Functional Roles of Mesenchymal Stem Cell-derived Exosomes in Ischemic Stroke Treatment


Cite item

Full Text

Abstract

Stroke is a life-threatening disease and one of the leading causes of death and physical disability worldwide. Currently, no drugs on the market promote neural recovery after stroke insult, and spontaneous remodeling processes are limited to induce recovery in the ischemic regions. Therefore, promoting a cell-based therapy has been needed to elevate the endogenous recovery process. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of ischemic stroke, and their therapeutic effects are mediated by exosomes. The microRNA cargo in these extracellular vesicles is mostly responsible for the positive effects. When it comes to the therapeutic viewpoint, MSCsderived exosomes could be a promising therapeutic strategy against ischemic stroke. The aim of this review is to discuss the current knowledge around the potential of MSCs-derived exosomes in the treatment of ischemic stroke.

About the authors

Maryam Farzaneh

Fertility, Infertility and Perinatology Research Cente, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Seyed Khoshnam

Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation 2019; 139(10): e56-e528. doi: 10.1161/CIR.0000000000000659 PMID: 30700139
  2. Wardlaw JM, et al. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014; 2014(7): CD000213. doi: 10.1002/14651858.CD000213.pub3
  3. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31. doi: 10.1016/S0140-6736(16)00163-X PMID: 26898852
  4. Wegener S, Wegener S. Improving cerebral blood flow after arterial recanalization: a novel therapeutic strategy in stroke. Int J Mol Sci 2017; 18(12): 2669. doi: 10.3390/ijms18122669 PMID: 29232823
  5. Wang G, Farzaneh M. Mini review; differentiation of human pluripotent stem cells into oocytes. Curr Stem Cell Res Ther 2020; 15(4): 301-7. doi: 10.2174/1574888X15666200116100121 PMID: 31951188
  6. Boncoraglio GB, et al. Stem cell transplantation for ischemic stroke Cochrane Database Sys Rev 2019; 2019: CD007231. doi: 10.1002/14651858.CD007231.pub3
  7. Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11(1): 483. doi: 10.1186/s13287-020-01998-9 PMID: 33198819
  8. Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for thera-peutic applications. J Extracell Vesicles 2019; 8(1): 1609206. doi: 10.1080/20013078.2019.1609206 PMID: 31069028
  9. Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 2014; 8: 377. doi: 10.3389/fncel.2014.00377 PMID: 25426026
  10. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28. doi: 10.1038/nrm.2017.125 PMID: 29339798
  11. Badhwar A, Haqqani AS. Biomarker potential of brain‐secreted extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement (Amst) 2020; 12(1): e12001. doi: 10.1002/dad2.12001 PMID: 32211497
  12. Chaput N, Schartz NEC, André F, et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol 2004; 172(4): 2137-46. doi: 10.4049/jimmunol.172.4.2137 PMID: 14764679
  13. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
  14. Chen J, Chopp M. Exosome therapy for stroke. Stroke 2018; 49(5): 1083-90. doi: 10.1161/STROKEAHA.117.018292 PMID: 29669873
  15. a) Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017; 27(3): 172-88. doi: 10.1016/j.tcb.2016.11.003 PMID: 27979573; b) Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer’s disease. Alzheimers Res Ther 2020; 12(1): 109. doi: 10.1186/s13195-020-00670-x PMID: 32928293
  16. Hurley JH. ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 2008; 20(1): 4-11. doi: 10.1016/j.ceb.2007.12.002 PMID: 18222686
  17. Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2018; 74: 66-77. doi: 10.1016/j.semcdb.2017.08.022
  18. McCullough J, Clippinger AK, Talledge N, et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 2015; 350(6267): 1548-51. doi: 10.1126/science.aad8305 PMID: 26634441
  19. Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising deliv-ery systems for therapy of brain diseases. J Control Release 2017; 262: 247-58. doi: 10.1016/j.jconrel.2017.07.001 PMID: 28687495
  20. Mantel PY, Hjelmqvist D, Walch M, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 2016; 7(1): 12727. doi: 10.1038/ncomms12727 PMID: 27721445
  21. Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaiee A. The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metab Brain Dis 2020; 35(1): 31-43. doi: 10.1007/s11011-019-00485-2 PMID: 31446548
  22. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M. Emerging roles of microRNAs in ischemic stroke: as possible thera-peutic agents. J Stroke 2017; 19(2): 166-87. doi: 10.5853/jos.2016.01368 PMID: 28480877
  23. Simpson RJ, Kalra H, Mathivanan S. ExoCarta as a resource for exosomal research. J Extracell Vesicles 2012; 1(1): 18374. doi: 10.3402/jev.v1i0.18374 PMID: 24009883
  24. Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013; 2(1): 20384. doi: 10.3402/jev.v2i0.20384 PMID: 24009897
  25. Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 2018; 9: 738. doi: 10.3389/fimmu.2018.00738 PMID: 29760691
  26. Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C. Diverse subpopulations of vesicles secreted by different intracellular mecha-nisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 2012; 1(1): 18397. doi: 10.3402/jev.v1i0.18397 PMID: 24009879
  27. Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013; 2(1): 20677. doi: 10.3402/jev.v2i0.20677 PMID: 24223256
  28. Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracel-lular vesicles in volume transmission in the brain neural–glial networks Philos Trans R Soc Lond B Biol Sci 2015; 370(1672): 20140183. doi: 10.1098/rstb.2014.0183 PMID: 26009762
  29. Banigan MG, Kao PF, Kozubek JA, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 2013; 8(1): e48814. doi: 10.1371/journal.pone.0048814 PMID: 23382797
  30. Basso M, Bonetto V. Extracellular vesicles and a novel form of communication in the brain. Front Neurosci 2016; 10: 127. doi: 10.3389/fnins.2016.00127 PMID: 27065789
  31. Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci 2018; 41(6): 360-72. doi: 10.1016/j.tins.2018.03.006 PMID: 29605090
  32. Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006; 31(4): 642-8. doi: 10.1016/j.mcn.2005.12.003 PMID: 16446100
  33. Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutama-tergic activity. Mol Cell Neurosci 2011; 46(2): 409-18. doi: 10.1016/j.mcn.2010.11.004 PMID: 21111824
  34. Goldie BJ, Dun MD, Lin M, et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neu-rons. Nucleic Acids Res 2014; 42(14): 9195-208. doi: 10.1093/nar/gku594 PMID: 25053844
  35. Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 2017; 27(7): 882-97. doi: 10.1038/cr.2017.62 PMID: 28429770
  36. Wang S, Cesca F, Loers G, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and pro-motes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 2011; 31(20): 7275-90. doi: 10.1523/JNEUROSCI.6476-10.2011 PMID: 21593312
  37. Krämer-Albers EM, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl 2007; 1(11): 1446-61. doi: 10.1002/prca.200700522 PMID: 21136642
  38. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 2013; 7: 182. doi: 10.3389/fncel.2013.00182 PMID: 24194697
  39. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013; 11(7): e1001604. doi: 10.1371/journal.pbio.1001604 PMID: 23874151
  40. Lafourcade C, Ramírez JP, Luarte J, et al. MIRNAS in astrocyte-derived exosomes as possible mediators of neuronal plasticity: supple-mentary issue: brain plasticity and repair. J Exp Neurosci 2016; 10: S39916. doi: 10.4137/JEN.S39916
  41. Guitart K, Loers G, Buck F, Bork U, Schachner M, Kleene R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 2016; 64(6): 22963. doi: 10.1002/glia.22963 PMID: 26992135
  42. Luarte A, Cisternas P, Caviedes A, et al. Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int 2017; 2017: 1719050. doi: 10.1155/2017/1719050 PMID: 29081809
  43. Otero-Ortega L, Laso-García F, Gómez-de Frutos MC, et al. White matter repair after extracellular vesicles administration in an experi-mental animal model of subcortical stroke. Sci Rep 2017; 7(1): 44433. doi: 10.1038/srep44433 PMID: 28300134
  44. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55(1): 439-64. doi: 10.1146/annurev-pharmtox-010814-124630 PMID: 25292428
  45. Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79. doi: 10.1038/mt.2011.164 PMID: 21915101
  46. Xiong Y, Mahmood A, Chopp M. Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 2017; 12(1): 19-22. doi: 10.4103/1673-5374.198966 PMID: 28250732
  47. András IE, Toborek M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers 2016; 4(1): e1131804. doi: 10.1080/21688370.2015.1131804 PMID: 27141419
  48. Grange C, Tapparo M, Bruno S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 2014; 33(5): 1055-63. doi: 10.3892/ijmm.2014.1663 PMID: 24573178
  49. Di Rocco G, Baldari S, Toietta G. Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int 2016; 2016: 5029619.
  50. Betzer O, Perets N, Angel A, et al. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 2017; 11(11): 10883-93. doi: 10.1021/acsnano.7b04495 PMID: 28960957
  51. Webb RL, Kaiser EE, Scoville SL, et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the mu-rine thromboembolic stroke model. Transl Stroke Res 2018; 9(5): 530-9. doi: 10.1007/s12975-017-0599-2 PMID: 29285679
  52. Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5(1): 70. doi: 10.1038/s41572-019-0118-8 PMID: 31601801
  53. Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as potential diagnostic biomarkers in alz-heimer’s disease. Pharmaceuticals (Basel) 2020; 13(9): 243. doi: 10.3390/ph13090243 PMID: 32932746
  54. Lin J, Li J, Huang B, et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015; 2015: 657086. doi: 10.1155/2015/657086
  55. Hong SB, Yang H, Manaenko A, Lu J, Mei Q, Hu Q. Potential of exosomes for the treatment of stroke. Cell Transplant 2019; 28(6): 662-70. doi: 10.1177/0963689718816990 PMID: 30520322
  56. Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc Dis 2018; 45(5-6): 204-12. doi: 10.1159/000488365 PMID: 29627835
  57. Zhang G, Chen L, Guo X, et al. Comparative analysis of microRNA expression profiles of exosomes derived from normal and hypoxic preconditioning human neural stem cells by next generation sequencing. J Biomed Nanotechnol 2018; 14(6): 1075-89. doi: 10.1166/jbn.2018.2567 PMID: 29843872
  58. Li DB, Liu JL, Wang W, et al. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front Aging Neurosci 2018; 10: 24. doi: 10.3389/fnagi.2018.00024 PMID: 29467645
  59. Li DB, Liu JL, Wang W, et al. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke. Curr Neurovasc Res 2018; 14(4): 330-7. doi: 10.2174/1567202614666171005153434 PMID: 28982331
  60. Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol 2017; 8: 57. doi: 10.3389/fneur.2017.00057 PMID: 28289400
  61. Farzaneh M. Concise Review; Effects of antibiotics and antimycotics on the biological properties of human pluripotent and multipotent stem cells. Curr Stem Cell Res Ther 2021; 16(4): 400-5. PMID: 33272189
  62. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardio-myocytes. Curr Stem Cell Res Ther 2019; 14(1): 9-13. doi: 10.2174/1574888X13666180821160421 PMID: 30152289
  63. Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human mesenchymal stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(4): 340-8. doi: 10.2174/1574888X15666200316164051 PMID: 32178619
  64. Harrell C, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 2019; 8(5): 467. doi: 10.3390/cells8050467 PMID: 31100966
  65. Lu M, Guo J, Wu B, et al. Mesenchymal stem cell-mediated mitochondrial transfer: A therapeutic approach for ischemic stroke. Transl Stroke Res 2021; 12(2): 212-29. PMID: 32975692
  66. Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati-Nezhad A, Sen A. Mesenchymal stem cell therapy for ischemic tissues. Stem Cells Int 2018; 2018: 8179075. doi: 10.1155/2018/8179075 PMID: 30402112
  67. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 2019; 16(1): 178. doi: 10.1186/s12974-019-1571-8 PMID: 31514749
  68. Li X, Huang M, Zhao R, et al. Intravenously delivered allogeneic mesenchymal stem cells bidirectionally regulate inflammation and induce neurotrophic effects in distal middle cerebral artery occlusion rats within the first 7 days after stroke. Cell Physiol Biochem 2018; 46(5): 1951-70. doi: 10.1159/000489384 PMID: 29719282
  69. Jaillard A, Hommel M, Moisan A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: A randomized clinical trial. Transl Stroke Res 2020; 11(5): 910-23. doi: 10.1007/s12975-020-00787-z PMID: 32462427
  70. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells pro-mote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 2013; 33(11): 1711-5. doi: 10.1038/jcbfm.2013.152 PMID: 23963371
  71. Buller B, Moore T, Zhang Y, et al. Exosomes from rhesus monkey MSCs promote neuronal growth and myelination. Stroke 2016; 47 (Suppl. 1): A68-8. doi: 10.1161/str.47.suppl_1.68
  72. Orczykowski ME, Arndt KR, Palitz LE, et al. Cell based therapy enhances activation of ventral premotor cortex to improve recovery fol-lowing primary motor cortex injury. Exp Neurol 2018; 305: 13-25. doi: 10.1016/j.expneurol.2018.03.010 PMID: 29540323
  73. Moore TL, et al. Recovery from ischemia in the middle-aged brain: a nonhuman primate model. Neurobiology of aging 2012; 33(3): 619-24. doi: 10.1016/j.neurobiolaging.2011.02.005
  74. Doeppner TR, Herz J, Görgens A, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immuno-suppression. Stem Cells Transl Med 2015; 4(10): 1131-43. doi: 10.5966/sctm.2015-0078 PMID: 26339036
  75. Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 2017; 7: 278-87. doi: 10.1016/j.omtn.2017.04.010 PMID: 28624203
  76. Xin H, Katakowski M, Wang F, et al. MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 2017; 48(3): 747-53. doi: 10.1161/STROKEAHA.116.015204 PMID: 28232590
  77. Nalamolu KR, et al. Exosomes Treatment Mitigates Ischemic Brain Damage but Does Not Improve Post-Stroke Neurological Outcome. Cell Physiol Biochem 2019; 52(6): 1280-91.
  78. Ling X, Zhang G, Xia Y, et al. Exosomes from human urine‐derived stem cells enhanced neurogenesis via miR‐26a/HDAC6 axis after ischaemic stroke. J Cell Mol Med 2020; 24(1): 640-54. doi: 10.1111/jcmm.14774 PMID: 31667951
  79. Webb RL, Kaiser EE, Jurgielewicz BJ, et al. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischem-ic stroke. Stroke 2018; 49(5): 1248-56. doi: 10.1161/STROKEAHA.117.020353 PMID: 29650593
  80. Xiao B, Chai Y, Lv S, et al. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med 2017; 40(4): 1201-9. doi: 10.3892/ijmm.2017.3106 PMID: 28849073
  81. Zhang ZG, Buller B, Chopp M. Exosomes — beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 2019; 15(4): 193-203. doi: 10.1038/s41582-018-0126-4 PMID: 30700824
  82. Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res 2017; 120(3): 541-58. doi: 10.1161/CIRCRESAHA.116.309278 PMID: 28154103
  83. Lapchak PA, Boitano PD, de Couto G, Marbán E. Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exo-somes) improves behavioral function in small-clot embolized rabbits. Exp Neurol 2018; 307: 109-17. doi: 10.1016/j.expneurol.2018.06.007 PMID: 29908146
  84. Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9(1): 29. doi: 10.1186/1479-5876-9-29 PMID: 21418664
  85. Walczak P, Zhang J, Gilad AA, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 2008; 39(5): 1569-74. doi: 10.1161/STROKEAHA.107.502047 PMID: 18323495
  86. Mateescu B, Kowal EJK, van Balkom BWM, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 2017; 6(1): 1286095. doi: 10.1080/20013078.2017.1286095 PMID: 28326170
  87. Collino F, Bruno S, Incarnato D, et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying mi-croRNAs. J Am Soc Nephrol 2015; 26(10): 2349-60. doi: 10.1681/ASN.2014070710 PMID: 25901032
  88. Zhang R, Pan W, Zhang X-P, et al. Cerebral endothelial derived exosomes abolish cognitive impairment induced by ablation of dicer in adult neural progenitor cells. Seman Scholor 2017; 2017: 208581185. doi: 10.1161/str.48.suppl_1.wmp48
  89. Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 2017; 54(4): 2659-73. doi: 10.1007/s12035-016-9851-0 PMID: 26993303
  90. Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contrib-utes to neurite outgrowth. Stem Cells 2012; 30(7): 1556-64. doi: 10.1002/stem.1129 PMID: 22605481
  91. Nam JW, Rissland OS, Koppstein D, et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 2014; 53(6): 1031-43. doi: 10.1016/j.molcel.2014.02.013 PMID: 24631284
  92. Wang Y, Ma Z, Kan P, Zhang B. The Diagnostic Value of Serum miRNA-221-3p, miRNA-382-5p, and miRNA-4271 in Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26(5): 1055-60. doi: 10.1016/j.jstrokecerebrovasdis.2016.12.019 PMID: 28111007
  93. Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120(10): 16352-61. doi: 10.1002/jcb.29130 PMID: 31219202
  94. Lei TY, Ye YZ, Zhu XQ, et al. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 2021; 18(1): 25. doi: 10.1186/s12974-020-02057-z PMID: 33461586
  95. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci 2017; 38(7): 1167-86. doi: 10.1007/s10072-017-2938-1 PMID: 28417216
  96. Del Fattore A, Luciano R, Pascucci L, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lym-phocytes. Cell Transplant 2015; 24(12): 2615-27. doi: 10.3727/096368915X687543 PMID: 25695896
  97. Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 2014; 5: 556. doi: 10.3389/fimmu.2014.00556 PMID: 25414703
  98. Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 2016; 64(4): 831-40. doi: 10.1007/s12026-016-8798-6 PMID: 27115513
  99. Geng W, Tang H, Luo S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improv-ing neurogenesis and suppressing microglia activation. Am J Transl Res 2019; 11(2): 780-92. PMID: 30899379
  100. Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem 2018; 47(2): 864-78. doi: 10.1159/000490078 PMID: 29807362
  101. Ge X, Guo M, Hu T, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI. Mol Ther 2020; 28(2): 503-22. doi: 10.1016/j.ymthe.2019.11.017 PMID: 31843449
  102. Huang S, Ge X, Yu J, et al. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflamma-tion and contributes to neurite outgrowth via their transfer into neurons. FASEB J 2018; 32(1): 512-28. doi: 10.1096/fj.201700673r PMID: 28935818
  103. Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2018; 22(1): 261-76. doi: 10.1111/jcmm.13316 PMID: 28805297
  104. Gorabi AM, Kiaie N, Barreto GE, Read MI, Tafti HA, Sahebkar A. The therapeutic potential of mesenchymal stem cell–derived exosomes in treatment of neurodegenerative diseases. Mol Neurobiol 2019; 56(12): 8157-67. doi: 10.1007/s12035-019-01663-0 PMID: 31197655
  105. Canales-Aguirre AA, Reza-Zaldivar EE, Hernández-Sapiéns MA, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen Res 2019; 14(9): 1626-34. doi: 10.4103/1673-5374.255978 PMID: 31089063
  106. Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exo-somes. Sci Rep 2013; 3(1): 1197-7. doi: 10.1038/srep01197 PMID: 23378928
  107. Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease. Neurochem Res 2018; 43(11): 2165-77. doi: 10.1007/s11064-018-2641-5 PMID: 30259257
  108. Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ. Intranigral transplantation of epigenetically induced BDNF-secreting human mesenchy-mal stem cells: implications for cell-based therapies in Parkinson’s disease. Biol Blood Marrow Transplant 2010; 16(11): 1530-40. doi: 10.1016/j.bbmt.2010.06.006 PMID: 20542127
  109. Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy 2015; 17(7): 932-9. doi: 10.1016/j.jcyt.2014.07.013 PMID: 25981557
  110. Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autoph-agy. Cell Death Dis 2020; 11(4): 288. doi: 10.1038/s41419-020-2473-5 PMID: 32341347
  111. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 2010; 15(12): 1164-75. doi: 10.1038/mp.2009.110 PMID: 19859069
  112. Kim D, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 2016; 113(1): 170-5. doi: 10.1073/pnas.1522297113 PMID: 26699510
  113. Zhang Y, Chopp M, Zhang ZG, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesen-chymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 2017; 111: 69-81. doi: 10.1016/j.neuint.2016.08.003 PMID: 27539657
  114. Williams AM, Dennahy IS, Bhatti UF, et al. Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J Neurotrauma 2019; 36(1): 54-60. doi: 10.1089/neu.2018.5711 PMID: 29690826
  115. Zhang Y, Zhang Y, Chopp M, Zhang ZG, Mahmood A, Xiong Y. Mesenchymal stem cell-derived exosomes improve functional recovery in rats after traumatic brain injury: A dose-response and therapeutic window study. Neurorehabil Neural Repair 2020; 34(7): 616-26. doi: 10.1177/1545968320926164 PMID: 32462980
  116. Marconi S, Bonaconsa M, Scambi I, et al. Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 2013; 248: 333-43. doi: 10.1016/j.neuroscience.2013.05.034 PMID: 23727509
  117. Riazifar M, Mohammadi MR, Pone EJ, et al. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano 2019; 13(6): 6670-88. doi: 10.1021/acsnano.9b01004 PMID: 31117376
  118. Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017; 60: 220-32. doi: 10.1016/j.bbi.2016.11.011 PMID: 27847282
  119. Thomi G, Joerger-Messerli M, Haesler V, Muri L, Surbek D, Schoeberlein A. Intranasally administered exosomes from umbilical cord stem cells have preventive neuroprotective effects and contribute to functional recovery after perinatal brain injury. Cells 2019; 8(8): 855. doi: 10.3390/cells8080855 PMID: 31398924
  120. Zhang C, Zhang C, Xu Y, Li C, Cao Y, Li P. Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neurosci Lett 2020; 739: 135399. doi: 10.1016/j.neulet.2020.135399 PMID: 32979457
  121. Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice. Theranostics 2019; 9(20): 5956-75. doi: 10.7150/thno.33872 PMID: 31534531
  122. Tsivion-Visbord H, Perets N, Sofer T, et al. Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Transl Psychiatry 2020; 10(1): 305. doi: 10.1038/s41398-020-00988-y PMID: 32873780
  123. Fan B, Li C, Szalad A, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia 2020; 63(2): 431-43. doi: 10.1007/s00125-019-05043-0 PMID: 31740984
  124. Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential ef-fects of MSC-derived exosomes in neuroplasticity in Alzheimer’s disease. Front Cell Neurosci 2018; 12: 317. doi: 10.3389/fncel.2018.00317 PMID: 30319358
  125. Gandham S, Su X, Wood J, et al. Technologies and standardization in research on extracellular vesicles. Trends Biotechnol 2020; 38(10): 1066-98. doi: 10.1016/j.tibtech.2020.05.012 PMID: 32564882
  126. Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 2016; 244(Pt B): 167-83. doi: 10.1016/j.jconrel.2016.07.054 PMID: 27491882
  127. Yeo RWY, Lai RC, Zhang B, et al. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 2013; 65(3): 336-41. doi: 10.1016/j.addr.2012.07.001 PMID: 22780955
  128. Gimona M, Pachler K, Laner-Plamberger S, Schallmoser K, Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci 2017; 18(6): 1190. doi: 10.3390/ijms18061190 PMID: 28587212
  129. Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087. doi: 10.3402/jev.v4.30087 PMID: 26725829
  130. Ophelders DRMG, Wolfs TGAM, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 2016; 5(6): 754-63. doi: 10.5966/sctm.2015-0197 PMID: 27160705
  131. Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther 2019; 10(1): 105. doi: 10.1186/s13287-019-1207-z PMID: 30898154
  132. Sun G, Li G, Li D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C 2018; 89: 194-204. doi: 10.1016/j.msec.2018.04.006 PMID: 29752089
  133. Ruppert KA, Nguyen TT, Prabhakara KS, et al. Human mesenchymal stromal cell-derived extracellular vesicles modify microglial re-sponse and improve clinical outcomes in experimental spinal cord injury. Sci Rep 2018; 8(1): 480. doi: 10.1038/s41598-017-18867-w PMID: 29323194
  134. Long Q, Upadhya D, Hattiangady B, et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci USA 2017; 114(17): E3536-45. doi: 10.1073/pnas.1703920114 PMID: 28396435
  135. Sisa C, Kholia S, Naylor J, et al. Mesenchymal stromal cell derived extracellular vesicles reduce hypoxia-ischaemia induced perinatal brain injury. Front Physiol 2019; 10: 282. doi: 10.3389/fphys.2019.00282 PMID: 30941062
  136. Shiue SJ, Rau RH, Shiue HS, et al. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats. Pain 2019; 160(1): 210-23. doi: 10.1097/j.pain.0000000000001395 PMID: 30188455

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers