Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis


Cite item

Full Text

Abstract

Background:Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies.

Methods:A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032.

Results:We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, p < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM.

Conclusion:Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.

About the authors

Boxin Liu

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Jinyu Zhang

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Zijing Zhou

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Baofeng Feng

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Jingjing He

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Wei Yan

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Xinghong Zhou

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Asiamah Amponsah

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Ruiyun Guo

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Xiaofeng Du

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Xin Liu

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Email: info@benthamscience.net

Huixian Cui

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Author for correspondence.
Email: info@benthamscience.net

Timothy O'Brien

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Author for correspondence.
Email: info@benthamscience.net

Jun Ma

, Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90. doi: 10.1038/s41581-020-0278-5 PMID: 32398868
  2. Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 2021; 18(4): 291-304. doi: 10.1038/s41569-020-00465-5 PMID: 33188304
  3. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602. doi: 10.1016/0002-9149(72)90595-4 PMID: 4263660
  4. Dillmann WH. Diabetic cardiomyopathy. Circ Res 2019; 124(8): 1160-2. doi: 10.1161/CIRCRESAHA.118.314665 PMID: 30973809
  5. Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: Molecular abnormalities and phenotypical variants. Heart Fail Rev 2022. doi: 10.1007/s10741-021-10200-y PMID: 35001338
  6. Peterson LR, Gropler RJ. Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res 2020; 126(11): 1628-45. doi: 10.1161/CIRCRESAHA.120.315899 PMID: 32437305
  7. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142(3): 375-415. doi: 10.1016/j.pharmthera.2014.01.003 PMID: 24462787
  8. Yue P, Arai T, Terashima M, et al. Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol 2007; 292(5): H2106-18. doi: 10.1152/ajpheart.00856.2006 PMID: 17122193
  9. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66. doi: 10.1007/s10741-012-9313-3 PMID: 22453289
  10. Chen Y, Liyuan J, Zihui D, et al. Process and mechanism of mesenchymal stem cells in the treatment of diabetic cardiomyopathy. Xiandai Shengwu Yixue Jinzhan 2016; 16(25): 4992-6.
  11. Mohr A, Zwacka R. The future of mesenchymal stem cell-based therapeutic approaches for cancer – From cells to ghosts. Cancer Lett 2018; 414: 239-49. doi: 10.1016/j.canlet.2017.11.025 PMID: 29175461
  12. Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80. doi: 10.1016/j.ymeth.2015.09.015 PMID: 26384579
  13. Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem 2020; 465(1-2): 103-14. doi: 10.1007/s11010-019-03671-z PMID: 31858380
  14. Lin YC, Leu S, Sun CK, et al. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy. J Transl Med 2010; 8(1): 88. doi: 10.1186/1479-5876-8-88 PMID: 20868517
  15. Chin SP, Maskon O, Tan CS, et al. Synergistic effects of intracoronary infusion of autologous bone marrow-derived mesenchymal stem cells and revascularization procedure on improvement of cardiac function in patients with severe ischemic cardiomyopathy. Stem Cell Investig 2021; 8: 2. doi: 10.21037/sci-2020-026 PMID: 33575315
  16. Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: Practical challenges and potential mechanisms. Stem Cell Rev 2013; 9(3): 254-65. doi: 10.1007/s12015-012-9375-6 PMID: 22577007
  17. Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure. Circ Res 2017; 121(10): 1192-204. doi: 10.1161/CIRCRESAHA.117.310712 PMID: 28974553
  18. Meng K, Cai H, Cai S, Hong Y, Zhang X. Adiponectin modified BMSCs alleviate heart fibrosis via inhibition TGF-beta1/Smad in diabetic rats. Front Cell Dev Biol 2021; 9: 644160. doi: 10.3389/fcell.2021.644160 PMID: 33829019
  19. Yang C, Deng Z, Chen S, et al. Adipose-derived mesenchymal stem cells alleviating heart dysfunction through suppressing MG53 protein in rat model of diabetic cardiomyopathy. Int J Clin Exp Pathol 2017; 10(4): 4009-22.
  20. Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 2008; 116(2): 104-11. doi: 10.1055/s-2007-985154 PMID: 18286426
  21. Monnerat-Cahli G, Trentin-Sonoda M, Guerra B, et al. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int J Cardiol 2014; 171(2): 199-208. doi: 10.1016/j.ijcard.2013.12.013 PMID: 24374203
  22. Ali A, Kuo WW, Kuo CH, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton’s jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med 2021; 6(3): e10234. doi: 10.1002/btm2.10234 PMID: 34589606
  23. Wu Q, Deng W, Chen B, Xia L, Liang Z. Effect of BMSCs transplantation on cardiac function of diabetes mellitus rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2009; 23(10): 1241-5. PMID: 19957848
  24. Zhang N, Li JH, Wang JA, Zhang HK. The effect of bone marrow mesenchymal stem cell transplantation on diabetic cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi 2008; 36(12): 1115-9. in Chinese. PMID: 19134282
  25. Xiaohua Y. The Effect of Bone Marrow Mesenchymal Stem Cells Transplantation on type 2 Diabetic Cardiomyopathy Rats(in Chinese) 2009.
  26. Abdel Aziz MT, El-Asmar MF, Haidara M, et al. Effect of bone marrow-derived mesenchymal stem cells on cardiovascular complications in diabetic rats. Med Sci Monit 2008; 14(11): BR249-55. PMID: 18971868
  27. Jinag W, Zhu F, Zhang Y, et al. Effect of combined valsartan and mesenchymal stem cells therapy on diabetic cardiomyopathy. Med J Wuhan Univ 2013; 34(1): 71-5.
  28. Pappritz K, Dong F, Miteva K, et al. Impact of syndecan-2-selected mesenchymal stromal cells on the early onset of diabetic cardiomyopathy in diabetic db/db mice. Front Cardiovasc Med 2021; 8: 632728. doi: 10.3389/fcvm.2021.632728 PMID: 34095245
  29. Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 2008; 31(2): 103-10. doi: 10.1007/BF03345575 PMID: 18362500
  30. Calligaris SD, Conget P. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy. Biol Res 2013; 46(3): 251-5. doi: 10.4067/S0716-97602013000300005 PMID: 24346072
  31. Pappritz K, Klein O, Dong F, et al. MALDI‐IMS as a tool to determine the myocardial response to syndecan‐2‐selected mesenchymal stromal cell application in an experimental model of diabetic cardiomyopathy. Proteomics Clin Appl 2021; 15(1): 2000050. doi: 10.1002/prca.202000050 PMID: 33068073
  32. Jin L, Zhang J, Deng Z, et al. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther 2020; 11(1): 122. doi: 10.1186/s13287-020-01633-7 PMID: 32183879
  33. Jin L, Deng Z, Zhang J, et al. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy. J Transl Med 2019; 17(1): 251. doi: 10.1186/s12967-019-1999-8 PMID: 31382970
  34. Ammar HI, Shamseldeen AM, Shoukry HS, et al. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol 2021; 320(4): H1290-302. doi: 10.1152/ajpheart.00317.2020 PMID: 33513084
  35. Wassef M, Tork O, Rashed L, Ibrahim W, Morsi H, Rabie D. Mitochondrial dysfunction in diabetic cardiomyopathy: Effect of mesenchymal stem cell with ppar-γ agonist or exendin-4. Exp Clin Endocrinol Diabetes 2018; 126(1): 27-38. doi: 10.1055/s-0043-106859 PMID: 28449155
  36. Van Linthout S, Hamdani N, Miteva K, et al. Placenta-derived adherent stromal cells improve diabetes mellitus-associated left ventricular diastolic performance. Stem Cells Transl Med 2017; 6(12): 2135-45. doi: 10.1002/sctm.17-0130 PMID: 29024485
  37. Khan M, Ali F, Mohsin S, et al. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 2013; 4(3): 58. doi: 10.1186/scrt207 PMID: 23706645
  38. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43. doi: 10.1186/1471-2288-14-43 PMID: 24667063
  39. Qiu J, Luo S, Zhou Z. Research progress of diabetic heart disease. Chin J Arterioscler 2020; 28(8): 679-86.
  40. Pilz PM, Ward JE, Chang WT, et al. Large and small animal models of heart failure with reduced ejection fraction. Circ Res 2022; 130(12): 1888-905. doi: 10.1161/CIRCRESAHA.122.320246 PMID: 35679365
  41. Salden FCWM, Luermans JGLM, Westra SW, et al. Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol 2020; 75(4): 347-59. doi: 10.1016/j.jacc.2019.11.040 PMID: 32000945
  42. Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 2003; 41(4): 611-7. doi: 10.1016/S0735-1097(02)02869-3 PMID: 12598073
  43. Kasner M, Aleksandrov AS, Westermann D, et al. Functional iron deficiency and diastolic function in heart failure with preserved ejection fraction. Int J Cardiol 2013; 168(5): 4652-7. doi: 10.1016/j.ijcard.2013.07.185 PMID: 23968714
  44. Chen X, Li Y, Yuan X, et al. Methazolamide attenuates the development of diabetic cardiomyopathy by promoting β-catenin degradation in type 1 diabetic mice. Diabetes 2022; 71(4): 795-811. doi: 10.2337/db21-0506 PMID: 35043173
  45. Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological fundamentals of diabetic cardiomyopathy. Compr Physiol 2017; 7(2): 693-711. doi: 10.1002/cphy.c160021 PMID: 28333387
  46. Feng Y, Cai L, Hong W, et al. Rewiring of 3D chromatin topology orchestrates transcriptional reprogramming and the development of human dilated cardiomyopathy. Circulation 2022; 145(22): 1663-83. doi: 10.1161/CIRCULATIONAHA.121.055781 PMID: 35400201
  47. Dong S, Zhang S, Chen Z, et al. Berberine could ameliorate cardiac dysfunction via interfering myocardial lipidomic profiles in the rat model of diabetic cardiomyopathy. Front Physiol 2018; 9: 1042. doi: 10.3389/fphys.2018.01042 PMID: 30131709
  48. Sezer M, Kocaaga M, Aslanger E, et al. Bimodal pattern of coronary microvascular involvement in diabetes mellitus. J Am Heart Assoc 2016; 5(11): e003995. doi: 10.1161/JAHA.116.003995 PMID: 27930353
  49. Renner S, Blutke A, Clauss S, et al. Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380(2): 341-78. doi: 10.1007/s00441-019-03158-9 PMID: 31932949
  50. Georgiadis N, Tsarouhas K, Rezaee R, et al. What is considered cardiotoxicity of anthracyclines in animal studies Corrigendum in /10.3892/or.2020.7717. Oncol Rep 2020; 44(3): 798-818. doi: 10.3892/or.2020.7688 PMID: 32705236
  51. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660-71. doi: 10.1007/s00125-014-3171-6 PMID: 24477973
  52. Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16(10): 1905-14. doi: 10.1080/15548627.2020.1713641 PMID: 31965901
  53. Zhang M, Sui W, Xing Y, et al. Angiotensin IV attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis. Theranostics 2021; 11(18): 8624-39. doi: 10.7150/thno.48561 PMID: 34522203
  54. Segar MW, Khan MS, Patel KV, et al. Prevalence and prognostic implications of diabetes with cardiomyopathy in community-dwelling adults. J Am Coll Cardiol 2021; 78(16): 1587-98. doi: 10.1016/j.jacc.2021.08.020 PMID: 34649696
  55. Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2022; 229: 107929. doi: 10.1016/j.pharmthera.2021.107929 PMID: 34171341
  56. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607. doi: 10.1038/s41569-020-0339-2 PMID: 32080423
  57. Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev 2021; 42(1): 29-55. doi: 10.1210/endrev/bnaa025 PMID: 33125468
  58. Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014; 19(1): 25-33. doi: 10.1007/s10741-013-9378-7 PMID: 23456446
  59. Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol Ther 2006; 111(2): 384-99. doi: 10.1016/j.pharmthera.2005.10.008 PMID: 16343639
  60. Liya P, Xiaohui Z, Xinhua Y. Advance of mechanisms of diabetic cardiomyopathy. Chin J Cardiovasc Med 2017; 22(2): 143-6.
  61. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53. doi: 10.1038/nrendo.2015.216 PMID: 26678809
  62. Zhang Y, Edgley AJ, Cox AJ, et al. FT011, a new anti‐fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail 2012; 14(5): 549-62. doi: 10.1093/eurjhf/hfs011 PMID: 22417655
  63. Chen D, Li Q, Meng Z, et al. Bright polymer dots tracking stem cell engraftment and migration to injured mouse liver. Theranostics 2017; 7(7): 1820-34. doi: 10.7150/thno.18614 PMID: 28638470
  64. Yin Y, Hao H, Cheng Y, et al. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int Immunopharmacol 2018; 60: 235-45. doi: 10.1016/j.intimp.2018.04.051 PMID: 29778021
  65. Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics 2023; 13(2): 685-703. doi: 10.7150/thno.73568 PMID: 36632217
  66. da Silva JS, Gonçalves RGJ, Vasques JF, et al. Mesenchymal stem cell therapy in diabetic cardiomyopathy. Cells 2022; 11(2): 240. doi: 10.3390/cells11020240 PMID: 35053356
  67. Suzuki K, Miyagawa S, Liu L, et al. Therapeutic efficacy of large aligned cardiac tissue derived from induced pluripotent stem cell in a porcine ischemic cardiomyopathy model. J Heart Lung Transplant 2021; 40(8): 767-77. doi: 10.1016/j.healun.2021.04.010 PMID: 34108109
  68. Ye J, Sun H, Zhu P. Advances in pharmacotherapy for diabetic cardiomyopathy. Chin J Geriatr Heart Brain Vessel Dis 2020; 22(5): 551-2.
  69. Liew A, O’Brien T. The potential of cell-based therapy for diabetes and diabetes-related vascular complications. Curr Diab Rep 2014; 14(3): 469. doi: 10.1007/s11892-013-0469-6 PMID: 24464340
  70. Liu M, Chen H, Jiang J, et al. Stem cells and diabetic cardiomyopathy: From pathology to therapy. Heart Fail Rev 2016; 21(6): 723-36. doi: 10.1007/s10741-016-9565-4 PMID: 27221074
  71. El Agha E, Kramann R, Schneider RK, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 2017; 21(2): 166-77. doi: 10.1016/j.stem.2017.07.011 PMID: 28777943
  72. Davey GC, Patil SB, O’Loughlin A, O’Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol 2014; 5: 86. doi: 10.3389/fendo.2014.00086 PMID: 24936198
  73. Florea V, Rieger AC, Natsumeda M, et al. The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovasc Res 2020; 116(13): 2131-41. doi: 10.1093/cvr/cvaa004 PMID: 32053144
  74. Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy. J Am Coll Cardiol 2017; 69(5): 526-37. doi: 10.1016/j.jacc.2016.11.009 PMID: 27856208
  75. Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: A randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 2015; 36(27): 1744-53. doi: 10.1093/eurheartj/ehv136 PMID: 25926562

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers