Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging

  • 作者: Rasouli M.1, Naeimzadeh Y.2, Hashemi N.3, Hosseinzadeh S.4
  • 隶属关系:
    1. Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Applied Cell Science, School of Advanced Technologies in Medicine, Shahid
    2. Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences
    3. Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences
    4. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences
  • 期: 卷 19, 编号 1 (2024)
  • 页面: 15-32
  • 栏目: Medicine
  • URL: https://rjpbr.com/1574-888X/article/view/645519
  • DOI: https://doi.org/10.2174/1574888X18666230113144016
  • ID: 645519

如何引用文章

全文:

详细

Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.

作者简介

Mehdi Rasouli

Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Applied Cell Science, School of Advanced Technologies in Medicine, Shahid

Email: info@benthamscience.net

Yasaman Naeimzadeh

Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Nader Hashemi

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Simzar Hosseinzadeh

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Rochette L, Meloux A, Rigal E, et al. Regenerative capacity of endogenous factor: Growth differentiation factor 11; a new approach of the management of age-related cardiovascular events. Int J Mol Sci 2018; 19(12): 3998. doi: 10.3390/ijms19123998 PMID: 30545044
  2. García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Functional dysregulation of stem cells during aging: A focus on skeletal muscle stem cells. FEBS J 2013; 280(17): 4051-62. doi: 10.1111/febs.12221 PMID: 23452120
  3. da Silva PFL, Schumacher B. Principles of the molecular and cellular mechanisms of aging. J Invest Dermatol 2021; 141(4): 951-60. doi: 10.1016/j.jid.2020.11.018 PMID: 33518357
  4. Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchy-mal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131. doi: 10.1186/s13287-018-0876-3 PMID: 29751774
  5. Haigis MC, Yankner BA. The aging stress response. Mol Cell 2010; 40(2): 333-44. doi: 10.1016/j.molcel.2010.10.002 PMID: 20965426
  6. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217. doi: 10.1016/j.cell.2013.05.039 PMID: 23746838
  7. Le Moal E, Pialoux V, Juban G, et al. Redox control of skeletal muscle regeneration. Antioxid Redox Signal 2017; 27(5): 276-310. doi: 10.1089/ars.2016.6782 PMID: 28027662
  8. Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front Cell Dev Biol 2016; 4: 134. doi: 10.3389/fcell.2016.00134 PMID: 27921030
  9. Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against COVID-19. Curr Stem Cell Res Ther 2022; 17(2): 166-85. doi: 10.2174/1574888X16666201221151853 PMID: 34530719
  10. Rasouli M, Rahimi A, Soleimani M. keshel SH. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem 2021; 123(7): 151785. doi: 10.1016/j.acthis.2021.151785 PMID: 34500185
  11. Saremi J, Mahmoodi N, Rasouli M, et al. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engi-neering therapy and combinational treatments. Biomed Pharmacother 2022; 146: 112529. doi: 10.1016/j.biopha.2021.112529 PMID: 34906773
  12. Baghaei K, Hashemi SM, Tokhanbigli S, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench 2017; 10(3): 208-13. PMID: 29118937
  13. Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal stem cells as a corner-stone in a galaxy of intercellular signals: Basis for a new era of medicine. Int J Mol Sci 2021; 22(7): 3576. doi: 10.3390/ijms22073576 PMID: 33808241
  14. Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33. doi: 10.1016/j.stem.2018.05.004 PMID: 29859173
  15. Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2020; 60: 225-37. doi: 10.1016/j.semcancer.2019.06.003 PMID: 31212021
  16. Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One 2008; 3(5): e2213. doi: 10.1371/journal.pone.0002213 PMID: 18493317
  17. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006; 5(1): 91-116. doi: 10.1016/j.arr.2005.10.001 PMID: 16310414
  18. Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 2015; 70: 37-47. doi: 10.1016/j.bone.2014.10.014 PMID: 25445445
  19. Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, et al. Generation of mesenchymal cell lines derived from aged donors. Int J Mol Sci 2021; 22(19): 10667. doi: 10.3390/ijms221910667 PMID: 34639008
  20. Bijonowski BM, Yuan X, Jeske R, Li Y, Grant SC. Cyclical aggregation extends in vitro expansion potential of human mesenchymal stem cells. Sci Rep 2020; 10(1): 20448. doi: 10.1038/s41598-020-77288-4 PMID: 33235227
  21. Block TJ, Marinkovic M, Tran ON, et al. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 2017; 8(1): 239. doi: 10.1186/s13287-017-0688-x PMID: 29078802
  22. Meiliana A, Dewi NM, Wijaya A. In search for anti-aging strategy: Can we rejuvenate our aging stem cells? Indones Biomed J 2015; 7(2): 57-72. doi: 10.18585/inabj.v7i2.72
  23. Mazzolini R, Gonzàlez N, Garcia-Garijo A, et al. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2018; 46(1): 146-58. doi: 10.1093/nar/gkx958 PMID: 29059385
  24. Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochon-dria dysfunction. Biogerontology 2019; 20(1): 1-16. doi: 10.1007/s10522-018-9769-1 PMID: 30229407
  25. Gruber HJ, Semeraro MD, Renner W, Herrmann M. Telomeres and age-related diseases. Biomedicines 2021; 9(10): 1335. doi: 10.3390/biomedicines9101335 PMID: 34680452
  26. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114(2): 241-53. doi: 10.1016/S0092-8674(03)00550-6 PMID: 12887925
  27. Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells. Int J Mol Med 2017; 39(4): 775-82. doi: 10.3892/ijmm.2017.2912 PMID: 28290609
  28. Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. Int J Mol Sci 2016; 17(7): 1164. doi: 10.3390/ijms17071164 PMID: 27447618
  29. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: Current status and challenges. Front Cell Dev Biol 2020; 8: 364. doi: 10.3389/fcell.2020.00364 PMID: 32582691
  30. Alves-Paiva RM, Nascimento S, De Oliveira D, et al. Senescence state in mesenchymal stem cells at low passages: Implications in clinical use. Front Cell Dev Biol 2022; 10: 858996. doi: 10.3389/fcell.2022.858996 PMID: 35445029
  31. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22(5): 675-82. doi: 10.1634/stemcells.22-5-675 PMID: 15342932
  32. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345(6274): 458-60. doi: 10.1038/345458a0 PMID: 2342578
  33. Nadeau S, Cheng A, Colmegna I, Rodier F. Quantifying senescence-associated phenotypes in primary multipotent mesenchymal stromal cell cultures. Methods Mol Biol 2019; 2045: 93-105. doi: 10.1007/7651_2019_217 PMID: 31020633
  34. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25(3): 646-54. doi: 10.1634/stemcells.2006-0208 PMID: 17124009
  35. Graakjaer J, Christensen R, Kolvraa S, Serakinci N. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation. BMC Mol Biol 2007; 8(1): 49. doi: 10.1186/1471-2199-8-49 PMID: 17565702
  36. Ryu E, Hong S, Kang J, et al. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008; 371(3): 431-6. doi: 10.1016/j.bbrc.2008.04.111 PMID: 18452712
  37. Madonna R, De Caterina R, Willerson JT, Geng YJ. Biologic function and clinical potential of telomerase and associated proteins in cardi-ovascular tissue repair and regeneration. Eur Heart J 2011; 32(10): 1190-6. doi: 10.1093/eurheartj/ehq450 PMID: 21148539
  38. Madonna R, Taylor DA, Geng YJ, et al. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myo-cardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 2013; 113(7): 902-14. doi: 10.1161/CIRCRESAHA.113.301690 PMID: 23780385
  39. Serakinci N, Christensen R, Graakjaer J, et al. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart. Exp Cell Res 2007; 313(5): 1056-67. doi: 10.1016/j.yexcr.2007.01.002 PMID: 17274981
  40. Sawada R, Ito T, Tsuchiya T. Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs 2006; 9(3): 179-84. doi: 10.1007/s10047-006-0338-z PMID: 16998703
  41. Yoo YS, Park S, Gwak J, Ju BG, Oh S. Involvement of transcription repressor Snail in the regulation of human telomerase reverse tran-scriptase (hTERT) by transforming growth factor-β. Biochem Biophys Res Commun 2015; 465(1): 131-6. doi: 10.1016/j.bbrc.2015.07.146 PMID: 26235880
  42. Kumari R, Jat P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 2021; 9: 645593. doi: 10.3389/fcell.2021.645593 PMID: 33855023
  43. Liu J, Ding Y, Liu Z, Liang X. Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Front Cell Dev Biol 2020; 8: 258. doi: 10.3389/fcell.2020.00258 PMID: 32478063
  44. Kahoul Y, Oger F, Montaigne J, Froguel P, Breton C, Annicotte JS. Emerging roles for the INK4a/ARF (CDKN2A) locus in adipose tissue: Implications for obesity and type 2 diabetes. Biomolecules 2020; 10(9): 1350. doi: 10.3390/biom10091350 PMID: 32971832
  45. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol Rev 2019; 99(2): 1047-78. doi: 10.1152/physrev.00020.2018 PMID: 30648461
  46. Chikenji TS, Saito Y, Konari N, et al. p16INK4A-expressing mesenchymal stromal cells restore the senescence-clearance-regeneration se-quence that is impaired in chronic muscle inflammation. EBioMedicine 2019; 44: 86-97. doi: 10.1016/j.ebiom.2019.05.012 PMID: 31129096
  47. Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E. High OCT4 and low p16 INK4A expressions determine in vitro lifespan of mesenchymal stem cells. Stem Cells Int 2015; 2015: 369828. doi: 10.1155/2015/369828 PMID: 26089914
  48. Yu KR, Kang KS. Aging-related genes in mesenchymal stem cells: A mini-review. Gerontology 2013; 59(6): 557-63. doi: 10.1159/000353857 PMID: 23970150
  49. Yu KR, Park SB, Jung JW, et al. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res 2013; 10(2): 156-65. doi: 10.1016/j.scr.2012.11.002 PMID: 23276696
  50. Lee S, Jung JW, Park SB, et al. Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 2011; 68(2): 325-36. doi: 10.1007/s00018-010-0457-9 PMID: 20652617
  51. Philipot D, Guérit D, Platano D, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 2014; 16(1): R58. doi: 10.1186/ar4494 PMID: 24572376
  52. Fafián-Labora J, Lesende-Rodriguez I, Fernández-Pernas P, et al. Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep 2017; 7(1): 43923. doi: 10.1038/srep43923 PMID: 28262816
  53. Ciccia A, Elledge SJ. The DNA damage response: Making it safe to play with knives. Mol Cell 2010; 40(2): 179-204. doi: 10.1016/j.molcel.2010.09.019 PMID: 20965415
  54. Cao K, Blair CD, Faddah DA, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibro-blasts. J Clin Invest 2011; 121(7): 2833-44. doi: 10.1172/JCI43578 PMID: 21670498
  55. Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10(4): 452-9. doi: 10.1038/ncb1708 PMID: 18311132
  56. Cianflone E, Torella M, Biamonte F, et al. Targeting cardiac stem cell senescence to treat cardiac aging and disease. Cells 2020; 9(6): 1558. doi: 10.3390/cells9061558 PMID: 32604861
  57. Mohrin M, Bourke E, Alexander D, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010; 7(2): 174-85. doi: 10.1016/j.stem.2010.06.014 PMID: 20619762
  58. Tümpel S, Rudolph KL. Quiescence: Good and bad of stem cell aging. Trends Cell Biol 2019; 29(8): 672-85. doi: 10.1016/j.tcb.2019.05.002 PMID: 31248787
  59. Qi Y, Warmenhoven JW, Henthorn NT, et al. Mechanistic modelling of slow and fast NHEJ DNA repair pathways following radiation for G0/G1 normal tissue cells. Cancers 2021; 13(9): 2202. doi: 10.3390/cancers13092202 PMID: 34063683
  60. Panwar U, Mishra K, Patel P, et al. Assessment of Long-Term in vitro Multiplied Human Wharton’s jelly-derived mesenchymal stem cells prior to their use in clinical administration. Cells Tissues Organs 2021; 210(4): 239-49. doi: 10.1159/000517423 PMID: 34521091
  61. Roemeling-van Rhijn M, de Klein A, Douben H, et al. Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 2013; 15(11): 1352-61. doi: 10.1016/j.jcyt.2013.07.004 PMID: 24094487
  62. Pustovalova M, Grekhova A, Astrelina T, et al. Accumulation of spontaneous γH2AX foci in long-term cultured mesenchymal stromal cells. Aging 2016; 8(12): 3498-506. doi: 10.18632/aging.101142 PMID: 27959319
  63. Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E. Infrapatellar fat pad-derived mesenchymal stromal cells from osteoarthritis patients: In vitro genetic stability and replicative senescence. J Orthop Res 2017; 35(5): 1029-37. doi: 10.1002/jor.23349 PMID: 27334047
  64. Scheers I, Lombard C, Paganelli M, et al. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8(8): e71374. doi: 10.1371/journal.pone.0071374 PMID: 23951150
  65. Neri S, Borzì R. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 2020; 10(2): 340. doi: 10.3390/biom10020340 PMID: 32098040
  66. Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6(6): e20526. doi: 10.1371/journal.pone.0020526 PMID: 21694780
  67. Yuan HF, Zhai C, Yan XL, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med 2012; 90(4): 389-400. doi: 10.1007/s00109-011-0825-4 PMID: 22038097
  68. Jung JW, Lee S, Seo MS, et al. Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 2010; 67(7): 1165-76. doi: 10.1007/s00018-009-0242-9 PMID: 20049504
  69. Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10(1): 11. doi: 10.1186/s13578-020-0378-8 PMID: 32025282
  70. Yu KR, Lee S, Jung JW, et al. MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J Cell Sci 2013; 126(Pt 23): jcs.133314. doi: 10.1242/jcs.133314 PMID: 24101728
  71. So AY, Jung JW, Lee S, Kim HS, Kang KS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through mi-croRNAs. PLoS One 2011; 6(5): e19503. doi: 10.1371/journal.pone.0019503 PMID: 21572997
  72. Wang R, Wang Y, Zhu L, Liu Y, Li W. Epigenetic regulation in mesenchymal stem cell aging and differentiation and osteoporosis. Stem Cells Int 2020; 2020: 8836258. doi: 10.1155/2020/8836258 PMID: 32963550
  73. Goodell MA, Rando TA. Stem cells and healthy aging. Science 2015; 350(6265): 1199-204. doi: 10.1126/science.aab3388 PMID: 26785478
  74. Bhattacharya R, Banerjee Mustafi S, Street M, Dey A, Dwivedi SKD. Bmi-1: At the crossroads of physiological and pathological biology. Genes Dis 2015; 2(3): 225-39. doi: 10.1016/j.gendis.2015.04.001 PMID: 26448339
  75. Zhang D, Pan Y, Zhang C, et al. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS produc-tion. Mol Cell Biochem 2013; 374(1-2): 13-20. doi: 10.1007/s11010-012-1498-1 PMID: 23124852
  76. Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018; 17(1): e12709. doi: 10.1111/acel.12709 PMID: 29210174
  77. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 2008; 129(3): 163-73. doi: 10.1016/j.mad.2007.12.002 PMID: 18241911
  78. Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010; 14(3): 329-46. doi: 10.1517/14728221003629750 PMID: 20148719
  79. Zhang F, Cui J, Liu X, et al. Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 195. doi: 10.1186/s13287-015-0187-x PMID: 26446137
  80. Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: Machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27(1): 69. doi: 10.1186/s11658-022-00366-0 PMID: 35986247
  81. Lv Z, Wang Q, Liu X, et al. Genetic instability-related lncRNAs predict prognosis and influence the immune microenvironment in breast cancer. Front Genet 2022; 13: 926984. doi: 10.3389/fgene.2022.926984 PMID: 36118853
  82. Zhou X, Xu W, Wang Y, et al. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell Mol Biol Lett 2021; 26(1): 22. doi: 10.1186/s11658-021-00269-6 PMID: 34049478
  83. Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142: 115679. doi: 10.1016/j.bone.2020.115679 PMID: 33022453
  84. Hong Y, He H, Jiang G, et al. miR‐155‐5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020; 19(4): e13128. doi: 10.1111/acel.13128 PMID: 32196916
  85. Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of age-induced microRNA-195 rejuvenates the senescent mes-enchymal stem cells by reactivating telomerase. Stem Cells 2016; 34(1): 148-59. doi: 10.1002/stem.2211 PMID: 26390028
  86. Fan J, An X, Yang Y, et al. MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the wnt/β-catenin pathway. Aging Dis 2018; 9(6): 1103-21. doi: 10.14336/AD.2018.1110 PMID: 30574422
  87. Liu W, Qi M, Konermann A, Zhang L, Jin F, Jin Y. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging 2015; 7(3): 205-18. doi: 10.18632/aging.100728 PMID: 25855145
  88. Zhang T, Wang P, Liu Y, et al. Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mes-enchymal stem cells in vitro and in vivo. Cell Tissue Res 2018; 373(2): 379-93. doi: 10.1007/s00441-018-2815-0 PMID: 29500491
  89. Schellenberg A, Stiehl T, Horn P, et al. Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 2012; 14(4): 401-11. doi: 10.3109/14653249.2011.640669 PMID: 22149184
  90. Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of mesenchymal stromal cells: Finding the right route to therapy. Front Immunol 2019; 10: 1112. doi: 10.3389/fimmu.2019.01112 PMID: 31164890
  91. Pipino C, Pierdomenico L, Di Tomo P, et al. Molecular and phenotypic characterization of human amniotic fluid-derived cells: A morpho-logical and proteomic approach. Stem Cells Dev 2015; 24(12): 1415-28. doi: 10.1089/scd.2014.0453 PMID: 25608581
  92. Alessio N, Squillaro T, Özcan S, et al. Stress and stem cells: Adult Muse cells tolerate extensive genotoxic stimuli better than mesenchy-mal stromal cells. Oncotarget 2018; 9(27): 19328-41. doi: 10.18632/oncotarget.25039 PMID: 29721206
  93. Das A, Adhikary S, Chowdhury AR, Barui A. Leveraging substrate stiffness to promote stem cell asymmetric division via mechanotrans-duction-polarity protein axis and its Bayesian regression analysis. Rejuvenation Res 2022; 25(2): 59-69. doi: 10.1089/rej.2021.0039 PMID: 35316074
  94. Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64. doi: 10.1002/stem.3016 PMID: 30977255
  95. Weng Z, Wang Y, Ouchi T, et al. Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med 2022; 11(4): 356-71. doi: 10.1093/stcltm/szac004 PMID: 35485439
  96. Madsen SD, Jones SH, Tucker HA, et al. Survival of aging CD264+ and CD264- populations of human bone marrow mesenchymal stem cells is independent of colony‐forming efficiency. Biotechnol Bioeng 2020; 117(1): 223-37. doi: 10.1002/bit.27195 PMID: 31612990
  97. Liu Y, Chen Q. Senescent mesenchymal stem cells: Disease mechanism and treatment strategy. Curr Mol Biol Rep 2020; 6(4): 173-82. doi: 10.1007/s40610-020-00141-0 PMID: 33816065
  98. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33(6): 919-26. doi: 10.1016/j.bone.2003.07.005 PMID: 14678851
  99. Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 2006; 5(3): 213-24. doi: 10.1111/j.1474-9726.2006.00213.x PMID: 16842494
  100. Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 2018; 9(1): 6. doi: 10.1186/s13287-017-0740-x PMID: 29321040
  101. Jiang T, Xu G, Wang Q, et al. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis 2017; 8(6): e2851. doi: 10.1038/cddis.2017.215 PMID: 28569773
  102. Geißler S, Textor M, Kühnisch J, et al. Functional comparison of chronological and in vitro aging: Differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 2012; 7(12): e52700. doi: 10.1371/journal.pone.0052700 PMID: 23285157
  103. Bustos ML, Huleihel L, Kapetanaki MG, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and anti-inflammatory response. Am J Respir Crit Care Med 2014; 189(7): 787-98. doi: 10.1164/rccm.201306-1043OC PMID: 24559482
  104. Rombouts WJC, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17(1): 160-70. doi: 10.1038/sj.leu.2402763 PMID: 12529674
  105. Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K. Factors that influence short-term homing of human bone marrow-derived mesen-chymal stem cells in a xenogeneic animal model. Haematologica 2008; 93(10): 1457-65. doi: 10.3324/haematol.12553 PMID: 18728032
  106. Guan M, Yao W, Liu R, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 2012; 18(3): 456-62. doi: 10.1038/nm.2665 PMID: 22306732
  107. Di G, Liu Y, Lu Y, Liu J, Wu C, Duan HF. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One 2014; 9(11): e113572. doi: 10.1371/journal.pone.0113572 PMID: 25419563
  108. Skolekova S, Matuskova M, Bohac M, et al. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells. Cell Commun Signal 2016; 14(1): 4. doi: 10.1186/s12964-016-0127-0 PMID: 26759169
  109. Gnani D, Crippa S, della Volpe L, et al. An early‐senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro‐inflammatory program. Aging Cell 2019; 18(3): e12933. doi: 10.1111/acel.12933 PMID: 30828977
  110. Carlos Sepúlveda J, Tomé M, Eugenia Fernández M, et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 2014; 32(7): 1865-77. doi: 10.1002/stem.1654 PMID: 24496748
  111. Gu Z, Tan W, Ji J, et al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging 2016; 8(5): 1102-14. doi: 10.18632/aging.100925 PMID: 27048648
  112. Musavi M, Kohram F, Abasi M, et al. Rn7SK small nuclear RNA is involved in cellular senescence. J Cell Physiol 2019; 234(8): 14234-45. doi: 10.1002/jcp.28119 PMID: 30637716
  113. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 2004; 3(6): 379-89. doi: 10.1111/j.1474-9728.2004.00127.x PMID: 15569355
  114. Bruedigam C, Eijken M, Koedam M, et al. A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells 2010; 28(5): 916-27. doi: 10.1002/stem.405 PMID: 20213769
  115. Efimenko A, Starostina E, Kalinina N, Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 2011; 9(1): 10. doi: 10.1186/1479-5876-9-10 PMID: 21244679
  116. Khan M, Mohsin S, Khan SN, Riazuddin S. Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice. J Cell Mol Med 2011; 15(7): 1515-27. doi: 10.1111/j.1582-4934.2009.00998.x PMID: 20041970
  117. Ou Y, Wilson RE, Weber SG. Methods of measuring enzyme activity ex vivo and in vivo. Annu Rev Anal Chem 2018; 11(1): 509-33. doi: 10.1146/annurev-anchem-061417-125619 PMID: 29505726
  118. Tjempakasari A, Suroto H, Santoso D. Mesenchymal stem cell senescence and osteogenesis. Medicina 2021; 58(1): 61. doi: 10.3390/medicina58010061 PMID: 35056369
  119. Singh M, Piekorz RP. Senescence-associated lysosomal α-L-fucosidase (SA-α-Fuc): A sensitive and more robust biomarker for cellular senescence beyond SA-β-Gal. Cell Cycle 2013; 12(13): 1996. doi: 10.4161/cc.25318 PMID: 23759573
  120. Lunyak VV, Amaro-Ortiz A, Gaur M. Mesenchymal stem cells secretory responses: Senescence messaging secretome and immunomodu-lation perspective. Front Genet 2017; 8: 220. doi: 10.3389/fgene.2017.00220 PMID: 29312442
  121. Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J 2013; 280(14): 3180-93. doi: 10.1111/febs.12326 PMID: 23647631
  122. Penev A, Markiewicz-Potoczny M, Sfeir A, Lazzerini Denchi E. Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32(6): 527-36. doi: 10.1016/j.tcb.2021.12.007 PMID: 35063336
  123. Rossiello F, Jurk D, Passos JF, d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24(2): 135-47. doi: 10.1038/s41556-022-00842-x PMID: 35165420
  124. Montpetit AJ, Alhareeri AA, Montpetit M, et al. Telomere Length. Nurs Res 2014; 63(4): 289-99. doi: 10.1097/NNR.0000000000000037 PMID: 24977726
  125. Jenkins FJ, Kerr CM, Fouquerel E, Bovbjerg DH, Opresko PL. Modified terminal restriction fragment analysis for quantifying telomere length using in-gel hybridization. J Vis Exp 2017; (125): 56001. doi: 10.3791/56001 PMID: 28715381
  126. Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm Regen 2022; 42(1): 11. doi: 10.1186/s41232-022-00197-8 PMID: 35365245
  127. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res Int 2018; 2018: 1-27. doi: 10.1155/2018/8545347 PMID: 29662902
  128. Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017; 8(1): 15287. doi: 10.1038/ncomms15287 PMID: 28508895
  129. Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal stem cell derived extracellular vesicles in aging. Front Cell Dev Biol 2020; 8: 107. doi: 10.3389/fcell.2020.00107 PMID: 32154253
  130. Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014. doi: 10.18632/aging.102314 PMID: 31575829
  131. Mishra P, Martin DC, Androulakis IP, Moghe PV. Fluorescence imaging of actin turnover parses early stem cell lineage divergence and senescence. Sci Rep 2019; 9(1): 10377. doi: 10.1038/s41598-019-46682-y PMID: 31316098
  132. Frobel J, Hemeda H, Lenz M, et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports 2014; 3(3): 414-22. doi: 10.1016/j.stemcr.2014.07.003 PMID: 25241740
  133. Lian Q, Zhang Y, Zhang J, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2010; 121(9): 1113-23. doi: 10.1161/CIRCULATIONAHA.109.898312 PMID: 20176987
  134. Chang YH, Wu KC, Ding DC. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model. Stem Cells Int 2020; 2020: 1-16. doi: 10.1155/2020/8867349 PMID: 33224204
  135. Ozay EI, Vijayaraghavan J, Gonzalez-Perez G, et al. Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease. Stem Cell Res 2019; 35: 101401. doi: 10.1016/j.scr.2019.101401 PMID: 30738321
  136. Fernandez-Rebollo E, Franzen J, Goetzke R, et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesen-chymal stromal cells. Stem Cell Reports 2020; 14(2): 201-9. doi: 10.1016/j.stemcr.2019.12.012 PMID: 31983656
  137. Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 2013; 92(9): 833-9. doi: 10.1177/0022034513498258 PMID: 23884555
  138. Zhang J, Chen M, Liao J, et al. Induced pluripotent stem cell-derived mesenchymal stem cells hold lower heterogeneity and great promise in biological research and clinical applications. Front Cell Dev Biol 2021; 9: 716907. doi: 10.3389/fcell.2021.716907 PMID: 34660579
  139. Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A proposed mechanism for tissue aging, repair, and degeneration. Cells 2022; 11(7): 1089. doi: 10.3390/cells11071089 PMID: 35406653
  140. Csekes E, Račková L. Skin aging, cellular senescence and natural polyphenols. Int J Mol Sci 2021; 22(23): 12641. doi: 10.3390/ijms222312641 PMID: 34884444
  141. Curry AM, White DS, Donu D, Cen Y. Human sirtuin regulators: The "Success" Stories. Front Physiol 2021; 12: 752117. doi: 10.3389/fphys.2021.752117 PMID: 34744791
  142. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep 2019; 52(1): 24-34. doi: 10.5483/BMBRep.2019.52.1.290 PMID: 30526767
  143. Lin CH, Li NT, Cheng HS, Yen ML. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J Cell Mol Med 2017; 22(2): 786-96. doi: 10.1111/jcmm.13356 PMID: 28975701
  144. Wang Y, Sui Y, Niu Y, et al. PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF-MSC senescence and apoptosis. Stem Cell Rev Rep 2022. doi: 10.1007/s12015-022-10425-w PMID: 35962175
  145. Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells. Cell Transplant 2017; 26(9): 1520-9. doi: 10.1177/0963689717721201 PMID: 29113463
  146. Kim DH, Jung IH, Kim DH, Park SW. Knockout of longevity gene Sirt1 in zebrafish leads to oxidative injury, chronic inflammation, and reduced life span. PLoS One 2019; 14(8): e0220581. doi: 10.1371/journal.pone.0220581 PMID: 31386694
  147. Yuan X, Liu Y, Bijonowski BM, et al. NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesen-chymal stem cells in vitro. Commun Biol 2020; 3(1): 774. doi: 10.1038/s42003-020-01514-y PMID: 33319867
  148. Tsai CC, Su PF, Huang YF, Yew TL, Hung SC. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 2012; 47(2): 169-82. doi: 10.1016/j.molcel.2012.06.020 PMID: 22795133
  149. Lu Y, Qu H, Qi D, et al. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Res Ther 2019; 10(1): 28. doi: 10.1186/s13287-018-1120-x PMID: 30646941
  150. Zhang Y, Zhu W, He H, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging 2019; 11(24): 12641-60. doi: 10.18632/aging.102592 PMID: 31881006
  151. Zhao Q, Wang XY, Yu XX, et al. Expression of human telomerase reverse transcriptase mediates the senescence of mesenchymal stem cells through the PI3K/AKT signaling pathway. Int J Mol Med 2015; 36(3): 857-64. doi: 10.3892/ijmm.2015.2284 PMID: 26178664
  152. Dai Z, Jin Y, Zheng J, et al. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother 2019; 109: 1112-9. doi: 10.1016/j.biopha.2018.10.166 PMID: 30551361
  153. Dong J, Zhang Z, Huang H, et al. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9(1): 151. doi: 10.1186/s13287-018-0895-0 PMID: 29848383
  154. Yang Y, Liu S, He C, et al. LncRNA LYPLAL1-AS1 rejuvenates human adipose-derived mesenchymal stem cell senescence via transcrip-tional MIRLET7B inactivation. Cell Biosci 2022; 12(1): 45. doi: 10.1186/s13578-022-00782-x PMID: 35449031
  155. Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones 2014; 19(5): 685-93. doi: 10.1007/s12192-014-0496-5 PMID: 24452457
  156. Zhao Y, Wu D, Fei C, et al. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica 2015; 100(2): 194-204. doi: 10.3324/haematol.2014.109769 PMID: 25361944
  157. Liang X, Ding Y, Lin F, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J 2019; 33(3): 4559-70. doi: 10.1096/fj.201801690R PMID: 30566395
  158. Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG restores contractility of mesenchymal stem cell-based senescent mi-crotissues. Tissue Eng Part A 2017; 23(11-12): 535-45. doi: 10.1089/ten.tea.2016.0494 PMID: 28125933
  159. Gu Z, Cao X, Jiang J, et al. Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal 2012; 24(12): 2307-14. doi: 10.1016/j.cellsig.2012.07.012 PMID: 22820504
  160. Gu Z, Jiang J, Tan W, et al. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clin Dev Immunol 2013; 2013: 134243. doi: 10.1155/2013/134243 PMID: 24151513
  161. Ma C, Pi C, Yang Y, et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1. PLoS One 2017; 12(1): e0170930. doi: 10.1371/journal.pone.0170930 PMID: 28125705
  162. Liu X, Chen H, Zhu W, et al. Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myo-cardial infarction model. J Heart Lung Transplant 2014; 33(10): 1083-92. doi: 10.1016/j.healun.2014.05.008 PMID: 25034794
  163. Zhang DY, Gao T, Xu RJ, et al. SIRT3 transfection of aged human bone marrow-derived mesenchymal stem cells improves cell therapy-mediated myocardial repair. Rejuvenation Res 2020; 23(6): 453-64. doi: 10.1089/rej.2019.2260 PMID: 32228121
  164. Linares GR, Leng Y, Maric D, Chuang DM. Overexpression of fibroblast growth factor‐21 (FGF‐21) protects mesenchymal stem cells against caspase‐dependent apoptosis induced by oxidative stress and inflammation. Cell Biol Int 2020; 44(10): 2163-9. doi: 10.1002/cbin.11409 PMID: 32557962
  165. Liang H, Hou H, Yi W, et al. Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury. Eur Heart J 2013; 34(22): 1681-90. doi: 10.1093/eurheartj/ehr131 PMID: 21606086
  166. Fang J, Zhao X, Li S, et al. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90rsk-CREB pathway. Stem Cell Res Ther 2019; 10(1): 312. doi: 10.1186/s13287-019-1419-2 PMID: 31655619
  167. Deng J, Ouyang P, Li W, et al. Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expan-sion by activating the autophagy pathway. Int J Mol Sci 2021; 22(21): 11356. doi: 10.3390/ijms222111356 PMID: 34768788
  168. Borojević A, Jauković A, Kukolj T, et al. Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogen-esis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules 2022; 12(2): 323. doi: 10.3390/biom12020323 PMID: 35204824
  169. Yoon DS, Choi Y, Choi SM, Park KH, Lee JW. Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation. Biochem Biophys Res Commun 2015; 467(4): 1026-32. doi: 10.1016/j.bbrc.2015.10.017 PMID: 26456654
  170. Song X, Dai J, Li H, et al. Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep 2019; 39(6): BSR20190761. doi: 10.1042/BSR20190761 PMID: 31171713
  171. Umbayev B, Masoud AR, Tsoy A, et al. Elevated levels of the small GTPase Cdc42 induces senescence in male rat mesenchymal stem cells. Biogerontology 2018; 19(3-4): 287-301. doi: 10.1007/s10522-018-9757-5 PMID: 29804242
  172. Chen W, Lv N, Liu H, et al. Melatonin improves the resistance of oxidative stress-induced cellular senescence in osteoporotic bone mar-row mesenchymal stem cells. Oxid Med Cell Longev 2022; 2022: 7420726. doi: 10.1155/2022/7420726 PMID: 35087617
  173. Wang L, Han X, Qu G, Su L, Zhao B, Miao J. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther 2018; 9(1): 343. doi: 10.1186/s13287-018-1081-0 PMID: 30526663
  174. Zhang J, Zhang J, Li T, et al. Effect of idebenone on bone marrow mesenchymal stem cells inï¿1/2vitro. Mol Med Rep 2018; 17(4): 5376-83. doi: 10.3892/mmr.2018.8506 PMID: 29393352
  175. Gu Z, Tan W, Feng G, et al. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. Mol Cell Biochem 2014; 387(1-2): 27-37. doi: 10.1007/s11010-013-1866-5 PMID: 24130040
  176. Wang Y, Chen T, Yan H, et al. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. J Cell Biochem 2013; 114(10): 2231-9. doi: 10.1002/jcb.24569 PMID: 23564418
  177. Grezella C, Fernandez-Rebollo E, Franzen J, Ventura Ferreira MS, Beier F, Wagner W. Effects of senolytic drugs on human mesenchymal stromal cells. Stem Cell Res Ther 2018; 9(1): 108. doi: 10.1186/s13287-018-0857-6 PMID: 29669575
  178. Lee J, Yun C, Hur J, Lee S. Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 2018; 16(4): 121. doi: 10.3390/md16040121 PMID: 29642406
  179. Zanichelli F, Capasso S, Cipollaro M, et al. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesen-chymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug dos-es, it has a cytotoxic effect. Age (Omaha) 2012; 34(2): 281-93. doi: 10.1007/s11357-011-9231-7 PMID: 21465338
  180. Sun J, Ming L, Shang F, Shen L, Chen J, Jin Y. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Sci Rep 2015; 5(1): 18572. doi: 10.1038/srep18572 PMID: 26686764
  181. Shin JH, Jeon HJ, Park J, Chang MS. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesen-chymal stem cells via Nrf2. Int J Mol Med 2016; 38(4): 1075-82. doi: 10.3892/ijmm.2016.2694 PMID: 27498709
  182. Mobarak H, Fathi E, Farahzadi R, Zarghami N, Javanmardi S. L-carnitine significantly decreased aging of rat adipose tissue-derived mes-enchymal stem cells. Vet Res Commun 2017; 41(1): 41-7. doi: 10.1007/s11259-016-9670-9 PMID: 27943151
  183. Wang JY, Chen WM, Wen CS, Hung SC, Chen PW, Chiu JH. Du-Huo-Ji-Sheng-Tang and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. J Ethnopharmacol 2017; 198: 64-72. doi: 10.1016/j.jep.2016.12.011 PMID: 28040510
  184. Xia W, Zhang F, Xie C, Jiang M, Hou M. Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 82. doi: 10.1186/s13287-015-0076-3 PMID: 25896286
  185. Andreeva NV, Zatsepina OG, Garbuz DG, Evgen’ev MB, Belyavsky AV. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells. Cell Stress Chaperones 2016; 21(4): 727-33. doi: 10.1007/s12192-016-0691-7 PMID: 27091568
  186. Tian Y, Xu Y, Xue T, et al. Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senes-cence. Cell Death Dis 2017; 8(2): e2595. doi: 10.1038/cddis.2017.2 PMID: 28151468
  187. Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2. Biochem Biophys Res Commun 2007; 359(1): 108-14. doi: 10.1016/j.bbrc.2007.05.067 PMID: 17532297
  188. Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics 2019; 9(23): 6976-90. doi: 10.7150/thno.35305 PMID: 31660081
  189. Mohd Ali N, Boo L, Yeap SK, et al. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone mar-row-derived human mesenchymal stem cells. PeerJ 2016; 4: e1536. doi: 10.7717/peerj.1536 PMID: 26788424
  190. Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stro-mal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell 2018; 17(3): e12741. doi: 10.1111/acel.12741 PMID: 29488314
  191. Yan L, Jiang B, Li E, et al. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. Int J Biol Sci 2018; 14(10): 1196-210. doi: 10.7150/ijbs.25023 PMID: 30123069
  192. Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: Therapeutic properties discovered with extraordinary success. Biomedicines 2021; 9(6): 667. doi: 10.3390/biomedicines9060667 PMID: 34200818

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024