Mesenchymal Stem Cells Therapy for COVID-19: From Basic Research to Clinical Trial


Cite item

Full Text

Abstract

The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a serious challenge for human health. In severe cases, patients suffer from acute respiratory distress syndrome even organ failure, usually owing to the dysregulated immune response and widespread inflammation. Considering that there is no known cure for COVID-19 despite the increased morbidity and mortality rate of COVID-19, modalities targeting immunity and inflammation may be promising therapeutics against COVID-19. Mesenchymal stem cells (MSCs) possessing immunomodulatory, anti-inflammatory, anti-apoptotic, and antiviral properties, can be of potential benefit to a subset of severe and critically ill patients with COVID-19. In the present study, we described the underlying mechanisms of MSCs therapy and provided a thorough research study on the recent clinical trials of MSCs for SARS-CoV-2 infection.

About the authors

Ya-Chao Tao

Center of Infectious Diseases, West China Hospital, Sichuan University

Email: info@benthamscience.net

En-Qiang Chen

Center of Infectious Diseases, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Yousefi Dehbidi M, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat COVID–19. Rev Med Virol 2022; 32(2): e2281. doi: 10.1002/rmv.2281 PMID: 34363275
  2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5 PMID: 31986264
  3. Durand N, Mallea J, Zubair AC. Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. NPJ Regen Med 2020; 5(1): 17. doi: 10.1038/s41536-020-00105-z PMID: 33580031
  4. Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology – Current perspectives. Pulmonology 2021; 27(5): 423-37. doi: 10.1016/j.pulmoe.2021.03.008 PMID: 33867315
  5. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74. doi: 10.1038/s41577-020-0311-8 PMID: 32346093
  6. Ellison-Hughes GM, Colley L, O’Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The role of MSC Therapy in attenuating the damaging effects of the cytokine storm induced by COVID-19 on the heart and cardiovascular system. Front Cardiovasc Med 2020; 7: 602183. doi: 10.3389/fcvm.2020.602183 PMID: 33363221
  7. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584(7821): 463-9. doi: 10.1038/s41586-020-2588-y PMID: 32717743
  8. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15): 762-8. doi: 10.1093/cid/ciaa248 PMID: 32161940
  9. Jamal M, Bangash HI, Habiba M, et al. Immune dysregulation and system pathology in COVID-19. Virulence 2021; 12(1): 918-36. doi: 10.1080/21505594.2021.1898790 PMID: 33757410
  10. Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front Immunol 2021; 12: 700782. doi: 10.3389/fimmu.2021.700782 PMID: 34262570
  11. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763. doi: 10.1016/j.ebiom.2020.102763 PMID: 32361250
  12. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146(1): 119-127.e4. doi: 10.1016/j.jaci.2020.04.027 PMID: 32360286
  13. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9. doi: 10.1172/JCI137244 PMID: 32217835
  14. Monguió-Tortajada M, Bayes-Genis A, Rosell A, Roura S. Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax 2021; 76(2): 196-200. doi: 10.1136/thoraxjnl-2020-215717 PMID: 33323479
  15. Jamaati H, Hashemian SM, Farzanegan B, et al. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. Eur J Pharmacol 2021; 897: 173947. doi: 10.1016/j.ejphar.2021.173947 PMID: 33607104
  16. Najar M, Melki R, Khalife F, et al. Therapeutic mesenchymal stem/stromal cells: Value, challenges and optimization. Front Cell Dev Biol 2022; 9: 716853. doi: 10.3389/fcell.2021.716853 PMID: 35096805
  17. Chen L, Qu J, Kalyani FS, et al. Mesenchymal stem cell-based treatments for COVID-19: Status and future perspectives for clinical applications. Cell Mol Life Sci 2022; 79(3): 142. doi: 10.1007/s00018-021-04096-y PMID: 35187617
  18. Li Z, Niu S, Guo B, et al. Stem cell therapy for COVID‐19, ARDS and pulmonary fibrosis. Cell Prolif 2020; 53(12): e12939. doi: 10.1111/cpr.12939 PMID: 33098357
  19. Wu X, Dao Thi VL, Huang Y, et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 2018; 172(3): 423-438.e25. doi: 10.1016/j.cell.2017.11.018 PMID: 29249360
  20. Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74(13): 2345-60. doi: 10.1007/s00018-017-2473-5 PMID: 28214990
  21. Jung YJ, Park YY, Huh JW, Hong SB. The effect of human adipose-derived stem cells on lipopolysaccharide-induced acute respiratory distress syndrome in mice. Ann Transl Med 2019; 7(22): 674. doi: 10.21037/atm.2019.10.48 PMID: 31930075
  22. Xu H, Nie G, Yin T, Shao C, Ding D, Zou M. Umbilical cord-derived mesenchymal stem cells with surfactant protein B alleviates inflammatory response in acute respiratory distress syndrome by regulating macrophage polarization. Balkan Med J 2022; 39(1): 130-9. PMID: 35330560
  23. Lu Z, Chang W, Meng S, et al. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther 2019; 10(1): 372. doi: 10.1186/s13287-019-1488-2 PMID: 31801626
  24. Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28. doi: 10.14336/AD.2020.0228 PMID: 32257537
  25. Zhu R, Yan T, Feng Y, et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31(12): 1244-62. doi: 10.1038/s41422-021-00573-y PMID: 34702946
  26. Sánchez-Guijo F, García-Arranz M, López-Parra M, et al. Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study. EClinicalMedicine 2020; 25: 100454. doi: 10.1016/j.eclinm.2020.100454 PMID: 32838232
  27. Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 361. doi: 10.1186/s13287-020-01875-5 PMID: 32811531
  28. Dilogo IH, Aditianingsih D, Sugiarto A, et al. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial. Stem Cells Transl Med 2021; 10(9): 1279-87. doi: 10.1002/sctm.21-0046 PMID: 34102020
  29. Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med 2021; 10(5): 660-73. doi: 10.1002/sctm.20-0472 PMID: 33400390
  30. Hao D, He C, Ma B, et al. Hypoxic preconditioning enhances survival and proangiogenic capacity of human first trimester chorionic villus-derived mesenchymal stem cells for fetal tissue engineering. Stem Cells Int 2019; 2019: 9695239. doi: 10.1155/2019/9695239 PMID: 31781252
  31. Cañas-Arboleda M, Beltrán K, Medina C, Camacho B, Salguero G. Human platelet lysate supports efficient expansion and stability of Wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. Int J Mol Sci 2020; 21(17): 6284. doi: 10.3390/ijms21176284 PMID: 32877987
  32. Sahan OB, Gunel-Ozcan A. Hepatocyte growth factor and insulin-like growth factor-1 based cellular therapies for oxidative stress injury. Curr Stem Cell Res Ther 2021; 16(7): 771-91. doi: 10.2174/1574888X16999201124153753 PMID: 33238860
  33. Yang Y, Hu S, Xu X, et al. The vascular endothelial growth factors-expressing character of mesenchymal stem cells plays a positive role in treatment of acute lung injury in vivo. Mediators Inflamm 2016; 2016: 2347938. doi: 10.1155/2016/2347938 PMID: 27313398
  34. Bernard O, Jeny F, Uzunhan Y, et al. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling. Am J Physiol Lung Cell Mol Physiol 2018; 314(3): L360-71. doi: 10.1152/ajplung.00153.2017 PMID: 29167125
  35. Klimczak A. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World J Stem Cells 2020; 12(9): 1013-22. doi: 10.4252/wjsc.v12.i9.1013 PMID: 33033561
  36. Liu J, Peng D, You J, et al. Type 2 alveolar epithelial cells differentiated from human umbilical cord mesenchymal stem cells alleviate mouse pulmonary fibrosis through β-catenin-regulated cell apoptosis. Stem Cells Dev 2021; 30(13): 660-70. doi: 10.1089/scd.2020.0208 PMID: 33899513
  37. Fujioka N, Kitabatake M, Ouji-Sageshima N, et al. Human adipose-derived mesenchymal stem cells ameliorate elastase-induced emphysema in mice by mesenchymal–epithelial transition. Int J Chron Obstruct Pulmon Dis 2021; 16: 2783-93. doi: 10.2147/COPD.S324952 PMID: 34675503
  38. Bailey CC, Zhong G, Huang IC, Farzan M. IFITM-family proteins: The cell’s first line of antiviral defense. Annu Rev Virol 2014; 1(1): 261-83. doi: 10.1146/annurev-virology-031413-085537 PMID: 25599080
  39. Richardson RB, Ohlson MB, Eitson JL, et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol 2018; 3(11): 1214-23. doi: 10.1038/s41564-018-0244-1 PMID: 30224801
  40. Singh PK, Singh S, Farr D, Kumar A. Interferon-stimulated gene 15 (ISG15) restricts Zika virus replication in primary human corneal epithelial cells. Ocul Surf 2019; 17(3): 551-9. doi: 10.1016/j.jtos.2019.03.006 PMID: 30905842
  41. Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018; 9(1): 17. doi: 10.1186/s13287-018-0774-8 PMID: 29378639
  42. Oh SJ, Lee EN, Park JH, et al. Anti-viral activities of umbilical cord mesenchymal stem cell-derived small extracellular vesicles against human respiratory viruses. Front Cell Infect Microbiol 2022; 12: 850744. doi: 10.3389/fcimb.2022.850744 PMID: 35558099
  43. Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172. doi: 10.1038/s41392-020-00286-5 PMID: 32855385
  44. Häberle H, Magunia H, Lang P, et al. Mesenchymal stem cell therapy for severe COVID-19 ARDS. J Intensive Care Med 2021; 36(6): 681-8. doi: 10.1177/0885066621997365 PMID: 33663244
  45. Monsel A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: A multicenter randomized double-blind trial. Crit Care 2022; 26(1): 48. doi: 10.1186/s13054-022-03930-4 PMID: 35189925
  46. Xu X, Jiang W, Chen L, et al. Evaluation of the safety and efficacy of using human menstrual blood‐derived mesenchymal stromal cells in treating severe and critically ill COVID‐19 patients: An exploratory clinical trial. Clin Transl Med 2021; 11(2): e297. doi: 10.1002/ctm2.297 PMID: 33634996
  47. Hashemian SMR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series. Stem Cell Res Ther 2021; 12(1): 91. doi: 10.1186/s13287-021-02165-4 PMID: 33514427
  48. Saleh M, Vaezi AA, Aliannejad R, et al. Cell therapy in patients with COVID-19 using Wharton’s jelly mesenchymal stem cells: A phase 1 clinical trial. Stem Cell Res Ther 2021; 12(1): 410. doi: 10.1186/s13287-021-02483-7 PMID: 34271988
  49. Shi L, Huang H, Lu X, et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: A randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther 2021; 6(1): 58. doi: 10.1038/s41392-021-00488-5 PMID: 33568628
  50. Feng Y, Huang J, Wu J, et al. Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVID‐19 pneumonia: A pilot study. Cell Prolif 2020; 53(12): e12947. doi: 10.1111/cpr.12947 PMID: 33205469
  51. Kaffash Farkhad N, Sedaghat A, Reihani H, et al. Mesenchymal stromal cell therapy for COVID-19-induced ARDS patients: A successful phase 1, control-placebo group, clinical trial. Stem Cell Res Ther 2022; 13(1): 283. doi: 10.1186/s13287-022-02920-1 PMID: 35765103
  52. Rebelatto CLK, Senegaglia AC, Franck CL, et al. Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: A randomized clinical trial. Stem Cell Res Ther 2022; 13(1): 122. doi: 10.1186/s13287-022-02796-1 PMID: 35313959

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers