Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina


Cite item

Full Text

Abstract

Background:Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved.

Methods:A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference.

Results:β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement.

Conclusion:This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.

About the authors

Ya-Hui Shi

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Email: info@benthamscience.net

Jun-Qi Li

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Email: info@benthamscience.net

Min-Xu

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Email: info@benthamscience.net

Yu-Ying Wang

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Email: info@benthamscience.net

Ting-Hua Wang

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Zhong-Fu Zuo

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Xue-Zheng Liu

Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Harwerth, R.S.; Wheat, J.L. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(2), 305-314. doi: 10.1007/s00417-007-0691-5 PMID: 17934750
  2. Tatham, A.J.; Medeiros, F.A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology, 2017, 124(12), S57-S65. doi: 10.1016/j.ophtha.2017.07.015 PMID: 29157363
  3. Chen, M.; Luo, C.; Zhao, J.; Devarajan, G.; Xu, H. Immune regulation in the aging retina. Prog. Retin. Eye Res., 2019, 69, 159-172. doi: 10.1016/j.preteyeres.2018.10.003 PMID: 30352305
  4. Zhao, L.; Feng, Z.; Zou, X.; Cao, K.; Xu, J.; Liu, J. Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina. Oxid. Med. Cell. Longev., 2014, 2014, 1-11. doi: 10.1155/2014/425705 PMID: 24987494
  5. Nag, T.C. Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye, 2021, 35(11), 2917-2929. doi: 10.1038/s41433-021-01602-1 PMID: 34079093
  6. Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, A.G. Mesenchymal stem cell migration and tissue repair. Cells, 2019, 8(8), 784. doi: 10.3390/cells8080784 PMID: 31357692
  7. Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther., 2018, 9(1), 63. doi: 10.1186/s13287-018-0791-7 PMID: 29523213
  8. Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347. doi: 10.3727/096368915X686841 PMID: 25622293
  9. Zappa Villar, M.F.; Lehmann, M.; García, M.G. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav. Brain Res., 2019, 374, 111887. doi: 10.1016/j.bbr.2019.04.001 PMID: 30951751
  10. Yan, Q.; Xiao, Q.; Ge, J. Bioinformatics-based research on key genes and pathways of intervertebral disc degeneration. Cartilage, 2021, 13, 582S-591S. doi: 10.1177/1947603520973247 PMID: 33233925
  11. Berglund, A.; Putney, R.M.; Hamaidi, I.; Kim, S. Epigenetic dysregulation of immune-related pathways in cancer: Bioinformatics tools and visualization. Exp. Mol. Med., 2021, 53(5), 761-771. doi: 10.1038/s12276-021-00612-z PMID: 33963293
  12. Liu, K.; Zhang, Y.; Martin, C.; Ma, X.; Shen, B. Translational bioinformatics for human reproductive biology research: examples, opportunities and challenges for a future reproductive medicine. Int. J. Mol. Sci., 2022, 24(1), 4. doi: 10.3390/ijms24010004 PMID: 36613446
  13. Dan, Q.Q.; Chen, L. shi LL, Zhou X, Wang TH, Liu H. Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells. BMC Mol. Cell Biol., 2023, 24(1), 8. doi: 10.1186/s12860-023-00467-4 PMID: 36879194
  14. Liu, X.; Chen, F.; Chen, Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res. Ther., 2020, 11(1), 142. doi: 10.1186/s13287-020-01651-5 PMID: 32234075
  15. Shen, J.; Tower, J. Effects of light on aging and longevity. Ageing Res. Rev., 2019, 53, 100913. doi: 10.1016/j.arr.2019.100913 PMID: 31154014
  16. Cano, M.; Datta, S.; Wang, L. Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress‐induced mitochondrial dysfunction. Aging Cell, 2021, 20(8), e13444. doi: 10.1111/acel.13444 PMID: 34313391
  17. Xu, N.; Chen, Y.; Dean, K.C. Sphere-induced rejuvenation of swine and human müller glia is primarily caused by telomere elongation. Stem Cells, 2017, 35(6), 1579-1591. doi: 10.1002/stem.2585 PMID: 28152565
  18. Sui, B.D.; Hu, C.H.; Zheng, C.X.; Jin, Y. Microenvironmental views on mesenchymal stem cell differentiation in aging. J. Dent. Res., 2016, 95(12), 1333-1340. doi: 10.1177/0022034516653589 PMID: 27302881
  19. Denu, R.A. SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid. Med. Cell. Longev., 2017, 2017, 1-11. doi: 10.1155/2017/5841716 PMID: 28717408
  20. Zheng, C.X.; Sui, B.D.; Qiu, X.Y.; Hu, C.H.; Jin, Y. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med., 2020, 26(1), 89-104. doi: 10.1016/j.molmed.2019.04.008 PMID: 31126872
  21. Fafián-Labora, J.; Morente-López, M.; Sánchez-Dopico, M.J. Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing. Stem Cell Res. Ther., 2020, 11(1), 13. doi: 10.1186/s13287-019-1534-0 PMID: 31900239
  22. Zhou, X.; Wang, L.; Zhang, Z. Fluorometholone inhibits high glucose-induced cellular senescence in human retinal endothelial cells. Hum. Exp. Toxicol., 2022, 41. doi: 10.1177/09603271221076107 PMID: 35264022
  23. He, Y.; Leung, K.W.; Ren, Y.; Pei, J.; Ge, J.; Tombran-Tink, J. PEDF improves mitochondrial function in RPE cells during oxidative stress. Invest. Ophthalmol. Vis. Sci., 2014, 55(10), 6742-6755. doi: 10.1167/iovs.14-14696 PMID: 25212780
  24. Fernandes, A.F.; Guo, W.; Zhang, X. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp. Eye Res., 2006, 83(6), 1472-1481. doi: 10.1016/j.exer.2006.07.024 PMID: 17027001
  25. Chen, Q.; Tang, L.; Zhang, Y. STING up-regulates VEGF expression in oxidative stress-induced senescence of retinal pigment epithelium via NF-κB/HIF-1α pathway. Life Sci., 2022, 293, 120089. doi: 10.1016/j.lfs.2021.120089 PMID: 35007563
  26. Arroba, AI; Rosa, LR; Murillo-Cuesta, S Autophagy resolves early retinal inflammation in Igf1 -deficient mice. Dis Model Mech, 2016, 9(9), dmm.026344. doi: 10.1242/dmm.026344 PMID: 27483352
  27. Lee, H.; Hwang-Bo, H.; Ji, S.Y. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut., 2020, 262, 114301.
  28. Campbell, D.S.; Okamoto, H. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J. Cell Biol., 2013, 203(4), 657-672. doi: 10.1083/jcb.201303072 PMID: 24385488
  29. Sasaki, F.; Koga, T.; Ohba, M. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight, 2018, 3(18), 96902-2.
  30. Kandarakis, S.A.; Piperi, C.; Moschonas, D.P.; Korkolopoulou, P.; Papalois, A.; Papavassiliou, A.G. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp. Eye Res., 2015, 137, 1-10. doi: 10.1016/j.exer.2015.05.017 PMID: 26026876
  31. Smith, R.O.; Ninchoji, T.; Gordon, E. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife, 2020, 9, e54056. doi: 10.7554/eLife.54056 PMID: 32312382
  32. Marneros, A.G. Increased VEGF ‐A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol. Med., 2016, 8(3), 208-231. doi: 10.15252/emmm.201505613 PMID: 26912740
  33. Hao, Y.; Zhou, Q.; Ma, J.; Zhao, Y.; Wang, S. miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells. J. Clin. Exp. Ophthalmol., 2016, 7(3), 562. doi: 10.4172/2155-9570.1000562 PMID: 27917303
  34. Liao, W.L.; Turko, I.V. Accumulation of large protein fragments in prematurely senescent ARPE-19 cells. Invest. Ophthalmol. Vis. Sci., 2009, 50(10), 4992-4997. doi: 10.1167/iovs.09-3671 PMID: 19458325
  35. Rose, K.; Schröer, U.; Volk, G.F. Axonal regeneration in the organotypically cultured monkey retina: biological aspects, dependence on substrates and age-related proteomic profiling. Restor. Neurol. Neurosci., 2008, 26(4-5), 249-266. J. PMID: 18997304
  36. Peng, H.; Han, W.; Ma, B. Autophagy and senescence of rat retinal precursor cells under high glucose. Front. Endocrinol., 2023, 13, 1047642. doi: 10.3389/fendo.2022.1047642 PMID: 36686430
  37. Itakura, T.; Webster, A.; Chintala, S.K. GPR158 in the visual system: Homeostatic role in regulation of intraocular pressure. J. Ocul. Pharmacol. Ther., 2019, 35(4), 203-215. doi: 10.1089/jop.2018.0135 PMID: 30855200
  38. Marazita, M.C.; Dugour, A.; Marquioni-Ramella, M.D.; Figueroa, J.M.; Suburo, A.M. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol., 2016, 7, 78-87. doi: 10.1016/j.redox.2015.11.011 PMID: 26654980
  39. Chucair-Elliott, A.J.; Ocañas, S.R.; Pham, K. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol. Dis., 2022, 175, 105931. doi: 10.1016/j.nbd.2022.105931 PMID: 36423879
  40. Sims, S.M.; Holmgren, L.; Cathcart, H.M.; Sappington, R.M. Spatial regulation of interleukin-6 signaling in response to neurodegenerative stressors in the retina. Am. J. Neurodegener. Dis., 2012, 1(2), 168-179. PMID: 23024928
  41. Mangold, C.A.; Masser, D.R.; Stanford, D.R. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(1), 16-29. doi: 10.1093/gerona/glv232 PMID: 26786204
  42. Du, X.; Byrne, E.M.; Chen, M.; Xu, H. Minocycline inhibits microglial activation and improves visual function in a chronic model of age-related retinal degeneration. Biomedicines, 2022, 10(12), 3222. doi: 10.3390/biomedicines10123222 PMID: 36551980
  43. Wang, J.; Feng, Y.; Han, P. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death Dis., 2018, 9(2), 178. doi: 10.1038/s41419-017-0200-7 PMID: 29415988
  44. Eriksdotter, M.; Navarro-Oviedo, M.; Mitra, S. Cerebrospinal fluid from alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp. Cell Res., 2018, 371(1), 175-184. doi: 10.1016/j.yexcr.2018.08.007 PMID: 30092220
  45. Cao, L.; Wang, H.; Wang, F.; Xu, D.; Liu, F.; Liu, C. Aβ-induced senescent retinal pigment epithelial cells create a proinflammatory microenvironment in AMD. Invest. Ophthalmol. Vis. Sci., 2013, 54(5), 3738-3750. doi: 10.1167/iovs.13-11612 PMID: 23557734
  46. López-Luppo, M.; Nacher, V.; Ramos, D. Blood vessel basement membrane alterations in human retinal microaneurysms during aging. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 1116-1131. doi: 10.1167/iovs.16-19998 PMID: 28196225
  47. Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death. Invest. Ophthalmol. Vis. Sci., 2005, 46(12), 4747-4753. doi: 10.1167/iovs.05-0128 PMID: 16303975
  48. Li, L.; Huang, Y.; Gao, Y. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer, 2018, 18(1), 1215. doi: 10.1186/s12885-018-5056-4 PMID: 30514230
  49. Li, Y.; Zhao, L.; Qi, W. Uric acid, as a double-edged sword, affects the activity of epidermal growth factor (EGF) on human umbilical vein endothelial cells by regulating aging process. Bioengineered, 2022, 13(2), 3877-3895. doi: 10.1080/21655979.2022.2027172 PMID: 35152831
  50. Salminen, A.; Kaarniranta, K.; Kauppinen, A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases J/OL. Inflamma Res Official J Europ Hista Res Soc, 2021, 70(10-12), 1043-1061.
  51. Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci., 2021, 26(1), 50-96. doi: 10.2741/4889 PMID: 33049665
  52. Dowery, R.; Benhamou, D.; Benchetrit, E. Peripheral B cells repress B-cell regeneration in aging through a TNF-α/IGFBP-1/IGF-1 immune-endocrine axis. Blood, 2021, 138(19), 1817-1829. doi: 10.1182/blood.2021012428 PMID: 34297797
  53. Huang, Y.; Xu, Z.; Xiong, S. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov., 2018, 4(1), 9. doi: 10.1038/s41421-018-0011-8 PMID: 29507754

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers