.2016.08.056 PMID: 27662091
  42. Vojta A, Dobrinić P, Tadić V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44(12): 5615-28. doi: 10.1093/nar/gkw159 PMID: 26969735
  43. La Russa MF, Qi LS. The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 2015; 35(22): 3800-9. doi: 10.1128/MCB.00512-15 PMID: 26370509
  44. Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159(3): 647-61. doi: 10.1016/j.cell.2014.09.029 PMID: 25307932
  45. Morita S, Horii T, Kimura M, Hatada I. Synergistic upregulation of target genes by TET1 and VP64 in the dCas9-SunTag platform. Int J Mol Sci 2020; 21(5): 1574. doi: 10.3390/ijms21051574 PMID: 32106616
  46. Casas-Mollano JA, Zinselmeier MH, Erickson SE, Smanski MJ. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J 2020; 3(5): 350-64. doi: 10.1089/crispr.2020.0064 PMID: 33095045
  47. Mandegar MA, Huebsch N, Frolov EB, et al. Crispr interference efficiently induces specific and reversible gene silencing in human ipscs. Cell Stem Cell 2016; 18(4): 541-53. doi: 10.1016/j.stem.2016.01.022 PMID: 26971820
  48. Weltner J, Balboa D, Katayama S, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9(1): 2643. doi: 10.1038/s41467-018-05067-x PMID: 29980666
  49. Pessôa LVF, Pires PRL, del Collado M, et al. Generation and miRNA characterization of equine induced pluripotent stem cells derived from fetal and adult multipotent tissues. Stem Cells Int 2019; 2019: 1393791. doi: 10.1155/2019/1393791 PMID: 31191664
  50. Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell 2018; 22(2): 252-261.e4. doi: 10.1016/j.stem.2017.12.001 PMID: 29358044
  51. Warren A. Setup of an LCL-based system for the characterization of CRISPRa-Mediated iPSC reprogramming at the single-cell transcriptomic level Available from http://urn.fi/URN:NBN:fi:hulib-201910303809
  52. Töhönen V, Katayama S, Vesterlund L, et al. Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. Nat Commun 2015; 6(1): 8207. doi: 10.1038/ncomms9207 PMID: 26360614
  53. Sokka J, Yoshihara M, Kvist J, et al. CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Reports 2022; 17(2): 413-26. doi: 10.1016/j.stemcr.2021.12.017 PMID: 35063129
  54. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally stabilized dcas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports 2015; 5(3): 448-59. doi: 10.1016/j.stemcr.2015.08.001 PMID: 26352799
  55. Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev 2017; 13(1): 7-16. doi: 10.1007/s12015-016-9680-6 PMID: 27592701
  56. Lach MS, Rosochowicz MA, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: Are we ready for their clinical use. Cells 2022; 11(3): 529. doi: 10.3390/cells11030529 PMID: 35159338
  57. Jiang J, Zhang L, Zhou X, et al. Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 2016; 6(1): 21918. doi: 10.1038/srep21918 PMID: 26898344
  58. Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 2014; 24(9): 1526-33. doi: 10.1101/gr.173427.114 PMID: 25096406
  59. Park CY, Kim DH, Son JS, et al. Functional Correction of large factor VIII gene chromosomal inversions in Hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015; 17(2): 213-20. doi: 10.1016/j.stem.2015.07.001 PMID: 26212079
  60. Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015; 12(9): 1385-90. doi: 10.1016/j.celrep.2015.07.062 PMID: 26299960
  61. Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 2015; 33(5): 1470-9. doi: 10.1002/stem.1969 PMID: 25702619
  62. Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015; 4(1): 143-54. doi: 10.1016/j.stemcr.2014.10.013 PMID: 25434822
  63. Chen L, Guo W, Ren L, et al. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs. BMC Biol 2016; 14(1): 52. doi: 10.1186/s12915-016-0273-2 PMID: 27349893
  64. Xu X, Tay Y, Sim B, et al. Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Reports 2017; 8(3): 619-33. doi: 10.1016/j.stemcr.2017.01.022 PMID: 28238795
  65. Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32(9): 941-6. doi: 10.1038/nbt.2951 PMID: 24952903
  66. Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT. A functional variant associated with atrial fibrillation regulates pitx2c expression through tfap2a. Am J Hum Genet 2016; 99(6): 1281-91. doi: 10.1016/j.ajhg.2016.10.001 PMID: 27866707
  67. Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 2016; 7(1): 12617. doi: 10.1038/ncomms12617 PMID: 27558837
  68. Vethe H, Bjørlykke Y, Ghila LM, et al. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 2017; 7(1): 4780. doi: 10.1038/s41598-017-04979-w PMID: 28684784
  69. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports 2018; 10(4): 1267-81. doi: 10.1016/j.stemcr.2018.02.003 PMID: 29526738
  70. Horii T, Tamura D, Morita S, Kimura M, Hatada I. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci 2013; 14(10): 19774-81. doi: 10.3390/ijms141019774 PMID: 24084724
  71. Moroi AJ, Newman PJ. Conditional CRISPR‐mediated deletion of Lyn kinase enhances differentiation and function of iPSC‐derived megakaryocytes. J Thromb Haemost 2022; 20(1): 182-95. doi: 10.1111/jth.15546 PMID: 34624170
  72. Sun Y, Fu J, Yang J, Zhao J, Rong J. Generation of a RRAGA knockout human iPSC line GIBHi002-A-5 using CRISPR/Cas9 technology. Stem Cell Res (Amst) 2022; 63: 102859. doi: 10.1016/j.scr.2022.102859 PMID: 35870248
  73. Zhou XX, Zou X, Chung HK, et al. A Single-Chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem Biol 2018; 13(2): 443-8. doi: 10.1021/acschembio.7b00603 PMID: 28938067
  74. Yuan J, Ma Y, Huang T, et al. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Mol Cell 2018; 72(2): 380-394.e7. doi: 10.1016/j.molcel.2018.09.002 PMID: 30293782
  75. Huang KC, Wang ML, Chen SJ, et al. Morphological and molecular defects in human three-dimensional retinal organoid model of X-Linked juvenile retinoschisis. Stem Cell Reports 2019; 13(5): 906-23. doi: 10.1016/j.stemcr.2019.09.010 PMID: 31668851
  76. Chang CY, Ting HC, Su HL, Jeng JR. Combining induced pluripotent stem cells and genome editing technologies for clinical applications. Cell Transplant 2018; 27(3): 379-92. doi: 10.1177/0963689718754560 PMID: 29806481
  77. Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11(11): 937-56. doi: 10.4252/wjsc.v11.i11.937 PMID: 31768221
  78. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1-23. doi: 10.1038/s41392-019-0089-y PMID: 32296011
  79. Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2022; 17(3): 267-79. doi: 10.2174/1574888X16666211124095527 PMID: 34819011
  80. Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 2015; 14(10): 681-92. doi: 10.1038/nrd4738 PMID: 26391880
  81. Tidball AM, Swaminathan P, Dang LT, Parent JM. Generating loss-of-function iPSC lines with combined CRISPR indel formation and reprogramming from human fibroblasts. Bio Protoc 2018; 8(7): e2794. doi: 10.21769/BioProtoc.2794
  82. Bai Q, Ramirez JM, Becker F, et al. Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev 2015; 24(5): 653-62. doi: 10.1089/scd.2014.0292 PMID: 25254421
  83. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014; 32(7): 677-83. doi: 10.1038/nbt.2916 PMID: 24837660
  84. Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822-6. doi: 10.1038/nbt.2623 PMID: 23792628
  85. Coelho MA, De Braekeleer E, Firth M, et al. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 2020; 11(1): 4132. doi: 10.1038/s41467-020-17952-5 PMID: 32807781
  86. Schmidt MJ, Gupta A, Bednarski C, et al. Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nat Commun 2021; 12(1): 4219. doi: 10.1038/s41467-021-24454-5 PMID: 34244505
  87. Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020; 9(7): 1608. doi: 10.3390/cells9071608 PMID: 32630835
  88. Li QV, Dixon G, Verma N, et al. Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51(6): 999-1010. doi: 10.1038/s41588-019-0408-9 PMID: 31110351
  89. Chang YJ, Xu CL, Cui X, et al. CRISPR base editing in induced pluripotent stem cells. Methods Mol Biol 2019; 2045: 337-46. doi: 10.1007/7651_2019_243 PMID: 31250381
  90. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18. doi: 10.1016/j.biomaterials.2018.04.031 PMID: 29704747
  91. Sengupta K, Mishra MK, Loro E, Spencer MJ, Pyle AD, Khurana TS. Genome editing-mediated utrophin upregulation in duchenne muscular dystrophy stem cells. Mol Ther Nucleic Acids 2020; 22: 500-9. doi: 10.1016/j.omtn.2020.08.031 PMID: 33230452
  92. Jacków J, Guo Z, Hansen C, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci USA 2019; 116(52): 26846-52. doi: 10.1073/pnas.1907081116 PMID: 31818947
  93. Oikari LE, Pandit R, Stewart R, et al. Altered brain endothelial cell phenotype from a familial Alzheimer mutation and its potential implications for amyloid clearance and drug delivery. Stem Cell Reports 2020; 14(5): 924-39. doi: 10.1016/j.stemcr.2020.03.011 PMID: 32275861
  94. Guo W, Wang H, Kumar Tharkeshwar A, et al. CRISPR/Cas9 screen in human iPSC‐derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity. Alzheimers Dement 2022; 2022: alz.12760. doi: 10.1002/alz.12760 PMID: 35993441
  95. Nakamoto FK, Okamoto S, Mitsui J, et al. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci Rep 2018; 8(1): 14215. doi: 10.1038/s41598-018-32573-1 PMID: 30242188
  96. Teque F, Ye L, Xie F, et al. Genetically-edited induced pluripotent stem cells derived from HIV-1-infected patients on therapy can give rise to immune cells resistant to HIV-1 infection. AIDS 2020; 34(8): 1141-9. doi: 10.1097/QAD.0000000000002539 PMID: 32287059

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024