Current Advances in Wound Healing and Regenerative Medicine


Cite item

Full Text

Abstract

Treating chronic wounds is a common and costly challenge worldwide. More advanced treatments are needed to improve wound healing and prevent severe complications such as infection and amputation. Like other medical fields, there have been advances in new technologies promoting wound healing potential.

:Regenerative medicine as a new method has aroused hope in treating chronic wounds. The technology improving wound healing includes using customizable matrices based on synthetic and natural polymers, different types of autologous and allogeneic cells at different differentiation phases, small molecules, peptides, and proteins as a growth factor, RNA interference, and gene therapy. In the last decade, various types of wound dressings have been designed. Emerging dressings include a variety of interactive/ bioactive dressings and tissue-engineering skin options. However, there is still no suitable and effective dressing to treat all chronic wounds.

:This article reviews different wounds and common treatments, advanced technologies and wound dressings, the advanced wound care market, and some interactive/bioactive wound dressings in the market.

About the authors

Nesa Fani

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR

Email: info@benthamscience.net

Maryam Moradi

, MD-MPH Iran University of Medical Sciences

Email: info@benthamscience.net

Roxana Zavari

Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute, Tehran University of Medical Sciences

Email: info@benthamscience.net

Farzad Parvizpour

Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute, Tehran University of Medical Sciences

Email: info@benthamscience.net

Adele Soltani

CinnaGen Medical Biotechnology Research Center,, Alborz University of medical sciences

Email: info@benthamscience.net

Zohreh Arabpour

Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Arefeh Jafarian

Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: Current strategies and future directions. Curr Pharm Des 2017; 23(24): 3455-82. PMID: 28552069
  2. Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine (Taipei) 2015; 5(4): 22. doi: 10.7603/s40681-015-0022-9 PMID: 26615539
  3. Rajendran S, Anand S. Hi-tech textiles for interactive wound therapies Handbook of medical textiles. Elsevier 2011; pp. 38-79.
  4. Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal stem cells for chronic wound healing: Current status of preclinical and clinical studies. Tissue Eng Part B Rev 2020; 26(6): 555-70. doi: 10.1089/ten.teb.2019.0351 PMID: 32242479
  5. Ko SH, Nauta A, Wong V, Glotzbach J, Gurtner GC, Longaker MT. The role of stem cells in cutaneous wound healing: what do we really know. Plast Reconstr Surg 2011; 127 (Suppl. 1): 10S-20S. doi: 10.1097/PRS.0b013e3181fbe2d8 PMID: 21200267
  6. Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics Advances in wound care (New Rochelle). 2016; 5(1): 32-41. doi: 10.1089/wound.2014.0586 PMID: 26858913
  7. Kathawala MH, Ng WL, Liu D, et al. Healing of chronic wounds: An update of recent developments and future possibilities. Tissue Eng Part B Rev 2019; 25(5): 429-44. doi: 10.1089/ten.teb.2019.0019 PMID: 31068101
  8. Yoshikawa T, Mitsuno H, Nonaka I, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3): 860-77. doi: 10.1097/01.prs.0000299922.96006.24 PMID: 18317135
  9. Shenoy VN, Foster E, Aalami L, Majeed B, Aalami O, Eds. Deepwound: Automated postoperative wound assessment and surgical site surveillance through convolutional neural networks. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018 Dec 03-06; Madrid, Spain IEEE 2019.. doi: 10.1109/BIBM.2018.8621130
  10. Wackenfors A, Sjögren J, Gustafsson R, Algotsson L, Ingemansson R, Malmsjö M. Effects of vacuum-assisted closure therapy on inguinal wound edge microvascular blood flow. Wound Repair Regen 2004; 12(6): 600-6. doi: 10.1111/j.1067-1927.2004.12602.x PMID: 15555050
  11. Gupta A. Classification of Wounds and the Physiology of Wound Healing Wound Healing Research. Springer 2021; pp. 3-53.
  12. Abazari M, Ghaffari A, Rashidzadeh H, Badeleh SM, Maleki Y. A Systematic Review on Classification, Identification, and Healing Process of Burn Wound Healing. The International Journal of Low Extremity Wounds 2022; 21(1): 18-30.
  13. Onyekwelu I, Yakkanti R, Protzer L, Pinkston CM, Tucker C, Seligson D. Surgical wound classification and surgical site infections in the orthopaedic patient. J Am Acad Orthop Surg Glob Res Rev 2017; 1(3): e022. doi: 10.5435/JAAOSGlobal-D-17-00022 PMID: 30211353
  14. Childs DR, Murthy AS. Overview of wound healing and management. Surg Clin North Am 2017; 97(1): 189-207. doi: 10.1016/j.suc.2016.08.013 PMID: 27894427
  15. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev 2019; 99(1): 665-706. doi: 10.1152/physrev.00067.2017 PMID: 30475656
  16. Cooke JP. Inflammation and its role in regeneration and repair: A caution for novel anti-inflammatory therapies. Circ Res 2019; 124(8): 1166-8. doi: 10.1161/CIRCRESAHA.118.314669 PMID: 30973815
  17. Gantwerker EA, Hom DB. Skin: Histology and physiology of wound healing. Clin Plast Surg 2012; 39(1): 85-97. doi: 10.1016/j.cps.2011.09.005 PMID: 22099852
  18. Kangal MKO, Regan J-P. Wound Healing. Treasure Island StatPearls Publishing 2022.
  19. Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610. doi: 10.1007/s12325-017-0478-y PMID: 28108895
  20. Darwin E, Tomic-Canic M. Healing chronic wounds: Current challenges and potential solutions. Curr Dermatol Rep 2018; 7(4): 296-302. doi: 10.1007/s13671-018-0239-4 PMID: 31223516
  21. Annesley SH. Current thinking on caring for patients with a wound: A practical approach. Br J Nurs 2019; 28(5): 290-4. doi: 10.12968/bjon.2019.28.5.290 PMID: 30907641
  22. Lindholm C, Searle R. Wound management for the 21st century: Combining effectiveness and efficiency. Int Wound J 2016; 13 (Suppl. 2): 5-15. doi: 10.1111/iwj.12623 PMID: 27460943
  23. Bural C, Güven M, Kayacıoğlu B, Ak G, Bayraktar G, Bilhan H. Effect of over-the-counter topical agents on denture-induced traumatic lesions: A clinical study. Int J Prosthodont 2018; 31(5): 481-4. doi: 10.11607/ijp.5803 PMID: 30180236
  24. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 2008; 58(2): 185-206. doi: 10.1016/j.jaad.2007.08.048 PMID: 18222318
  25. Mori HM, Kawanami H, Kawahata H, Aoki M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement Altern Med 2016; 16(1): 144. doi: 10.1186/s12906-016-1128-7 PMID: 27229681
  26. Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol 2016; 74(4): 607-25. doi: 10.1016/j.jaad.2015.08.070 PMID: 26979353
  27. Balsa IM, Culp WTN. Wound Care. Vet Clin North Am Small Anim Pract 2015; 45(5): 1049-65. doi: 10.1016/j.cvsm.2015.04.009 PMID: 26022525
  28. Gabriel A, Kim PJ. Introduction to soft-tissue wound management: Current applications of negative-pressure wound therapy with instillation. Plastic and reconstructive surgery 147(1S-1): 5S-7S.2021;
  29. Gurtner GC, Chapman MA. Regenerative medicine: Charting a new course in wound healing. Adv Wound Care 2016; 5(7): 314-28. doi: 10.1089/wound.2015.0663 PMID: 27366592
  30. Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell Mol Life Sci 2013; 70(12): 2059-81. doi: 10.1007/s00018-012-1152-9 PMID: 23052205
  31. Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997; 276(5309): 75-81. doi: 10.1126/science.276.5309.75 PMID: 9082989
  32. Mutschler W. Physiology and pathophysiology of wound healing of wound defects. Unfallchirurg 2012; 115(9): 767-73. doi: 10.1007/s00113-012-2208-x PMID: 22935894
  33. Fathi A, Khanmohammadi M, Goodarzi A, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng 2020; 14(1): 27. doi: 10.1186/s13036-020-00249-y PMID: 33292469
  34. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3): 835-70. doi: 10.1152/physrev.2003.83.3.835 PMID: 12843410
  35. Park J, Hwang S, Yoon IS. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 2017; 22(8): 1259. doi: 10.3390/molecules22081259 PMID: 28749427
  36. Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268: 118932. doi: 10.1016/j.lfs.2020.118932 PMID: 33400933
  37. Moulin V. Growth factors in skin wound healing. Eur J Cell Biol 1995; 68(1): 1-7. PMID: 8549585
  38. Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: The role of growth factors. Med Actual 2003; 39(10): 787-800. doi: 10.1358/dot.2003.39.10.799472 PMID: 14668934
  39. Peng Y, Wu S, Tang Q, Li S, Peng C. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem 2019; 294(21): 8361-70. doi: 10.1074/jbc.RA118.006189 PMID: 30894415
  40. Qu Y, Cao C, Wu Q, et al. The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing. J Tissue Eng Regen Med 2018; 12(6): 1508-18. doi: 10.1002/term.2691 PMID: 29706001
  41. Yang HS, Shin J, Bhang SH, et al. Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Exp Mol Med 2011; 43(11): 622-9. doi: 10.3858/emm.2011.43.11.070 PMID: 21847007
  42. Whittam AJ, Maan ZN, Duscher D, et al. Challenges and opportunities in drug delivery for wound healing. Adv Wound Care (New Rochelle) 2016; 5(2): 79-88. doi: 10.1089/wound.2014.0600 PMID: 26862465
  43. Kim SJ, Kim SY, Kwon CH, Kim YK. Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors 2007; 25(2): 77-86. doi: 10.1080/08977190701398977 PMID: 17852407
  44. Galeano M, Deodato B, Altavilla D, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia 2003; 46(4): 546-55. doi: 10.1007/s00125-003-1064-1 PMID: 12677400
  45. Stuard WL, Titone R, Robertson DM. The IGF/insulin-IGFBP axis in corneal development, wound healing, and disease. Front Endocrinol (Lausanne) 2020; 11: 24. doi: 10.3389/fendo.2020.00024 PMID: 32194500
  46. Hom DB, Maisel RH. Angiogenic growth factors: Their effects and potential in soft tissue wound healing. Ann Otol Rhinol Laryngol 1992; 101(4): 349-54. doi: 10.1177/000348949210100411 PMID: 1562141
  47. Lee EY, Chung CH, Khoury CC, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 2009; 297(1): F85-94. doi: 10.1152/ajprenal.90642.2008 PMID: 19420107
  48. Erba P, Ogawa R, Ackermann M, et al. Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg 2011; 253(2): 402-9. doi: 10.1097/SLA.0b013e31820563a8 PMID: 21217515
  49. Meng Z, Zhou D, Gao Y, Zeng M, Wang W. miRNA delivery for skin wound healing. Adv Drug Deliv Rev 2018; 129: 308-18. doi: 10.1016/j.addr.2017.12.011 PMID: 29273517
  50. Wang SY, Kim H, Kwak G, et al. Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics 2020; 10(7): 3240-53. doi: 10.7150/thno.39870 PMID: 32194865
  51. Li X, Li D, Wang A, et al. MicroRNA-132 with therapeutic potential in chronic wounds. J Invest Dermatol 2017; 137(12): 2630-8. doi: 10.1016/j.jid.2017.08.003 PMID: 28807666
  52. Yu-Wai-Man C, Khaw PT. Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: Big potential for small molecules. Expert Rev Ophthalmol 2015; 10(1): 65-76. doi: 10.1586/17469899.2015.983475 PMID: 25983855
  53. Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing. Mol Ther Nucleic Acids 2017; 8: 46-55. doi: 10.1016/j.omtn.2017.06.003 PMID: 28918046
  54. Zeng R, Lin C, Lin Z, et al. Approaches to cutaneous wound healing: Basics and future directions. Cell Tissue Res 2018; 374(2): 217-32. doi: 10.1007/s00441-018-2830-1 PMID: 29637308
  55. Wang W, Yang C, Wang X, et al. MicroRNA-129 and-335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes 2018; 67(8): 1627-38. doi: 10.2337/db17-1238 PMID: 29748291
  56. Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: Present status and future directions. Gene Ther 2007; 14(1): 1-10. doi: 10.1038/sj.gt.3302837 PMID: 16929353
  57. Eming SA, Krieg T, Davidson JM. RETRACTED: Gene therapy and wound healing. Clin Dermatol 2007; 25(1): 79-92. doi: 10.1016/j.clindermatol.2006.09.011 PMID: 17276205
  58. Chen D, Hou Q, Zhong L, Zhao Y, Li M, Fu X. Bioactive molecules for skin repair and regeneration: Progress and perspectives. Stem Cells Int 2019; •••: 6789823. doi: 10.1155/2019/6789823
  59. Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A 2020; 26(5-6): 227-38. doi: 10.1089/ten.tea.2019.0201 PMID: 31672103
  60. Morikawa S, Ezaki T. Phenotypic changes and possible angiogenic roles of pericytes during wound healing in the mouse skin. Histol Histopathol 2011; 26(8): 979-95. PMID: 21692031
  61. Yang F, Qin X, Zhang T, Lin H, Zhang C. Evaluation of small molecular polypeptides from the mantle of pinctada martensii on promoting skin wound healing in mice. Molecules 2019; 24(23): 4231. doi: 10.3390/molecules24234231 PMID: 31766365
  62. Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146: 209-39. doi: 10.1016/j.addr.2018.12.014 PMID: 30605737
  63. Flood PM, Philipps C, Taupier MA, Schreiber H. Regulation of myeloma growth in vitro by idiotype-specific T lymphocytes. J Immunol 1980; 124(1): 424-30. doi: 10.4049/jimmunol.124.1.424 PMID: 6965296
  64. Wan Y. Bone marrow mesenchymal stem cells: Fat on and blast off by FGF21. Int J Biochem Cell Biol 2013; 45(3): 546-9. doi: 10.1016/j.biocel.2012.12.014 PMID: 23270727
  65. Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: Possible mechanisms. Reg Med 2008; 3(4) doi: 10.2217/17460751.3.4.531
  66. Foubert P, Zafra D, Liu M, et al. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model. Stem Cell Res Ther 2017; 8(1): 261. doi: 10.1186/s13287-017-0704-1 PMID: 29141687
  67. Jang MJ, Kim HS, Lee HG, et al. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol 2013; 129(4): 197-206. doi: 10.1159/000345267 PMID: 23257958
  68. Jitschin R, Mougiakakos D, Von Bahr L, et al. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells 2013; 31(8): 1715-25. doi: 10.1002/stem.1386 PMID: 23554294
  69. Lü MH, Hu CJ, Chen L, et al. miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One 2013; 8(7): e68972. doi: 10.1371/journal.pone.0068972 PMID: 23894385
  70. Whelan D, Caplice NM, Clover AJP. Allogeneic MSC persistence may not be necessary for a beneficial effect in burn wound healing. Burns 2017; 43(1): 247-8. doi: 10.1016/j.burns.2015.08.021 PMID: 26611503
  71. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  72. Liu Y, Panayi AC, Bayer LR, Orgill DP. Current available cellular and tissue-based products for treatment of skin defects. Adv Skin Wound Care 2019; 32(1): 19-25. doi: 10.1097/01.ASW.0000547412.54135.b7 PMID: 30570555
  73. Banani MA, Rahmatullah M, Farhan N, et al. Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regen Med 2021; 16(1): 47-70. doi: 10.2217/rme-2020-0045 PMID: 33533667
  74. Arabpour Z, Youseffi M, Soon CF, Sultana N, Bazgeir MR, Masoud M, et al. Designing biomaterials for regenerative medicine: State-of-the-art and future perspectives. In: Tissue Engineering Strategies for Organ Regeneration. (1st ed.). Boca Raton, Florida : CRC Press 2020; pp. 1-9.
  75. Chen LJ, Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 2002; 23(13): 2631-9. doi: 10.1016/S0142-9612(01)00394-5 PMID: 12059012
  76. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008; 40(4): 268-80. doi: 10.1080/07853890701881788 PMID: 18428020
  77. Arabpour Z, Baradaran-Rafii A, Bakhshaiesh NL, et al. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications. J Biomed Mater Res A 2019; 107(10): 2340-9. doi: 10.1002/jbm.a.36742 PMID: 31161710
  78. Chaudhari A, Vig K, Baganizi D, et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int J Mol Sci 2016; 17(12): 1974. doi: 10.3390/ijms17121974 PMID: 27898014
  79. Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48(23): 5564-95. doi: 10.1039/C8CS01003J PMID: 31670726
  80. Elamparithi A, Punnoose AM, Kuruvilla S. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 2016; 44(5): 1318-25. doi: 10.3109/21691401.2015.1029629 PMID: 25960178
  81. Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng C 2014; 34: 402-9. doi: 10.1016/j.msec.2013.09.043 PMID: 24268275
  82. Cieslik-Bielecka A, Dohan Ehrenfest DM, Lubkowska A, Bielecki T. Microbicidal properties of Leukocyte- and Platelet-Rich Plasma/Fibrin (L-PRP/L-PRF): New perspectives. J Biol Regul Homeost Agents 2012; 26(2) (Suppl. 1): 43S-52S. PMID: 23648198
  83. Bacakova M, Pajorova J, Broz A, et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int J Nanomedicine 2019; 14: 5033-50. doi: 10.2147/IJN.S200782 PMID: 31371945
  84. Ohto-Fujita E, Konno T, Shimizu M, et al. Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts. Cell Tissue Res 2011; 345(1): 177-90. doi: 10.1007/s00441-011-1172-z PMID: 21597915
  85. Nhi TT, Khon HC, Hoai NTT, et al. Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 2016; 27(10): 156. doi: 10.1007/s10856-016-5768-4 PMID: 27620739
  86. Moniri M, Boroumand Moghaddam A, Azizi S, et al. In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases. Int J Nanomedicine 2018; 13: 5097-112. doi: 10.2147/IJN.S164573 PMID: 30254435
  87. Zorlutuna P, Annabi N, Camci-Unal G, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater 2012; 24(14): 1782-804. doi: 10.1002/adma.201104631 PMID: 22410857
  88. Robu A, Mironov V, Neagu A. Using sacrificial cell spheroids for the bioprinting of perfusable 3D tissue and organ constructs: a computational study. Comput Math Methods Med 2019; 7853586.
  89. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2010; 2(1): 010201. doi: 10.1088/1758-5082/2/1/010201 PMID: 20811115
  90. Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 2015; 104(11): 3653-80. doi: 10.1002/jps.24610 PMID: 26308473
  91. Sabetkish S, Kajbafzadeh AM, Sabetkish N, et al. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A 2015; 103(4): 1498-508. doi: 10.1002/jbm.a.35291 PMID: 25045886
  92. Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 2014; 16(9): 902-8. doi: 10.1038/ncb3023 PMID: 25150981
  93. Al-Sarawi S, Anbar M, Abdullah R, Al Hawari AB. Internet of Things market analysis forecasts Fourth World Conference onSmart Trends in Systems, Security and Sustainability (WorldS4). : July 27-28.London UK. IEEE 2020
  94. Jackson JC, Prassanna J, Quadir MA, Sivakumar V. Stock market analysis and prediction using time series analysis. Mater Today Proc 2021.
  95. Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 2018; 100: 1-11. doi: 10.1016/j.eurpolymj.2017.12.046
  96. Cleetus CM, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomedicine 2020; 15: 5097-111. doi: 10.2147/IJN.S255937 PMID: 32764939
  97. Alam M. Incidence and Longitudinal Changes in the Prevalence of Diabetes among Rural Residents of Saskatchewan. Canada University of Saskatchewan 2020.
  98. Rastogi A, Goyal G, Kesavan R, et al. Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study. Diabetes Res Clin Pract 2020; 162: 108113. doi: 10.1016/j.diabres.2020.108113 PMID: 32165163
  99. Lewis J, Lipp A. Pressure‐relieving interventions for treating diabetic foot ulcers. Cochrane Database Syst Rev 2013; (1): CD002302. doi: 10.1002/14651858.CD002302.pub2
  100. LongakerMichael T. YangGeorge P. Review of the current management of pressure ulcers. Adv Wound Care 2018; 7(2): 57-67.
  101. Sami DG, Abdellatif A. Histological and clinical evaluation of wound healing in pressure ulcers: A novel animal model. J Wound Care 2020; 29(11): 632-41. doi: 10.12968/jowc.2020.29.11.632 PMID: 33175620
  102. Pacella RE, Tulleners R, Cheng Q, et al. Solutions to the chronic wounds problem in Australia: A call to action. J Australian Wound Manage Associat 2018; 26(2): 84-98.
  103. Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2020; 573: 118803. doi: 10.1016/j.ijpharm.2019.118803 PMID: 31682963
  104. Akalin C, Kuru S, Barlas AM, et al. Beneficial effects of Ankaferd Blood Stopper on dermal wound healing: An experimental study. Int Wound J 2014; 11(1): 64-8. doi: 10.1111/j.1742-481X.2012.01063.x PMID: 22943603
  105. Madaghiele M, Demitri C, Sannino A, Ambrosio L. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma 2014; 2(4): 2321-3868.
  106. Amirrah N, Razip M, Wee MF. Antibacterial-integrated collagen wound dressing for diabetes-related foot ulcers: An evidence-based review of clinical studies. Polymers 2020; 12(9): 2168. doi: 10.3390/polym12092168 PMID: 32972012
  107. Varela P, Marlinghaus L, Sartori S, Viebahn R, Salber J, Ciardelli G. Response of human macrophages to clinically applied wound dressings loaded with silver. Front Bioeng Biotechnol 2020; 8: 124. doi: 10.3389/fbioe.2020.00124 PMID: 32158748
  108. Law AL, Krebs B, Karnik B, Griffin L. Comparison of healthcare costs associated with patients receiving traditional negative pressure wound therapies in the post-acute setting. Cureus 2020; 12(11): e11790. doi: 10.7759/cureus.11790 PMID: 33409037
  109. Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care 2021; 10(5): 281-92.
  110. Hart CE, Loewen-Rodriguez A, Lessem J. Dermagraft: use in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2012; 1(3): 138-41. doi: 10.1089/wound.2011.0282 PMID: 24527294
  111. Garoufalis MG. The Importance of Wound Care Researchers and Manufactures Working with Medical Associations When Bringing New Products to the Marketplace. Adv Wound Care 2018; 7(11): 363-6. doi: 10.1089/wound.2018.0815
  112. Xiao Y, Ahadian S, Radisic M. Biochemical and biophysical cues in matrix design for chronic and diabetic wound treatment. Tissue Eng Part B Rev 2017; 23(1): 9-26. doi: 10.1089/ten.teb.2016.0200 PMID: 27405960
  113. Stadelmann WK, Digenis AG, Tobin GR. Impediments to wound healing. Am J Surg 1998; 176(2): 39S-47S. doi: 10.1016/S0002-9610(98)00184-6 PMID: 9777971
  114. Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17(6): 763-71. doi: 10.1111/j.1524-475X.2009.00543.x PMID: 19903300
  115. Greer N, Foman NA, MacDonald R, et al. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: A systematic review. Ann Intern Med 2013; 159(8): 532-42. doi: 10.7326/0003-4819-159-8-201310150-00006 PMID: 24126647
  116. Queen D. Impact of COVID ‐19 on the medical device companies who serve wound care. Int Wound J 2021; 18(3): 247-8. doi: 10.1111/iwj.13609 PMID: 33973720
  117. Abdo J, Ortman H. Biologic and synthetic cellular and/or tissue-based products and smart wound dressings/coverings. Surg Clin North Am 2020; 100(4): 741-56. doi: 10.1016/j.suc.2020.05.006 PMID: 32681874
  118. Tursi FJ, Donnelly JV, Seiler DR. An integrative approach to healing diabetic foot wounds. Podiatry Today 2019; 32(6)
  119. Edmonds M. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 2009; 8(1): 11-8. doi: 10.1177/1534734609331597 PMID: 19189997
  120. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 2008; 7: 88-99. doi: 10.22203/eCM.v015a07 PMID: 18446690
  121. Marston WA, Hanft J, Norwood P, Pollak R, Group DDFUS. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: Results of a prospective randomized trial. Diabetes Care 2003; 26(6): 1701-5. doi: 10.2337/diacare.26.6.1701 PMID: 12766097
  122. Joshi CJ, Hassan A, Carabano M, Galiano RD. Up-to-date role of the dehydrated human amnion/chorion membrane (AMNIOFIX) for wound healing. Expert Opin Biol Ther 2020; 20(10): 1125-31. doi: 10.1080/14712598.2020.1787979 PMID: 32580594
  123. Guillamat-Prats R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021 Jul 8; 10(7): 1729.
  124. Dhall S, Coksaygan T, Hoffman T, et al. Viable cryopreserved umbilical tissue (vCUT) reduces post-operative adhesions in a rabbit abdominal adhesion model. Bioact Mater 2018; 4(1): 97-106. PMID: 30723842

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers