Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina
- Authors: Shi Y.1, Li J.1, Min-Xu 1, Wang Y.1, Wang T.1, Zuo Z.1, Liu X.1
-
Affiliations:
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
- Issue: Vol 19, No 11 (2024)
- Pages: 1497-1513
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645599
- DOI: https://doi.org/10.2174/011574888X277276231215110316
- ID: 645599
Cite item
Full Text
Abstract
Background:Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved.
Methods:A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference.
Results:β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement.
Conclusion:This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.
About the authors
Ya-Hui Shi
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Email: info@benthamscience.net
Jun-Qi Li
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Email: info@benthamscience.net
Min-Xu
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Email: info@benthamscience.net
Yu-Ying Wang
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Email: info@benthamscience.net
Ting-Hua Wang
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Zhong-Fu Zuo
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Xue-Zheng Liu
Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Harwerth, R.S.; Wheat, J.L. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(2), 305-314. doi: 10.1007/s00417-007-0691-5 PMID: 17934750
- Tatham, A.J.; Medeiros, F.A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology, 2017, 124(12), S57-S65. doi: 10.1016/j.ophtha.2017.07.015 PMID: 29157363
- Chen, M.; Luo, C.; Zhao, J.; Devarajan, G.; Xu, H. Immune regulation in the aging retina. Prog. Retin. Eye Res., 2019, 69, 159-172. doi: 10.1016/j.preteyeres.2018.10.003 PMID: 30352305
- Zhao, L.; Feng, Z.; Zou, X.; Cao, K.; Xu, J.; Liu, J. Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina. Oxid. Med. Cell. Longev., 2014, 2014, 1-11. doi: 10.1155/2014/425705 PMID: 24987494
- Nag, T.C. Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye, 2021, 35(11), 2917-2929. doi: 10.1038/s41433-021-01602-1 PMID: 34079093
- Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, A.G. Mesenchymal stem cell migration and tissue repair. Cells, 2019, 8(8), 784. doi: 10.3390/cells8080784 PMID: 31357692
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther., 2018, 9(1), 63. doi: 10.1186/s13287-018-0791-7 PMID: 29523213
- Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347. doi: 10.3727/096368915X686841 PMID: 25622293
- Zappa Villar, M.F.; Lehmann, M.; García, M.G. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav. Brain Res., 2019, 374, 111887. doi: 10.1016/j.bbr.2019.04.001 PMID: 30951751
- Yan, Q.; Xiao, Q.; Ge, J. Bioinformatics-based research on key genes and pathways of intervertebral disc degeneration. Cartilage, 2021, 13, 582S-591S. doi: 10.1177/1947603520973247 PMID: 33233925
- Berglund, A.; Putney, R.M.; Hamaidi, I.; Kim, S. Epigenetic dysregulation of immune-related pathways in cancer: Bioinformatics tools and visualization. Exp. Mol. Med., 2021, 53(5), 761-771. doi: 10.1038/s12276-021-00612-z PMID: 33963293
- Liu, K.; Zhang, Y.; Martin, C.; Ma, X.; Shen, B. Translational bioinformatics for human reproductive biology research: examples, opportunities and challenges for a future reproductive medicine. Int. J. Mol. Sci., 2022, 24(1), 4. doi: 10.3390/ijms24010004 PMID: 36613446
- Dan, Q.Q.; Chen, L. shi LL, Zhou X, Wang TH, Liu H. Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells. BMC Mol. Cell Biol., 2023, 24(1), 8. doi: 10.1186/s12860-023-00467-4 PMID: 36879194
- Liu, X.; Chen, F.; Chen, Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res. Ther., 2020, 11(1), 142. doi: 10.1186/s13287-020-01651-5 PMID: 32234075
- Shen, J.; Tower, J. Effects of light on aging and longevity. Ageing Res. Rev., 2019, 53, 100913. doi: 10.1016/j.arr.2019.100913 PMID: 31154014
- Cano, M.; Datta, S.; Wang, L. Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress‐induced mitochondrial dysfunction. Aging Cell, 2021, 20(8), e13444. doi: 10.1111/acel.13444 PMID: 34313391
- Xu, N.; Chen, Y.; Dean, K.C. Sphere-induced rejuvenation of swine and human müller glia is primarily caused by telomere elongation. Stem Cells, 2017, 35(6), 1579-1591. doi: 10.1002/stem.2585 PMID: 28152565
- Sui, B.D.; Hu, C.H.; Zheng, C.X.; Jin, Y. Microenvironmental views on mesenchymal stem cell differentiation in aging. J. Dent. Res., 2016, 95(12), 1333-1340. doi: 10.1177/0022034516653589 PMID: 27302881
- Denu, R.A. SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid. Med. Cell. Longev., 2017, 2017, 1-11. doi: 10.1155/2017/5841716 PMID: 28717408
- Zheng, C.X.; Sui, B.D.; Qiu, X.Y.; Hu, C.H.; Jin, Y. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med., 2020, 26(1), 89-104. doi: 10.1016/j.molmed.2019.04.008 PMID: 31126872
- Fafián-Labora, J.; Morente-López, M.; Sánchez-Dopico, M.J. Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing. Stem Cell Res. Ther., 2020, 11(1), 13. doi: 10.1186/s13287-019-1534-0 PMID: 31900239
- Zhou, X.; Wang, L.; Zhang, Z. Fluorometholone inhibits high glucose-induced cellular senescence in human retinal endothelial cells. Hum. Exp. Toxicol., 2022, 41. doi: 10.1177/09603271221076107 PMID: 35264022
- He, Y.; Leung, K.W.; Ren, Y.; Pei, J.; Ge, J.; Tombran-Tink, J. PEDF improves mitochondrial function in RPE cells during oxidative stress. Invest. Ophthalmol. Vis. Sci., 2014, 55(10), 6742-6755. doi: 10.1167/iovs.14-14696 PMID: 25212780
- Fernandes, A.F.; Guo, W.; Zhang, X. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp. Eye Res., 2006, 83(6), 1472-1481. doi: 10.1016/j.exer.2006.07.024 PMID: 17027001
- Chen, Q.; Tang, L.; Zhang, Y. STING up-regulates VEGF expression in oxidative stress-induced senescence of retinal pigment epithelium via NF-κB/HIF-1α pathway. Life Sci., 2022, 293, 120089. doi: 10.1016/j.lfs.2021.120089 PMID: 35007563
- Arroba, AI; Rosa, LR; Murillo-Cuesta, S Autophagy resolves early retinal inflammation in Igf1 -deficient mice. Dis Model Mech, 2016, 9(9), dmm.026344. doi: 10.1242/dmm.026344 PMID: 27483352
- Lee, H.; Hwang-Bo, H.; Ji, S.Y. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut., 2020, 262, 114301.
- Campbell, D.S.; Okamoto, H. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J. Cell Biol., 2013, 203(4), 657-672. doi: 10.1083/jcb.201303072 PMID: 24385488
- Sasaki, F.; Koga, T.; Ohba, M. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight, 2018, 3(18), 96902-2.
- Kandarakis, S.A.; Piperi, C.; Moschonas, D.P.; Korkolopoulou, P.; Papalois, A.; Papavassiliou, A.G. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp. Eye Res., 2015, 137, 1-10. doi: 10.1016/j.exer.2015.05.017 PMID: 26026876
- Smith, R.O.; Ninchoji, T.; Gordon, E. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife, 2020, 9, e54056. doi: 10.7554/eLife.54056 PMID: 32312382
- Marneros, A.G. Increased VEGF ‐A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol. Med., 2016, 8(3), 208-231. doi: 10.15252/emmm.201505613 PMID: 26912740
- Hao, Y.; Zhou, Q.; Ma, J.; Zhao, Y.; Wang, S. miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells. J. Clin. Exp. Ophthalmol., 2016, 7(3), 562. doi: 10.4172/2155-9570.1000562 PMID: 27917303
- Liao, W.L.; Turko, I.V. Accumulation of large protein fragments in prematurely senescent ARPE-19 cells. Invest. Ophthalmol. Vis. Sci., 2009, 50(10), 4992-4997. doi: 10.1167/iovs.09-3671 PMID: 19458325
- Rose, K.; Schröer, U.; Volk, G.F. Axonal regeneration in the organotypically cultured monkey retina: biological aspects, dependence on substrates and age-related proteomic profiling. Restor. Neurol. Neurosci., 2008, 26(4-5), 249-266. J. PMID: 18997304
- Peng, H.; Han, W.; Ma, B. Autophagy and senescence of rat retinal precursor cells under high glucose. Front. Endocrinol., 2023, 13, 1047642. doi: 10.3389/fendo.2022.1047642 PMID: 36686430
- Itakura, T.; Webster, A.; Chintala, S.K. GPR158 in the visual system: Homeostatic role in regulation of intraocular pressure. J. Ocul. Pharmacol. Ther., 2019, 35(4), 203-215. doi: 10.1089/jop.2018.0135 PMID: 30855200
- Marazita, M.C.; Dugour, A.; Marquioni-Ramella, M.D.; Figueroa, J.M.; Suburo, A.M. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol., 2016, 7, 78-87. doi: 10.1016/j.redox.2015.11.011 PMID: 26654980
- Chucair-Elliott, A.J.; Ocañas, S.R.; Pham, K. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol. Dis., 2022, 175, 105931. doi: 10.1016/j.nbd.2022.105931 PMID: 36423879
- Sims, S.M.; Holmgren, L.; Cathcart, H.M.; Sappington, R.M. Spatial regulation of interleukin-6 signaling in response to neurodegenerative stressors in the retina. Am. J. Neurodegener. Dis., 2012, 1(2), 168-179. PMID: 23024928
- Mangold, C.A.; Masser, D.R.; Stanford, D.R. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(1), 16-29. doi: 10.1093/gerona/glv232 PMID: 26786204
- Du, X.; Byrne, E.M.; Chen, M.; Xu, H. Minocycline inhibits microglial activation and improves visual function in a chronic model of age-related retinal degeneration. Biomedicines, 2022, 10(12), 3222. doi: 10.3390/biomedicines10123222 PMID: 36551980
- Wang, J.; Feng, Y.; Han, P. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death Dis., 2018, 9(2), 178. doi: 10.1038/s41419-017-0200-7 PMID: 29415988
- Eriksdotter, M.; Navarro-Oviedo, M.; Mitra, S. Cerebrospinal fluid from alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp. Cell Res., 2018, 371(1), 175-184. doi: 10.1016/j.yexcr.2018.08.007 PMID: 30092220
- Cao, L.; Wang, H.; Wang, F.; Xu, D.; Liu, F.; Liu, C. Aβ-induced senescent retinal pigment epithelial cells create a proinflammatory microenvironment in AMD. Invest. Ophthalmol. Vis. Sci., 2013, 54(5), 3738-3750. doi: 10.1167/iovs.13-11612 PMID: 23557734
- López-Luppo, M.; Nacher, V.; Ramos, D. Blood vessel basement membrane alterations in human retinal microaneurysms during aging. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 1116-1131. doi: 10.1167/iovs.16-19998 PMID: 28196225
- Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death. Invest. Ophthalmol. Vis. Sci., 2005, 46(12), 4747-4753. doi: 10.1167/iovs.05-0128 PMID: 16303975
- Li, L.; Huang, Y.; Gao, Y. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer, 2018, 18(1), 1215. doi: 10.1186/s12885-018-5056-4 PMID: 30514230
- Li, Y.; Zhao, L.; Qi, W. Uric acid, as a double-edged sword, affects the activity of epidermal growth factor (EGF) on human umbilical vein endothelial cells by regulating aging process. Bioengineered, 2022, 13(2), 3877-3895. doi: 10.1080/21655979.2022.2027172 PMID: 35152831
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases J/OL. Inflamma Res Official J Europ Hista Res Soc, 2021, 70(10-12), 1043-1061.
- Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci., 2021, 26(1), 50-96. doi: 10.2741/4889 PMID: 33049665
- Dowery, R.; Benhamou, D.; Benchetrit, E. Peripheral B cells repress B-cell regeneration in aging through a TNF-α/IGFBP-1/IGF-1 immune-endocrine axis. Blood, 2021, 138(19), 1817-1829. doi: 10.1182/blood.2021012428 PMID: 34297797
- Huang, Y.; Xu, Z.; Xiong, S. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov., 2018, 4(1), 9. doi: 10.1038/s41421-018-0011-8 PMID: 29507754
Supplementary files
