Distinctive Expression of MetastamiRs in Breast Cancer Mesenchymal Stem Cells Isolated from Solid Tumor

  • Authors: Hashemi Z.1, Moghadam M.2, Khalili S.3, Hashemi S.4, Sepehr K.5, Sadroddiny E.6
  • Affiliations:
    1. Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences
    2. Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University
    3. Department of Biology Sciences, Shahid Rajaee Teacher Training University,
    4. Department of Immunology, School of Medicine,, Shahid Beheshti University of Medical Sciences
    5. Department of Immunology, School of Public Health, Tehran University of Medical Sciences
    6. Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Tehran University of Medical Sciences
  • Issue: Vol 19, No 11 (2024)
  • Pages: 1525-1534
  • Section: Medicine
  • URL: https://rjpbr.com/1574-888X/article/view/645619
  • DOI: https://doi.org/10.2174/011574888X272313231124063458
  • ID: 645619

Cite item

Full Text

Abstract

Background:MSCs are a part of the tumor microenvironment, which secrete cytokines and chemokines. They can affect metastasis and the growth of tumors. metastamiRs are newly recognized regulatory elements of the metastasis pathway which are involved in epithelial-to-mesenchymal transition (EMT).

Objective:In the present study, we aimed to assess the expression profile of metastamiRs in the context of MSCs in correlation with their invasion and migration power.

Methods:Tumor-isolated BC-MSCs and normal human mammary epithelial cells (HMECs) along with MCF-7, MDA-MB231, and MCF-10A cells were prepared and confirmed for their identity. The cells were assessed for CD44+CD24¯ percentage, Oct-4, and Survivin expression. GEO, KEGG, and TCGA databases were investigated to detect differential miR-expressions. Real- time PCR for 13 miRs was performed using LNA primers. Ultimately, Transwell-Matrigel assays as used to assess the level of migration and invasion.

Results:Our results indicated that some oncomiRs like miR-10b were upregulated in BC-MSCs, while the levels of miR-373 and miR-520c were similar to the MCF-10A. Generally, miR-200 family members were on lower levels compared to the other miR-suppressor (miR-146a, 146b, and 335). miR-31 and 193b were up-regulated in MCF-10A. The most invasiveness was observed in the MDA-MB231 cell line.

Conclusion:We have demonstrated that the miR-expression levels of BC-MSCs are somewhat in between MCF-7 and MDA-MB231 miR-expression levels. This could be the logic behind the moderate level of invasion in BC-MSCs. Therefore, miR-therapy approaches such as miR-mimic or antagomiRs could be used for BC-MSCs in clinical cancer therapy.

About the authors

Zahra Hashemi

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences

Email: info@benthamscience.net

Mehdi Moghadam

Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University

Author for correspondence.
Email: info@benthamscience.net

Saeed Khalili

Department of Biology Sciences, Shahid Rajaee Teacher Training University,

Email: info@benthamscience.net

Seyed Hashemi

Department of Immunology, School of Medicine,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Koushan Sepehr

Department of Immunology, School of Public Health, Tehran University of Medical Sciences

Email: info@benthamscience.net

Esmaeil Sadroddiny

Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Tehran University of Medical Sciences

Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30. doi: 10.3322/caac.21332 PMID: 26742998
  3. Farokhimanesh, S.; Forouzandeh Moghadam, M.; Ebrahimi, M.; Hashemi, Z.S. Metastasis inhibition by cell type specific expression of BRMS1 gene under the regulation of miR200 family response elements. Cell J., 2021, 23(2), 225-237. PMID: 34096224
  4. Eccles, S.A.; Welch, D.R. Metastasis: recent discoveries and novel treatment strategies. Lancet, 2007, 369(9574), 1742-1757. doi: 10.1016/S0140-6736(07)60781-8 PMID: 17512859
  5. Hatami, Z.; Hashemi, Z.S.; Eftekhary, M.; Amiri, A.; Karpisheh, V.; Nasrollahi, K.; Jafari, R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int., 2023, 23(1), 157. doi: 10.1186/s12935-023-02996-6 PMID: 37543612
  6. Hashemi, Z.S.; Ghavami, M.; Kiaie, S.H.; Mohammadi, F.; Barough, M.S.; Khalili, S.; Hosseini-Farjam, Z.; Mossahebi-Mohammadi, M.; Sheidary, A.; Ghavamzadeh, A.; Forooshani, R.S. Novel delivery of sorafenib by natural killer cell-derived exosomes-enhanced apoptosis in triple-negative breast cancer. Nanomedicine (Lond.), 2023, 18(5), 437-453. doi: 10.2217/nnm-2022-0237 PMID: 37199259
  7. Hashemi, Z.S.; Ghavami, M.; Khalili, S.; Naghib, S.M. The Emerging Role of Exosome Nanoparticles in Regenerative Medicine. Nanopharmaceuticals in Regenerative Medicine; CRC Press, 2022, pp. 67-93. doi: 10.1201/9781003153504-5
  8. Mohammadpour, H.; Khalili, S.; Hashemi, Z.S. Kremen is beyond a subsidiary co-receptor of Wnt signaling: An in silico validation. Turk. J. Biol., 2015, 39(3), 501-510. doi: 10.3906/biy-1409-1
  9. Hashemi, Z.S.; Moghadam, M.F.; Soleimani, M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell Dev Biol Anim 2015, 51(5), 495-506. doi: 10.1007/s11626-014-9854-y PMID: 25539863
  10. Hashemi, Z.S.; Forouzandeh Moghadam, M.; Soleimani, M.; Hafizi, M.; Amirizadeh, N. TGF-b downregulation by RNAi technique in ex vivo-expanded HSCs on 3D DBM scaffold. Tehran Uni. Med. J., 2012, 70(2)
  11. Hashemi, Z.S.; Moghadam, M.F.; Farokhimanesh, S.; Rajabibazl, M.; Sadroddiny, E. Inhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics. Iran. J. Basic Med. Sci., 2018, 21(4), 427-433. PMID: 29796229
  12. Hashemi, Z.S.; Moghadam, M.F.; Khalili, S.; Ghavami, M.; Salimi, F.; Sadroddiny, E. Additive effect of metastamiR-193b and breast cancer metastasis suppressor 1 as an anti-metastatic strategy. Breast Cancer, 201p, 26(2), 215-228. PMID: 30284194
  13. Hashemi, Z.S.; Forouzandeh Moghadam, M.; Sadroddiny, E. Varying miR-193b-3p expression patterns in breast cancer cell lines indicates its potential for cancer management strategies. Int. J. Cancer Manag., 2018, 11(8), e63540. doi: 10.5812/ijcm.63540
  14. Rezaei, T.; Amini, M.; Hashemi, Z.S.; Mansoori, B.; Rezaei, S.; Karami, H. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic. Biol. Med., 2020, 152, 432-454 . PMID: 31899343
  15. Garofalo, M.; Croce, C.M. microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 25-43. doi: 10.1146/annurev-pharmtox-010510-100517 PMID: 20809797
  16. Langroudi, L.; Forouzandeh, M.; Soleimani, M.; Atashi, A.; Golestaneh, A.F. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol. Biol. Rep., 2013, 40(7), 4429-4437. doi: 10.1007/s11033-013-2533-3 PMID: 23661017
  17. Goh, J.N.; Loo, S.Y.; Datta, A.; Siveen, K.S.; Yap, W.N.; Cai, W.; Shin, E.M.; Wang, C.; Kim, J.E.; Chan, M.; Dharmarajan, A.M.; Lee, A.S.G.; Lobie, P.E.; Yap, C.T.; Kumar, A.P. MICRORNAS in breast cancer: regulatory roles governing the hallmarks of cancer. Biol. Rev. Camb. Philos. Soc., 2016, 91(2), 409-428. doi: 10.1111/brv.12176 PMID: 25631495
  18. Ma, L.; Weinberg, R.A. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet., 2008, 24(9), 448-456. doi: 10.1016/j.tig.2008.06.004 PMID: 18674843
  19. Nicoloso, M.S.; Spizzo, R.; Shimizu, M.; Rossi, S.; Calin, G.A. MicroRNAs — the micro steering wheel of tumour metastases. Nat. Rev. Cancer, 2009, 9(4), 293-302. doi: 10.1038/nrc2619 PMID: 19262572
  20. Choghaei, E.; Khamisipour, G.; Falahati, M.; Naeimi, B.; Mossahebi-Mohammadi, M.; Tahmasebi, R.; Hasanpour, M.; Shamsian, S.; Hashemi, Z.S. Knockdown of microRNA-29a changes the expression of heat shock proteins in breast carcinoma MCF-7 cells. Oncol. Res., 2016, 23(1), 69-78. doi: 10.3727/096504015X14478843952906 PMID: 26802653
  21. Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866. doi: 10.1038/nrc1997 PMID: 17060945
  22. Zhang, H.; Li, Y.; Lai, M. The microRNA network and tumor metastasis. Oncogene, 2010, 29(7), 937-948. doi: 10.1038/onc.2009.406 PMID: 19935707
  23. Kai, K.; Arima, Y.; Kamiya, T.; Saya, H. Breast cancer stem cells. Breast Cancer, 2010, 17(2), 80-85. doi: 10.1007/s12282-009-0176-y PMID: 19806428
  24. Thompson, E.W.; Haviv, I. The social aspects of EMT-MET plasticity. Nat. Med., 2011, 17(9), 1048-1049. doi: 10.1038/nm.2437 PMID: 21900919
  25. Yazdani, S.O.; Pedram, M.; Hafizi, M.; Kabiri, M.; Soleimani, M.; Dehghan, M.M.; Jahanzad, I.; Gheisari, Y.; Hashemi, S.M. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell, 2012, 44(4), 205-213. doi: 10.1016/j.tice.2012.03.003 PMID: 22551686
  26. Sadat Hashemi, Z.; Forouzandeh Moghadam, M.; Soleimani, M. Comparison of the ex vivo expansion of UCB-derived CD34+ in 3D DBM/MBA scaffolds with USSC as a feeder layer. Iran. J. Basic Med. Sci., 2013, 16(10), 1075-1087. PMID: 24379965
  27. Berthon, P.; Pancino, G.; Cremoux, P.; Roseto, A.; Gespach, C.; Calvo, F. Characterization of normal breast epithelial cells in primary cultures: Differentiation and growth factor receptors studies. In vitro Cell Dev Biol 1992, 28(11-12), 716-724. doi: 10.1007/BF02631059 PMID: 1282913
  28. Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol., 2011, 5(1), 5-23. doi: 10.1016/j.molonc.2010.11.003 PMID: 21147047
  29. Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68. doi: 10.1186/bcr2635 PMID: 20813035
  30. Ponti, D.; Costa, A.; Zaffaroni, N.; Pratesi, G.; Petrangolini, G.; Coradini, D.; Pilotti, S.; Pierotti, M.A.; Daidone, M.G. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res., 2005, 65(13), 5506-5511. doi: 10.1158/0008-5472.CAN-05-0626 PMID: 15994920
  31. Hashemi, Z.S.; Khalili, S.; Forouzandeh Moghadam, M.; Sadroddiny, E. Lung cancer and miRNAs: a possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev. Respir. Med., 2017, 11(2), 147-157. doi: 10.1080/17476348.2017.1279403 PMID: 28118799
  32. Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Klein-Szanto, A.J.; Gimotty, P.A.; Katsaros, D.; Coukos, G.; Zhang, L.; Puré, E.; Agami, R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol., 2008, 10(2), 202-210. doi: 10.1038/ncb1681 PMID: 18193036
  33. Heyn, H.; Engelmann, M.; Schreek, S.; Ahrens, P.; Lehmann, U.; Kreipe, H.; Schlegelberger, B.; Beger, C. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int. J. Cancer, 2011, 129(12), 2797-2806. doi: 10.1002/ijc.25962 PMID: 21618216
  34. Hamel, K.M.; King, C.T.; Cavalier, M.B.; Liimatta, K.Q.; Rozanski, G.L.; King, T.A., Jr; Lam, M.; Bingham, G.C.; Byrne, C.E.; Xing, D.; Collins-Burow, B.M.; Burow, M.E.; Belgodere, J.A.; Bratton, M.R.; Bunnell, B.A.; Martin, E.C. Breast cancer-stromal interactions: adipose-derived stromal/stem cell age and cancer subtype mediated remodeling. Stem Cells Dev., 2022, 31(19-20), 604-620. doi: 10.1089/scd.2021.0279 PMID: 35579936
  35. Wei, F.; Cao, C.; Xu, X.; Wang, J. Diverse functions of miR-373 in cancer. J. Transl. Med., 2015, 13(1), 162. doi: 10.1186/s12967-015-0523-z PMID: 25990556
  36. Fath, M.K.; Zahedi, F.; Hashemi, Z.S.; Khalili, S. Evaluation of differentiation quality of several differentiation inducers of bone marrow-derived mesenchymal stem cells to nerve cells by assessing expression of beta-tubulin 3 marker: A systematic review. Curr. Stem Cell Res. Ther., 2021, 16(8), 994-1004. doi: 10.2174/1574888X16666210303150814 PMID: 33655875
  37. Jokar, F.; Mahabadi, J.A.; Salimian, M.; Taherian, A.; Hayat, S.M.G.; Sahebkar, A.; Atlasi, M.A. Differential expression of HSP90β in MDA-MB-231 and MCF-7 cell lines after treatment with doxorubicin. J. Pharmacopuncture, 2019, 22(1), 28-34. doi: 10.3831/KPI.2019.22.003 PMID: 30988998
  38. Jo, H.; Shim, K.; Jeoung, D. Potential of the miR-200 family as a target for developing anti-cancer therapeutics. Int. J. Mol. Sci., 2022, 23(11), 5881. doi: 10.3390/ijms23115881 PMID: 35682560
  39. Zhang, C.; Zhai, W.; Xie, Y.; Chen, Q.; Zhu, W.; Sun, X. Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro. Oncol. Lett., 2013, 6(6), 1577-1582. doi: 10.3892/ol.2013.1619 PMID: 24260049
  40. Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449(7163), 682-688. doi: 10.1038/nature06174 PMID: 17898713
  41. Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563. doi: 10.1038/nature06188 PMID: 17914389
  42. Liu, S.; Ginestier, C.; Ou, S.J.; Clouthier, S.G.; Patel, S.H.; Monville, F.; Korkaya, H.; Heath, A.; Dutcher, J.; Kleer, C.G.; Jung, Y.; Dontu, G.; Taichman, R.; Wicha, M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res., 2011, 71(2), 614-624. doi: 10.1158/0008-5472.CAN-10-0538 PMID: 21224357
  43. Ono, M.; Kosaka, N.; Tominaga, N.; Yoshioka, Y.; Takeshita, F.; Takahashi, R.; Yoshida, M.; Tsuda, H.; Tamura, K.; Ochiya, T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal., 2014, 7(332), ra63. doi: 10.1126/scisignal.2005231 PMID: 24985346
  44. Xavier, P.L.P.; Cordeiro, Y.G.; Rochetti, A.L.; Sangalli, J.R.; Zuccari, D.A.P.C.; Silveira, J.C.; Bressan, F.F.; Fukumasu, H. ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet. Comp. Oncol., 2018, 16(4), 596-605. doi: 10.1111/vco.12427 PMID: 30047225
  45. Song, Y.; Washington, M.K.; Crawford, H.C. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res., 2010, 70(5), 2115-2125. doi: 10.1158/0008-5472.CAN-09-2979 PMID: 20160041
  46. Morrison, G.; Scognamiglio, R.; Trumpp, A.; Smith, A. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification. EMBO J., 2016, 35(3), 356-368. doi: 10.15252/embj.201592116 PMID: 26675138
  47. Körner, C.; Keklikoglou, I.; Bender, C.; Wörner, A.; Münstermann, E.; Wiemann, S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ϵ (PKCepsilon). J. Biol. Chem., 2013, 288(12), 8750-8761. doi: 10.1074/jbc.M112.414128 PMID: 23364795
  48. Fu, Z.; Wang, L.; Li, S.; Chen, F.; Au-Yeung, K.K.W.; Shi, C. MicroRNA as an important target for anticancer drug development. Front. Pharmacol., 2021, 12, 736323. doi: 10.3389/fphar.2021.736323 PMID: 34512363
  49. McDermott, A.M.; Heneghan, H.M.; Miller, N.; Kerin, M.J. The therapeutic potential of microRNAs: Disease modulators and drug targets. Pharm. Res., 2011, 28(12), 3016-3029. doi: 10.1007/s11095-011-0550-2 PMID: 21818713

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers