Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration


如何引用文章

全文:

详细

Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.

作者简介

Komathi Selvarajah

Advanced Medical and Dental Institute, Universiti Sains Malaysia

Email: info@benthamscience.net

Jun Tan

Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences and Technology (AIMST) University

Email: info@benthamscience.net

Bakiah Shaharuddin

Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. World Health Organization (WHO). World Report on Vision. 2019; Available fromhttps://www.who.int/publications/i/item/9789241516570
  2. Nangia V, Jonas JB, George R, et al. Prevalence and causes of blindness and vision impairment: Magnitude, temporal trends and projections in south and central Asia. Br J Ophthalmol 2019; 103(7): 871-7. doi: 10.1136/bjophthalmol-2018-312292 PMID: 30409914
  3. Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health 2017; 5(12): e1221-34. doi: 10.1016/S2214-109X(17)30393-5 PMID: 29032195
  4. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: Genesis, maintenance and dysfunction. Brain Res Bull 2010; 81(2-3): 198-210. doi: 10.1016/j.brainresbull.2009.05.019
  5. Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf 2018; 16(1): 58-69. doi: 10.1016/j.jtos.2017.11.002 PMID: 29113917
  6. Haagdorens M, Van Acker SI, Van Gerwen V, et al. Limbal stem cell deficiency: Current treatment options and emerging therapies. Stem Cells Int 2016; 2016: 9798374. doi: 10.1155/2016/9798374 PMID: 26788074
  7. Sajjad A. Concise review : Limbal stem cell deficiency, dysfunction, and distress. Stem Cells Transl Med 2012; 1(2): 110-5. doi: 10.5966/sctm.2011-0037 PMID: 23197757
  8. Polania-Baron EJ, Ramirez-Miranda A, Navas A, Graue-Hernandez EO. Other Causes of Limbal Stem Cell Deficiency. Cornea 2019; 38(12): e56. doi: 10.1097/ICO.0000000000002136 PMID: 31517719
  9. Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res 2010; 90(4): 478-92. doi: 10.1016/j.exer.2009.12.010 PMID: 20036654
  10. Faragher RGA, Mulholland B, Tuft SJ, Sandeman S, Khaw PT. Aging and the cornea. Br J Ophthalmol 1997; 81(10): 814-7. doi: 10.1136/bjo.81.10.814 PMID: 9486017
  11. Yazdanpanah G, Jabbehdari S, Djalilian AR. Limbal and corneal epithelial homeostasis. Curr Opin Ophthalmol 2017; 28(4): 348-54. doi: 10.1097/ICU.0000000000000378 PMID: 28399066
  12. Thoft R, Friend J, Jm E. Hypothesis of comeol epitheliol mointenonce to the editor : For the past few years, studies of corneal epithelial of corneal epithelial disease. Invest Ophthalmol Vis Sci 1983; 24: p. (10)1442. PMID: 6618809
  13. Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 2008; 456(7219): 250-4. doi: 10.1038/nature07406 PMID: 18830243
  14. West JD, Dorà NJ, Collinson JM. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells 2015; 7(2): 281-99. doi: 10.4252/wjsc.v7.i2.281 PMID: 25815115
  15. Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance: Testing the dogma. Ophthalmology 2009; 116(5): 856-63. doi: 10.1016/j.ophtha.2008.12.017 PMID: 19410942
  16. Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87: 101011. doi: 10.1016/j.preteyeres.2021.101011
  17. Kim BY, Riaz KM, Bakhtiari P, et al. Medically reversible limbal stem cell disease: Clinical features and management strategies. Ophthalmology 2014; 121(10): 2053-8. doi: 10.1016/j.ophtha.2014.04.025 PMID: 24908203
  18. Dua HS, Maharajan VS, Hopkinson A. Controversies and limitations of amniotic membrane in ophthalmic surgery. In: Reinhard T. Larkin D.Eds Essentials in Ophthalmology. Berlin, Heidelberg Springer 2006. doi: 10.1007/3-540-31226-9_2
  19. Malhotra C, Jain AK. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J Transplant 2014; 4(2): 111-21. doi: 10.5500/wjt.v4.i2.111 PMID: 25032100
  20. Utheim TP. Concise review: Transplantation of cultured oral mucosal epithelial cells for treating limbal stem cell deficiency-current status and future perspectives. Stem Cells 2015; 33(6): 1685-95. doi: 10.1002/stem.1999 PMID: 25786664
  21. Kitazawa K, Hikichi T, Nakamura T, et al. Direct Reprogramming Into Corneal Epithelial Cells Using a Transcriptional Network Comprising PAX6, OVOL2, and KLF4. Cornea 2019; 38 (Suppl. 1): S34-41. doi: 10.1097/ICO.0000000000002074 PMID: 31403532
  22. Deng SX, Kruse F, Gomes JAP, et al. Global consensus on the management of limbal stem cell deficiency. Cornea 2020; 39(10): 1291-302. doi: 10.1097/ICO.0000000000002358 PMID: 32639314
  23. Holland EJ. Management of Limbal Stem Cell Deficiency. Cornea 2015; 34 (Suppl. 10): S9-S15. doi: 10.1097/ICO.0000000000000534 PMID: 26203759
  24. Sangwan VS, Lal I, Gupta N, Purushotham J. Limbal stem cell deficiency: Current management. J Clin Ophthalmol Res 2016; 4(1): 3. doi: 10.4103/2320-3897.174344
  25. Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 2011; 95(7): 942-6. doi: 10.1136/bjo.2010.188714 PMID: 21097786
  26. Kolli S, Ahmad S, Mudhar HS, Meeny A, Lako M, Figueiredo FC. Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency. Stem Cells 2014; 32(8): 2135-46. doi: 10.1002/stem.1694 PMID: 24590515
  27. Ghosheh FR, Cremona FA, Rapuano CJ, et al. Trends in penetrating keratoplasty in the United States 1980–2005. Int Ophthalmol 2008; 28(3): 147-53. doi: 10.1007/s10792-007-9177-z PMID: 18084724
  28. Chua AWY, Chua MJ, Kam PCA. Recent advances and anaesthetic considerations in corneal transplantation. Anaesth Intensive Care 2018; 46(2): 162-70. doi: 10.1177/0310057X1804600204 PMID: 29519218
  29. Moon J, Yoon CH, Kim MK, Oh JY. The incidence and outcomes of recurrence of infection after therapeutic penetrating keratoplasty for medically-uncontrolled infectious keratitis. J Clin Med 2020; 9(11): 3696. doi: 10.3390/jcm9113696 PMID: 33217910
  30. Raj A, Bahadur H, Dhasmana R. Outcome of therapeutic penetrating keratoplasty in advanced infectious keratitis. J Curr Ophthalmol 2018; 30(4): 315-20. doi: 10.1016/j.joco.2018.04.001 PMID: 30555963
  31. Rahman I, Carley F, Hillarby C, Brahma A, Tullo AB. Penetrating keratoplasty: Indications, outcomes, and complications. Eye (Lond) 2009; 23(6): 1288-94. doi: 10.1038/eye.2008.305 PMID: 18949010
  32. Alió del Barrio JL, Alió JL. Cellular therapy of the corneal stroma: A new type of corneal surgery for keratoconus and corneal dystrophies. Eye Vis (Lond) 2018; 5(1): 28. doi: 10.1186/s40662-018-0122-1 PMID: 30410944
  33. Lohan P, Murphy N, Treacy O, et al. Third-party allogeneic mesenchymal stromal cells prevent rejection in a pre-sensitized high-risk model of corneal transplantation. Front Immunol 2018; 9: 2666. Available from www.frontiersin.org doi: 10.3389/fimmu.2018.02666 PMID: 30515159
  34. Zeppieri M, Salvetat M, Beltrami A, et al. Adipose derived stem cells for corneal wound healing after laser induced corneal lesions in mice. J Clin Med 2017; 6(12): 115. doi: 10.3390/jcm6120115 PMID: 29206194
  35. Ziaei M, Zhang J, Patel DV, McGhee CNJ. Umbilical cord stem cells in the treatment of corneal disease. Surv Ophthalmol 2017; 62(6): 803-15. doi: 10.1016/j.survophthal.2017.02.002 PMID: 28232219
  36. Call M, Elzarka M, Kunesh M, Hura N, Birk DE, Kao WW. Therapeutic efficacy of mesenchymal stem cells for the treatment of congenital and acquired corneal opacity. Mol Vis 2019; 25: 415-26. PMID: 31523119
  37. Saccu G, Menchise V, Giordano C, et al. Regenerative approaches and future trends for the treatment of corneal burn injuries. J Clin Med 2021; 10(2): 317. doi: 10.3390/jcm10020317 PMID: 33467167
  38. Gu X, Yu X, Zhao C, et al. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem 2018; 49(1): 40-52. doi: 10.1159/000492838 PMID: 30134223
  39. Weiss JN, Levy S. Stem cell ophthalmology treatment study: Bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig 2018; 5(June): 18. doi: 10.21037/sci.2018.04.02 PMID: 30050918
  40. Rajasingh S, Sigamani V, Selvam V, et al. Comparative analysis of human induced pluripotent stem cell‐derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. J Cell Mol Med 2021; 25(18): 8904-19. doi: 10.1111/jcmm.16851 PMID: 34390186
  41. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  42. Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: A silver lining for regenerative medicine. Exp Mol Med 2020; 52(2): 213-26. doi: 10.1038/s12276-020-0383-3 PMID: 32080339
  43. Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131. doi: 10.1186/s13287-018-0876-3 PMID: 29751774
  44. Barishak YR. Embryology of the Eye and Its Adnexae Dev Ophthalmol. Basel Karge 1992; Vol. 24: pp. 1-2. doi: 10.1159/000429697
  45. PETER C. KRONFELD. CHAPTER 1 -The Gross Anatomy and Embryology of the Eye. Vegetative Physiology and Biochemistry Academic Press Inc. 1962; pp. 1-62. ISBN 9781483230900 doi: 10.1016/B978-1-4832-3090-0.50007-1
  46. Ko MK, Kay EP. Regulatory role of FGF-2 on type I collagen expression during endothelial mesenchymal transformation. Invest Ophthalmol Vis Sci 2005; 46(12): 4495-503. doi: 10.1167/iovs.05-0818 PMID: 16303940
  47. Song QH, Gong H, Trinkaus-Randall V. Role of epidermal growth factor and epidermal growth factor receptor on hemidesmosome complex formation and integrin subunit β4. Cell Tissue Res 2003; 312(2): 203-20. doi: 10.1007/s00441-002-0693-x PMID: 12715147
  48. Rao WW-Y, Xia Y, Liu CY, Liu C-Y. Signaling pathways in morphogenesis of cornea and eyelid. Ocul Surf 2008; 6(1): 9-23. doi: 10.1016/S1542-0124(12)70102-7 PMID: 18264652
  49. Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis 2008; 4(2): 60-7. doi: 10.4161/org.4.2.5850 PMID: 19122781
  50. Giger FA, Houart C. The birth of the eye vesicle: When fate decision equals morphogenesis. Front Neurosci 2018; 12: 87. doi: 10.3389/fnins.2018.00087 PMID: 29515359
  51. Williams AL, Bohnsack BL. The ocular neural crest: Specification, migration, and then what? Front Cell Dev Biol 2020; 8: 595896. doi: 10.3389/fcell.2020.595896 PMID: 33425902
  52. Martinez-Morales JR, Signore M, Acampora D. Otx genes are required for tissue specification in the developing eye. Development 2001; 128(11): 2019-30. doi: 10.1242/dev.128.11.2019 PMID: 11493524
  53. Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA. Specification of the vertebrate eye by a network of eye field transcription factors. Development 2003; 130(21): 5155-67. doi: 10.1242/dev.00723 PMID: 12944429
  54. Carl M, Loosli F, Wittbrodt J. Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 2002; 129(17): 4057-63. doi: 10.1242/dev.129.17.4057 PMID: 12163408
  55. Lee B, Rizzoti K, Kwon DS, et al. Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer. Dev Biol 2012; 366(2): 393-403. doi: 10.1016/j.ydbio.2012.04.023 PMID: 22561201
  56. Ouyang J, Cai Z, Guo Y, Nie F, Cao M, Duan X. Detection of a novel PAX6 variant in a Chinese family with multiple ocular abnormalities. BMC Ophthalmol 2022; 22(1): 28. doi: 10.1186/s12886-022-02256-7 PMID: 35034608
  57. Tarilonte M, Morín M, Ramos P, et al. Parental mosaicism in PAX6 causes intra-familial variability: Implications for genetic counseling of congenital aniridia and microphthalmia. Front Genet 2018; 9: 479. doi: 10.3389/fgene.2018.00479 PMID: 30386378
  58. Hanson IM. PAX6 and congenital eye malformations. Pediatr Res 2003; 54(6): 791-6. doi: 10.1203/01.PDR.0000096455.00657.98 PMID: 14561779
  59. Orquera DP, Nasif S, Low MJ, Rubinstein M, de Souza FSJ. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev Biol 2016; 416(1): 212-24. doi: 10.1016/j.ydbio.2016.05.021 PMID: 27212025
  60. Yun S, Saijoh Y, Hirokawa KE, et al. Lhx2 links the intrinsic and extrinsic factors that control optic cup formation. Development 2009; 136(23): 3895-906. doi: 10.1242/dev.041202 PMID: 19906857
  61. Macdonald R, Barth KA, Xu Q, Holder N, Mikkola I, Wilson SW. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 1995; 121(10): 3267-78. doi: 10.1242/dev.121.10.3267 PMID: 7588061
  62. Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141(23): 4432-47. doi: 10.1242/dev.107953 PMID: 25406393
  63. Lieven O, Rüther U. The Dkk1 dose is critical for eye development. Dev Biol 2011; 355(1): 124-37. doi: 10.1016/j.ydbio.2011.04.023 PMID: 21539829
  64. Swamynathan SK. Ocular surface development and gene expression. J Ophthalmol 2013; 2013: 1-22. doi: 10.1155/2013/103947 PMID: 23533700
  65. Liu JJ, Kao WW, Wilson S. Corneal epithelium-specific mouse keratin K12 promoter. Exp Eye Res 1999; 68(3): 295-301. doi: 10.1006/exer.1998.0593 PMID: 10079137
  66. Stephens DN, Klein RH, Salmans ML, Gordon W, Ho H, Andersen B. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity. J Biol Chem 2013; 288(48): 34304-24. doi: 10.1074/jbc.M113.504399 PMID: 24142692
  67. Klein RH, Hu W, Kashgari G, et al. Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation. J Biol Chem 2017; 292(46): 18937-50. doi: 10.1074/jbc.M117.793117 PMID: 28916725
  68. Norman B, Davis J, Piatigorsky J. Postnatal gene expression in the normal mouse cornea by SAGE. Invest Ophthalmol Vis Sci 2004; 45(2): 429-40. doi: 10.1167/iovs.03-0449 PMID: 14744882
  69. Tiwari A, Loughner CL, Swamynathan S, Swamynathan SK. KLF4 plays an essential role in corneal epithelial homeostasis by promoting epithelial cell fate and suppressing epithelial–mesenchymal transition. Invest Ophthalmol Vis Sci 2017; 58(5): 2785-95. doi: 10.1167/iovs.17-21826 PMID: 28549095
  70. Kenchegowda D, Swamynathan S, Gupta D, Wan H, Whitsett J, Swamynathan SK. Conditional disruption of mouse Klf5 results in defective eyelids with malformed meibomian glands, abnormal cornea and loss of conjunctival goblet cells. Dev Biol 2011; 356(1): 5-18. doi: 10.1016/j.ydbio.2011.05.005 PMID: 21600198
  71. Ema M, Mori D, Niwa H, et al. Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 2008; 3(5): 555-67. doi: 10.1016/j.stem.2008.09.003 PMID: 18983969
  72. Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138(8-9): 937-55. doi: 10.1007/s00439-019-02052-2 PMID: 31359131
  73. Gage PJ, Zacharias A L. Signaling "Cross-Talk" Is Integrated by Transcription Factors in the Development of the Anterior Segment in the Eye. Dev Dyn 2009; 238(9): 2149-62. doi: 10.1002/dvdy.22033
  74. Samoila O, Gocan D. Clinical outcomes from cultivated allogenic stem cells vs. oral mucosa epithelial transplants in total bilateral stem cells deficiency. Front Med 2020; 7: 43. doi: 10.3389/fmed.2020.00043 PMID: 32133365
  75. Seo S, Chen L, Liu W, et al. Foxc1 and Foxc2 in the neural crest are required for ocular anterior segment development. Invest Ophthalmol Vis Sci 2017; 58(3): 1368-77. doi: 10.1167/iovs.16-21217 PMID: 28253399
  76. Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10(1): a022194. Published 2018 Jan 2. doi: 10.1101/cshperspect.a022194
  77. Saika S, Saika S, Liu CY, et al. TGFbeta2 in corneal morphogenesis during mouse embryonic development. Dev Biol 2001; 240(2): 419-32. doi: 10.1006/dbio.2001.0480 PMID: 11784073
  78. Priyadarsini S, McKay TB, Sarker-Nag A, Karamichos D. Keratoconus in vitro and the key players of the TGF-β pathway. Mol Vis 2015; 21: 577-88. PMID: 26015770
  79. Ittner LM, Wurdak H, Schwerdtfeger K, et al. Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J Biol 2005; 4(3): 11. doi: 10.1186/jbiol29 PMID: 16403239
  80. Meek KM. Corneal collagen—its role in maintaining corneal shape and transparency. Biophys Rev 2009; 1(2): 83-93. doi: 10.1007/s12551-009-0011-x PMID: 28509987
  81. Hara S, Kawasaki S, Yoshihara M, et al. Transcription factor TFAP2B up-regulates human corneal endothelial cell–specific genes during corneal development and maintenance. J Biol Chem 2019; 294(7): 2460-9. doi: 10.1074/jbc.RA118.005527 PMID: 30552118
  82. Yoshihara M, Ohmiya H, Hara S, et al. Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One 2015; 10(3): e0117581. doi: 10.1371/journal.pone.0117581
  83. Martino VB, Sabljic T, Deschamps P, et al. Conditional deletion of AP-2β in the cranial neural crest results in anterior segment dysgenesis and early-onset glaucoma. Dis Model Mech 2016; 9(8): dmm.025262. doi: 10.1242/dmm.025262 PMID: 27483349
  84. Chen L, Martino V, Dombkowski A, Williams T, West-Mays J, Gage PJ. AP-2β is a downstream effector of PITX2 required to specify endothelium and establish angiogenic privilege during corneal development. Invest Ophthalmol Vis Sci 2016; 57(3): 1072-81. doi: 10.1167/iovs.15-18103 PMID: 26968737
  85. Pressman CL, Chen H, Johnson RL. lmx1b, a LIM homeodomain class transcription factor, is necessary for normal development of multiple tissues in the anterior segment of the murine eye. Genesis 2000; 26(1): 15-25. doi: 10.1002/(SICI)1526-968X(200001)26:13.0.CO;2-V PMID: 10660670
  86. Romero P, Sanhueza F, Lopez P, Reyes L, Herrera Lc. 194 A>C (Q65P) mutation in the LMX1B gene in patients with nail-patella syndrome associated with glaucoma. Mol Vis 2011; 17: 1929-39. PMID: 21850167
  87. Yoshida K, Hu Y, Karin M. IkappaB kinase α is essential for development of the mammalian cornea and conjunctiva. Invest Ophthalmol Vis Sci 2000; 41(12): 3665-9. PMID: 11053261
  88. Descargues P, Sil AK, Karin M. IKKα, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 2008; 27(20): 2639-47. doi: 10.1038/emboj.2008.196 PMID: 18818691
  89. Zhang J, Upadhya D, Lu L, Reneker LW. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One 2015; 10(1): e0117089. doi: 10.1371/journal.pone.0117089 PMID: 25615698
  90. You L, Kruse FE, Völcker HE. Neurotrophic factors in the human cornea. Invest Ophthalmol Vis Sci 2000; 41(3): 692-702. PMID: 10711683
  91. Kruse FE, Tseng SCG. Serum differentially modulates the clonal growth and differentiation of cultured limbal and corneal epithelium. Invest Ophthalmol Vis Sci 1993; 34(10): 2976-89. PMID: 7689546
  92. Wiegand C, Banerjee I. Recent advances in the applications of iPSC technology. Curr Opin Biotechnol 2019; 60: 250-8. doi: 10.1016/j.copbio.2019.05.011 PMID: 31386977
  93. Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen Med 2020; 5(1): 15. doi: 10.1038/s41536-020-00100-4 PMID: 33200672
  94. Matsumoto E, Koide N, Hanzawa H, et al. Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One 2019; 14(3): e0212369. doi: 10.1371/journal.pone.0212369 PMID: 30865653
  95. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37. doi: 10.1038/nbt.4114 PMID: 29553577
  96. Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2014; 2(5): 662-74. doi: 10.1016/j.stemcr.2014.03.011 PMID: 24936453
  97. Rajendran Nair DS, Zhu D, Sharma R, et al. Long-term transplant effects of ipsc-rpe monolayer in immunodeficient RCS rats. Cells 2021; 10(11): 2951. doi: 10.3390/cells10112951 PMID: 34831174
  98. Sivan P P, Syed S, Mok P-L, et al. Stem cell therapy for treatment of ocular disorders.Stem Cells In 2016; 8304879. doi: 10.1155/2016/8304879 PMID: 27293447
  99. Fuest M, Yam G H F, Peh G S L, Mehta J S. Advances in Corneal Cell Therapy. Regen Med 2016; 11(6): 601-15. doi: 10.2217/rme-2016-0054
  100. Baghbaderani BA, Tian X, Neo BH, et al. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Reports 2015; 5(4): 647-59. doi: 10.1016/j.stemcr.2015.08.015 PMID: 26411904
  101. Rivera-Ordaz A, Peli V, Manzini P, Barilani M, Lazzari L. Critical analysis of cGMP large-scale expansion process in bioreactors of human induced pluripotent stem cells in the framework of quality by design. BioDrugs 2021; 35(6): 693-714. doi: 10.1007/s40259-021-00503-9 PMID: 34727354
  102. Hongisto H, Vattulainen M, Ilmarinen T, Mikhailova A, Skottman H. Efficient and scalable directed differentiation of clinically compatible corneal limbal epithelial stem cells from human pluripotent stem cells. J Vis Exp 2018; 2018(140): 1-9. doi: 10.3791/58279 PMID: 30417867
  103. Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One 2017; 12(8): e0183303. doi: 10.1371/journal.pone.0183303 PMID: 28813511
  104. Nakatsu MN, Ding Z, Ng MY, Truong TT, Yu F, Deng SX. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 2011; 52(7): 4734-41. doi: 10.1167/iovs.10-6486 PMID: 21357396
  105. Lupo G, Novorol C, Smith JR, et al. Multiple roles of activin/nodal, bone morphogenetic protein, fibroblast growth factor and wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures. Open Biol 2013; 3(4): 120167. doi: 10.1098/rsob.120167 PMID: 23576785
  106. Kobayashi Y, Hayashi R, Shibata S, Quantock AJ, Nishida K. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Res 2020; 46: 101868. doi: 10.1016/j.scr.2020.101868 PMID: 32603880
  107. Ding Y, Yang H, Yu L, et al. Feeder-free and xeno-free culture of human pluripotent stem cells using UCBS matrix. Cell Biol Int 2015; 39(10): 1111-9. doi: 10.1002/cbin.10484 PMID: 25939663
  108. Girirajan S, Campbell C, Eichler E. Extraction of myocardium from suckling mouse hhs public access. Physiol Behav 2011; 176(5): 139-48. doi: 10.1007/s00441-018-2934-7.Basement
  109. Shibata S, Hayashi R, Okubo T, et al. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Rep 2018; 25(6): 1668-1679.e5. doi: 10.1016/j.celrep.2018.10.032 PMID: 30404017
  110. Krishnan S, Lakshmanan S, Krishnan Iyer G, Umamaheswari K, Krishnakumar S. The role of signaling pathways in the expansion of corneal epithelial cells in serum-free b27 supplemented medium. Mol Vis 2010; 16: 1169-77. PMID: 20664695
  111. Vattulainen M, Ilmarinen T, Koivusalo L, Viiri K, Hongisto H, Skottman H. Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Res Ther 2019; 10(1): 236. doi: 10.1186/s13287-019-1354-2 PMID: 31383008
  112. Solanki A, Lee KB. A step closer to complete chemical reprogramming for generating iPS cells. ChemBioChem 2010; 11(6): 755-7. doi: 10.1002/cbic.201000032 PMID: 20183843
  113. Park HS, Hwang I, Choi KA, Jeong H, Lee JY, Hong S. Generation of induced pluripotent stem cells without genetic defects by small molecules. Biomaterials 2015; 39: 47-58. doi: 10.1016/j.biomaterials.2014.10.055 PMID: 25477171
  114. Li W, Ding S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 2010; 31(1): 36-45. doi: 10.1016/j.tips.2009.10.002 PMID: 19896224
  115. Kamarudin TA, Bojic S, Collin J, et al. Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells 2018; 36(3): 337-48. doi: 10.1002/stem.2750 PMID: 29226476
  116. Schwarz M, Cecconi F, Bernier G, et al. Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 2000; 127(20): 4325-34. doi: 10.1242/dev.127.20.4325 PMID: 11003833
  117. Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2014; 2(2): 219-31. doi: 10.1016/j.stemcr.2013.12.014 PMID: 24527395
  118. Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther 2017; 8(1): 291. doi: 10.1186/s13287-017-0738-4 PMID: 29284513
  119. Zhang Y, Yeh LK, Zhang S, et al. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development 2015; 142(19): 3383-93. doi: 10.1242/dev.125393 PMID: 26443636
  120. Li L, Song L, Liu C, et al. Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. J Mol Cell Biol 2015; 7(5): 455-65. doi: 10.1093/jmcb/mjv030 PMID: 25990320
  121. Hayashi R, Ishikawa Y, Ito M, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 2012; 7(9): e45435. doi: 10.1371/journal.pone.0045435 PMID: 23029008
  122. Shalom-Feuerstein R, Serror L, De La Forest Divonne S, et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells 2012; 30(5): 898-909. doi: 10.1002/stem.1068 PMID: 22367714
  123. Guo X, Wang XF. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 2009; 19(1): 71-88. doi: 10.1038/cr.2008.302 PMID: 19002158
  124. Miyashita H, Yokoo S, Yoshida S, et al. Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl Med 2013; 2(10): 758-65. doi: 10.5966/sctm.2012-0156 PMID: 23981725
  125. Yoshihara M, Sasamoto Y, Hayashi R, et al. High-resolution promoter map of human limbal epithelial cells cultured with keratinocyte growth factor and rho kinase inhibitor. Sci Rep 2017; 7(1): 2845. doi: 10.1038/s41598-017-02824-8 PMID: 28588247
  126. Yamamoto-Fukuda T, Akiyama N, Shibata Y, Takahashi H, Ikeda T, Koji T. In vivo over-expression of KGF mimic human middle ear cholesteatoma. Eur Arch Otorhinolaryngol 2015; 272(10): 2689-96. doi: 10.1007/s00405-014-3237-6 PMID: 25138153
  127. Martínez García de la Torre RA, Nieto-Nicolau N, Morales-Pastor A, Casaroli-Marano RP. Determination of the culture time point to induce corneal epithelial differentiation in induced pluripotent stem cells. Transplant Proc 2017; 49(10): 2292-5. doi: 10.1016/j.transproceed.2017.09.047 PMID: 29198663
  128. Kleinman HK, Kim K, Kang H. Matrigel uses in cell biology and for the identification of thymosin β4, a mediator of tissue regeneration. Appl Biol Chem 2018; 61(6): 703-8. doi: 10.1007/s13765-018-0400-6
  129. Arnaoutova I, George J, Kleinman HK, Benton G. Basement membrane matrix (BME) has multiple uses with stem cells. Stem Cell Rev 2012; 8(1): 163-9. doi: 10.1007/s12015-011-9278-y PMID: 21655946
  130. Hagbard L, Cameron K, August P, et al. Developing defined substrates for stem cell culture and differentiation. Philos Trans R Soc Lond B Biol Sci 2018; 373(1750): 20170230. doi: 10.1098/rstb.2017.0230 PMID: 29786564
  131. Homma R, Yoshikawa H, Takeno M, et al. Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci 2004; 45(12): 4320-6. doi: 10.1167/iovs.04-0044 PMID: 15557438
  132. Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 2007; 25(5): 1145-55. doi: 10.1634/stemcells.2006-0516 PMID: 17255521
  133. Chen B, Mi S, Wright B, Connon CJ. Investigation of K14/K5 as a stem cell marker in the limbal region of the bovine cornea. PLoS One 2010; 5(10): e13192. doi: 10.1371/journal.pone.0013192 PMID: 20949137
  134. Ma XL, Que YH, Kong J, Liu HQ, Zhang JS. Effect of fetal bovine serum on the proliferation and differentiation of murine corneal epithelial cells in vitro. Int J Ophthalmol 2009; 9(5): 817-9. doi: 10.3969/j.issn.1672-5123.2009.05.003
  135. Kim EK, Lee GH, Lee B, Maeng YS. Establishment of novel limbus-derived, highly proliferative ABCG2+ /ABCB5+ limbal epithelial stem cell cultures. Stem Cells Int 2017; 2017: 7678637. doi: 10.1155/2017/7678637 PMID: 29230251
  136. Kim JY, Nam Y, Rim YA, Ju JH. Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep 2022; 18(1): 142-54. doi: 10.1007/s12015-021-10262-3 PMID: 34532844
  137. Lee HS, Mok J, Joo CK. Bone morphogenetic protein 4 (BMP4) enhances the differentiation of human induced pluripotent stem cells into limbal progenitor cells. Curr Issues Mol Biol 2021; 43(3): 2124-34. doi: 10.3390/cimb43030147 PMID: 34940121
  138. Hayashi R, Ishikawa Y, Katori R, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc 2017; 12(4): 683-96. doi: 10.1038/nprot.2017.007 PMID: 28253236
  139. Park GW, Heo J, Kang JY, et al. Topical cell-free conditioned media harvested from adipose tissue-derived stem cells promote recovery from corneal epithelial defects caused by chemical burns. Sci Rep 2020; 10(1): 12448. doi: 10.1038/s41598-020-69020-z PMID: 32709896

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024