Mesenchymal Stem Cells Target Gastric Cancer and Deliver Epirubicin via Tunneling Nanotubes for Enhanced Chemotherapy
- Authors: Zhou Y.1, Li Y.2, Wang H.1, Sun H.3, Su J.1, Fan Y.1, Xing W.4, Fu J.5
-
Affiliations:
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University
- Key Laboratory of Digestive System Tumors of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University
- Cuiying Biomedical Research Center, The Second Clinical College of Lanzhou University
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University,
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University
- Issue: Vol 19, No 10 (2024)
- Pages: 1402-1413
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645499
- DOI: https://doi.org/10.2174/011574888X287102240101060146
- ID: 645499
Cite item
Full Text
Abstract
Background:A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes.
Objective:Epirubicin delivery to gastric cancer cells using mesenchymal stem cells
Methods:In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS.
Results:Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05).
Conclusions:We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.
About the authors
Yali Zhou
Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University
Email: info@benthamscience.net
Yumin Li
Key Laboratory of Digestive System Tumors of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University
Email: info@benthamscience.net
Haibin Wang
Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University
Email: info@benthamscience.net
Haolin Sun
Cuiying Biomedical Research Center, The Second Clinical College of Lanzhou University
Email: info@benthamscience.net
Jing Su
Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University
Email: info@benthamscience.net
Yaqiong Fan
Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University
Email: info@benthamscience.net
Wei Xing
Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University,
Email: info@benthamscience.net
Jie Fu
Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Shi, J.; Li, N.; Tang, Y.; Jiang, L.; Yang, L.; Wang, S.; Song, Y.; Liu, Y.; Fang, H.; Lu, N.; Qi, S.; Chen, B.; Li, Z.; Liu, S.; Wang, J.; Wang, W.; Zhu, S.; Yang, J.; Li, Y.; Zhao, D.; Jin, J. Total neoadjuvant therapy for locally advanced gastric cancer and esophagogastric junction adenocarcinoma: Study protocol for a prospective, multicenter, single-arm, phase II clinical trial. BMC Gastroenterol., 2022, 22(1), 359. doi: 10.1186/s12876-022-02440-5 PMID: 35902798
- Printezi, M.I.; Kilgallen, A.B.; Bond, M.J.G.; tibler, U.; Putker, M.; Teske, A.J.; Cramer, M.J.; Punt, C.J.A.; Sluijter, J.P.G.; Huitema, A.D.R.; May, A.M.; van Laake, L.W. Toxicity and efficacy of chronomodulated chemotherapy: A systematic review. Lancet Oncol., 2022, 23(3), e129-e143. doi: 10.1016/S1470-2045(21)00639-2 PMID: 35240088
- Yang, H.; Xu, L.; Guan, S.; Hao, X.; Ge, Z.; Tong, F.; Cao, Y.; Liu, P.; Zhou, B.; Cheng, L.; Liu, M.; Liu, H.; Xie, F.; Wang, S.; Peng, Y.; Wang, C.; Wang, S. Neoadjuvant docetaxel and capecitabine (TX) versus docetaxel and epirubicin (TE) for locally advanced or early her2-negative breast cancer: An open-label, randomized, multi-center, phase II Trial. BMC Cancer, 2022, 22(1), 1357. doi: 10.1186/s12885-022-10439-0 PMID: 36577958
- Jiali, Z; En, L; Chaonong, C Combined treatment of tanshinone I and epirubicin revealed enhanced inhibition of hepatocellular carcinoma by targeting PI3K/AKT/HIF-1α. Drug Des Devel Ther, 2022, 16, 3197-3213.
- Li, X.; Guo, X.; Li, J.; Yuan, L.; Wang, H. Preventing effect of astragalus polysaccharide on cardiotoxicity induced by chemotherapy of epirubicin: A pilot study. Medicine, 2022, 101(32), e30000. doi: 10.1097/MD.0000000000030000 PMID: 35960075
- Rosati, G.; Cella, C.A.; Cavanna, L.; Codecà, C.; Prisciandaro, M.; Mosconi, S.; Luchena, G.; Silvestris, N.; Bernardini, I.; Casaretti, R.; Zoratto, F.; Amoroso, D.; Ciarlo, A.; Barni, S.; Cascinu, S.; Davite, C.; Di Sanzo, A.; Casolaro, A.; Bilancia, D.; Labianca, R. A randomized phase III study of fractionated docetaxel, oxaliplatin, capecitabine (low-tox) vs epirubicin, oxaliplatin and capecitabine (eox) in patients with locally advanced unresectable or metastatic gastric cancer: The lega trial. Gastric Cancer, 2022, 25(4), 783-793. doi: 10.1007/s10120-022-01292-y PMID: 35352176
- Liu, K.; Song, J.; Yan, Y.; Zou, K.; Che, Y.; Wang, B.; Li, Z.; Yu, W.; Guo, W.; Zou, L.; Deng, W.; Sun, X. Melatonin increases the chemosensitivity of diffuse large B-cell lymphoma cells to epirubicin by inhibiting P-glycoprotein expression via the NF-κB pathway. Transl. Oncol., 2021, 14(1), 100876. doi: 10.1016/j.tranon.2020.100876 PMID: 33007707
- Felipe, A.V.; Oliveira, J.; Moraes, A.A.; França, J.P.; Silva, T.D.; Forones, N.M. Reversal of multidrug resistance in an epirubicin-resistant gastric cancer cell subline. Asian Pac. J. Cancer Prev., 2018, 19(5), 1237-1242. PMID: 29801407
- Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. Biological functions of mesenchymal stem cells and clinical implications. Cell. Mol. Life Sci., 2019, 76(17), 3323-3348. doi: 10.1007/s00018-019-03125-1 PMID: 31055643
- Friedenstein, A.J.; Chailakhjan, R.K.; Lalykina, K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif., 1970, 3(4), 393-403. doi: 10.1111/j.1365-2184.1970.tb00347.x PMID: 5523063
- Schweizer, M.T.; Wang, H.; Bivalacqua, T.J.; Partin, A.W.; Lim, S.J.; Chapman, C.; Abdallah, R.; Levy, O.; Bhowmick, N.A.; Karp, J.M.; De Marzo, A.; Isaacs, J.T.; Brennen, W.N.; Denmeade, S.R. A Phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl. Med., 2019, 8(5), 441-449. doi: 10.1002/sctm.18-0230 PMID: 30735000
- Song, Y.; Li, R.; Ye, M.; Pan, C.; Zheng, L.; Wang, Z.; Zhu, X. Differences in chemotaxis of human mesenchymal stem cells and cervical cancer cells. Apoptosis, 2022, 27(11-12), 840-851. doi: 10.1007/s10495-022-01749-6 PMID: 35849265
- Whitehead, J.; Zhang, J.; Harvestine, J.N.; Kothambawala, A.; Liu, G.; Leach, J.K. Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids. Stem Cells, 2020, 38(1), 80-89. doi: 10.1002/stem.3056 PMID: 31298767
- Wei, B.; Ji, M.; Lin, Y.; Wang, S.; Liu, Y.; Geng, R.; Hu, X.; Xu, L.; Li, Z.; Zhang, W.; Lu, J. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res. Ther., 2023, 14(1), 104. doi: 10.1186/s13287-023-03329-0 PMID: 37101277
- Paliwal, S.; Chaudhuri, R.; Agrawal, A.; Mohanty, S. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res. Ther., 2018, 9(1), 298. doi: 10.1186/s13287-018-1012-0 PMID: 30409230
- Kreić, N.; Prilin, M.; Vlahović, D.; Kosteić, P.; Ljolje, I.; Brnić, D.; Turk, N.; Musulin, A.; Habrun, B. The expression pattern of surface markers in canine adipose-derived mesenchymal stem cells. Int. J. Mol. Sci., 2021, 22(14), 7476. doi: 10.3390/ijms22147476 PMID: 34299095
- Lan, T.; Luo, M.; Wei, X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol., 2021, 14(1), 195. doi: 10.1186/s13045-021-01208-w PMID: 34789315
- Meza-León, B.; Gratzinger, D.; Aguilar-Navarro, A.G.; Juárez-Aguilar, F.G.; Rebel, V.I.; Torlakovic, E.; Purton, L.E.; Dorantes-Acosta, E.M.; Escobar-Sánchez, A.; Dick, J.E.; Flores-Figueroa, E. Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Exp. Hematol., 2021, 100, 41-51. doi: 10.1016/j.exphem.2021.06.006 PMID: 34228982
- Zhang, H.; Qian, J.; Jin, M.; Fan, L.; Fan, S.; Pan, H.; Li, Y.; Wang, N.; Jian, B. Jolkinolide B induces cell cycle arrest and apoptosis in MKN45 gastric cancer cells and inhibits xenograft tumor growth in vivo. Biosci. Rep., 2022, 42(6), BSR20220341. doi: 10.1042/BSR20220341 PMID: 35674158
- Chu, Y.; Xiao, Z.; Jing, N.; Yan, W.; Wang, S.; Ma, B.; Zhang, J.; Li, Y. Arborinine, a potential LSD1 inhibitor, inhibits epithelial-mesenchymal transition of SGC-7901 cells and adriamycin-resistant gastric cancer SGC-7901/ADR cells. Invest. New Drugs, 2021, 39(3), 627-635. doi: 10.1007/s10637-020-01016-y PMID: 33215324
- Shi, W.; Zhang, G.; Ma, Z.; Li, L.; Liu, M.; Qin, L.; Yu, Z.; Zhao, L.; Liu, Y.; Zhang, X.; Qin, J.; Ye, H.; Jiang, X.; Zhou, H.; Sun, H.; Jiao, Z. Hyperactivation of HER2-SHCBP1- PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat. Commun., 2021, 12(1), 2812. doi: 10.1038/s41467-021-23053-8 PMID: 33990570
- Mick, A.P.; David, M.S.P.; Nicholas, H. Microscope-Cockpit: Python-based bespoke microscopy for bio-medical science. Wellcome Open Res, 2022, 6, 76. doi: 10.12688/wellcomeopenres.16610.1
- Feldman, D.; Singh, A.; Schmid-Burgk, J.L.; Carlson, R.J.; Mezger, A.; Garrity, A.J.; Zhang, F.; Blainey, P.C. Optical pooled screens in human cells. Cell, 2019, 179(3), 787-799.e17. doi: 10.1016/j.cell.2019.09.016 PMID: 31626775
- Cromwell, E.F.; Leung, M.; Hammer, M.; Thai, A.; Rajendra, R.; Sirenko, O. Disease modeling with 3D cell-based assays using a novel flowchip system and high-content imaging. SLAS Technol., 2021, 26(3), 237-248. doi: 10.1177/24726303211000688 PMID: 33783259
- Gregory, PW; Heba, S; Steven, S Evolution and impact of high content imaging. SLAS Discov, 2023, 3, S2472. doi: 10.1016/j.slasd.2023.08.009
- Coste, A.; Oktay, M.H.; Condeelis, J.S.; Entenberg, D. Intravital imaging techniques for biomedical and clinical research. Cytometry A, 2020, 97(5), 448-457. doi: 10.1002/cyto.a.23963 PMID: 31889408
- Justus, C.R.; Marie, M.A.; Sanderlin, E.J.; Yang, L.V. Transwell in vitro cell migration and invasion assays. Methods Mol. Biol., 2023, 2644, 349-359. doi: 10.1007/978-1-0716-3052-5_22 PMID: 37142933
- Marescotti, D.; Bovard, D.; Morelli, M.; Sandoz, A.; Luettich, K.; Frentzel, S.; Peitsch, M.; Hoeng, J. In vitro high-content imaging-based phenotypic analysis of bronchial 3D organotypic air-liquid interface cultures. SLAS Technol., 2020, 25(3), 247-252. doi: 10.1177/2472630319895473 PMID: 31971054
- Guo, Z.; Cui, Z. Fluorescent nanotechnology for in vivo imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(5), e1705. doi: 10.1002/wnan.1705 PMID: 33686803
- Kalimuthu, S.; Zhu, L.; Oh, J.M.; Gangadaran, P.; Lee, H.W.; Baek, S.; Rajendran, R.L.; Gopal, A.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. Int. J. Med. Sci., 2018, 15(10), 1051-1061. doi: 10.7150/ijms.25760 PMID: 30013447
- Saha, T.; Dash, C.; Jayabalan, R.; Khiste, S.; Kulkarni, A.; Kurmi, K.; Mondal, J.; Majumder, P.K.; Bardia, A.; Jang, H.L.; Sengupta, S. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol., 2022, 17(1), 98-106. doi: 10.1038/s41565-021-01000-4 PMID: 34795441
- Pacioni, S.; DAlessandris, Q.G.; Giannetti, S.; Morgante, L.; De Pascalis, I.; Coccè, V.; Bonomi, A.; Pascucci, L.; Alessandri, G.; Pessina, A.; Falchetti, M.L.; Pallini, R. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res. Ther., 2015, 6(1), 194. doi: 10.1186/s13287-015-0185-z PMID: 26445228
- Luo, Y.; Fu, X.; Han, B.; Zhang, F.; Yuan, L.; Men, H.; Zhang, S.; Tian, S.; Dong, B.; Meng, M. The apoptosis mechanism of epirubicin combined with bcg on human bladder cancer cells. Anticancer. Agents Med. Chem., 2020, 20(13), 1571-1581. doi: 10.2174/1871520620666200502004002 PMID: 32357825
- Victor, AH; Jessika, CM; Xinyi, W Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5' splice site: Generation of etoposide resistance in human leukemia K562 cells. PLoS One, 2022, 175, e0265794.
- Inès, L; Eléonore, S Pembrolizumab with trastuzumab and chemotherapy-advanced or metastatic gastric or gastro-esophageal junction adenocarcinomas with surexpression of HER2 and CPS≥1. Bull Cancer, 2023, 8, S0007. doi: 10.1016/j.bulcan.2023.11.004
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; Lindig, U.; Schmiegel, W.; Pohl, M.; Stoehlmacher, J.; Folprecht, G.; Probst, S.; Prasnikar, N.; Fischbach, W.; Mahlberg, R.; Trojan, J.; Koenigsmann, M.; Martens, U.M.; Thuss-Patience, P.; Egger, M.; Block, A.; Heinemann, V.; Illerhaus, G.; Moehler, M.; Schenk, M.; Kullmann, F.; Behringer, D.M.; Heike, M.; Pink, D.; Teschendorf, C.; Löhr, C.; Bernhard, H.; Schuch, G.; Rethwisch, V.; von Weikersthal, L.F.; Hartmann, J.T.; Kneba, M.; Daum, S.; Schulmann, K.; Weniger, J.; Belle, S.; Gaiser, T.; Oduncu, F.S.; Güntner, M.; Hozaeel, W.; Reichart, A.; Jäger, E.; Kraus, T.; Mönig, S.; Bechstein, W.O.; Schuler, M.; Schmalenberg, H.; Hofheinz, R.D. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet, 2019, 393(10184), 1948-1957. doi: 10.1016/S0140-6736(18)32557-1 PMID: 30982686
- Ansaar, R.; Meech, R.; Rowland, A. A physiologically based pharmacokinetic model to predict determinants of variability in epirubicin exposure and tissue distribution. Pharmaceutics, 2023, 15(4), 1222. doi: 10.3390/pharmaceutics15041222 PMID: 37111707
- Isemede, D.A.; Sharma, A.; Bailey, J. Assessing the cardiotoxicity of Epirubicin-based chemotherapy in patients with breast cancer using high-sensitivity cardiac troponin T, N-terminal pro b-type natriuretic peptide and soluble suppression of tumorigenicity-2. Ann. Clin. Biochem., 2022, 59(6), 410-419. doi: 10.1177/00045632221131672 PMID: 36154484
- Deniz, I.A.; Karbanová, J.; Wobus, M.; Bornhäuser, M.; Wimberger, P.; Kuhlmann, J.D.; Corbeil, D. Mesenchymal stromal cell-associated migrasomes: A new source of chemoattractant for cells of hematopoietic origin. Cell Commun. Signal., 2023, 21(1), 36. doi: 10.1186/s12964-022-01028-6 PMID: 36788616
- Ullah, M.; Liu, D.D.; Thakor, A.S. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience, 2019, 15, 421-438. doi: 10.1016/j.isci.2019.05.004 PMID: 31121468
- Sergey, T; Natalya, MD; Peter, ST To explore the stem cells homing to GBM: The rise to the occasion. Biomedicines, 2022, 10(5), 986.
- Zhang, N.; Song, Y.; Huang, Z.; Chen, J.; Tan, H.; Yang, H.; Fan, M.; Li, Q.; Wang, Q.; Gao, J.; Pang, Z.; Qian, J.; Ge, J. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials, 2020, 255, 120168. doi: 10.1016/j.biomaterials.2020.120168 PMID: 32562944
- Szydlak, R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J. Stem Cells, 2021, 13(6), 619-631. doi: 10.4252/wjsc.v13.i6.619 PMID: 34249231
- Yuan, M.; Hu, X.; Yao, L.; Jiang, Y.; Li, L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res. Ther., 2022, 13(1), 179. doi: 10.1186/s13287-022-02858-4 PMID: 35505419
- Zheng, X.B.; He, X.W.; Zhang, L.J.; Qin, H.B.; Lin, X.T.; Liu, X.H.; Zhou, C.; Liu, H.S.; Hu, T.; Cheng, H.C.; He, X.S.; Wu, X.R.; Chen, Y.F.; Ke, J.; Wu, X.J.; Lan, P. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol. Rep., 2019, 7(2), 127-138. doi: 10.1093/gastro/goy017 PMID: 30976426
- a) Laurent, MCG; Olivier, DW; José, AG Cell line derived xenograft mouse models are a suitable in vivo model for studying tumor budding in colorectal cancer. Front Med, 2019, 27(6), 139. doi: 10.3389/fmed.2019.00139; b) Chiara, Z. Tunneling nanotubes: Reshaping connectivi-ty. Curr Opin Cell Biol, 2021, 71, 139-147.
- Takayama, Y.; Kusamori, K.; Tsukimori, C.; Shimizu, Y.; Hayashi, M.; Kiyama, I.; Katsumi, H.; Sakane, T.; Yamamoto, A.; Nishikawa, M. Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J. Control. Release, 2021, 329, 1090-1101. doi: 10.1016/j.jconrel.2020.10.037 PMID: 33098911
- Luchetti, F.; Carloni, S.; Nasoni, M.G.; Reiter, R.J.; Balduini, W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J. Pineal Res., 2022, 73(1), e12800. doi: 10.1111/jpi.12800 PMID: 35419879
- Hase, K.; Kimura, S.; Takatsu, H.; Ohmae, M.; Kawano, S.; Kitamura, H.; Ito, M.; Watarai, H.; Hazelett, C.C.; Yeaman, C.; Ohno, H. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol., 2009, 11(12), 1427-1432. doi: 10.1038/ncb1990 PMID: 19935652
- Chauveau, A.; Aucher, A.; Eissmann, P.; Vivier, E.; Davis, D.M. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc. Natl. Acad. Sci., 2010, 107(12), 5545-5550. doi: 10.1073/pnas.0910074107 PMID: 20212116
- Pinto, G.; Saenz-de-Santa-Maria, I.; Chastagner, P.; Perthame, E.; Delmas, C.; Toulas, C.; Moyal-Jonathan-Cohen, E.; Brou, C.; Zurzolo, C. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem. J., 2021, 478(1), 21-39. doi: 10.1042/BCJ20200710 PMID: 33245115
- Burt, R.; Dey, A.; Aref, S.; Aguiar, M.; Akarca, A.; Bailey, K.; Day, W.; Hooper, S.; Kirkwood, A.; Kirschner, K.; Lee, S.W.; Lo Celso, C.; Manji, J.; Mansour, M.R.; Marafioti, T.; Mitchell, R.J.; Muirhead, R.C.; Cheuk Yan Ng, K.; Pospori, C.; Puccio, I.; Zuborne-Alapi, K.; Sahai, E.; Fielding, A.K. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood, 2019, 134(17), 1415-1429. doi: 10.1182/blood.2019001398 PMID: 31501154
- Feng, Y.; Zhu, R.; Shen, J.; Wu, J.; Lu, W.; Zhang, J.; Zhang, J.; Liu, K. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev., 2019, 28(10), 674-682. doi: 10.1089/scd.2018.0248 PMID: 30808254
- Holstein, S.A.; Lunning, M.A. CAR T-cell therapy in hematologic malignancies: A voyage in progress. Clin. Pharmacol. Ther., 2020, 107(1), 112-122. doi: 10.1002/cpt.1674 PMID: 31622496
- Xiaomin, Z; Lingling, Z; Hui, Z CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol, 2022, 13, 927153. doi: 10.3389/fimmu.2022.927153
- Haslauer, T.; Greil, R.; Zaborsky, N.; Geisberger, R. CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci., 2021, 22(16), 8996. doi: 10.3390/ijms22168996 PMID: 34445701
- Wagner, J.; Wickman, E.; DeRenzo, C.; Gottschalk, S. CAR T cell therapy for solid tumors: Bright future or dark reality? Mol. Ther., 2020, 28(11), 2320-2339. doi: 10.1016/j.ymthe.2020.09.015 PMID: 32979309
- Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560. doi: 10.7150/ijbs.34213 PMID: 31754328
- Maalej, K.M.; Merhi, M.; Inchakalody, V.P.; Mestiri, S.; Alam, M.; Maccalli, C.; Cherif, H.; Uddin, S.; Steinhoff, M.; Marincola, F.M.; Dermime, S. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol. Cancer, 2023, 22(1), 20. doi: 10.1186/s12943-023-01723-z PMID: 36717905
- Duan, H.; Liu, C.; Hou, Y.; Liu, Y.; Zhang, Z.; Zhao, H.; Xin, X.; Liu, W.; Zhang, X.; Chen, L.; Jin, M.; Gao, Z.; Huang, W. Sequential delivery of quercetin and paclitaxel for the fibrotic tumor microenvironment remodeling and chemotherapy potentiation via a dual-targeting hybrid micelle-in-liposome system. ACS Appl. Mater. Interfaces, 2022, 14(8), 10102-10116. doi: 10.1021/acsami.1c23166 PMID: 35175043
- Nguyen, D.T.; Ogando-Rivas, E.; Liu, R.; Wang, T.; Rubin, J.; Jin, L.; Tao, H.; Sawyer, W.W.; Mendez-Gomez, H.R.; Cascio, M.; Mitchell, D.A.; Huang, J.; Sawyer, W.G.; Sayour, E.J.; Castillo, P. CAR T cell locomotion in solid tumor microenvironment. Cells, 2022, 11(12), 1974. doi: 10.3390/cells11121974 PMID: 35741103
- Arneth, B. Tumor microenvironment. Medicina, 2019, 56(1), 15. doi: 10.3390/medicina56010015 PMID: 31906017
- Martinez, M.; Moon, E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol., 2019, 10, 128. doi: 10.3389/fimmu.2019.00128 PMID: 30804938
- Marofi, F.; Motavalli, R.; Safonov, V.A.; Thangavelu, L.; Yumashev, A.V.; Alexander, M.; Shomali, N.; Chartrand, M.S.; Pathak, Y.; Jarahian, M.; Izadi, S.; Hassanzadeh, A.; Shirafkan, N.; Tahmasebi, S.; Khiavi, F.M. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res. Ther., 2021, 12(1), 81. doi: 10.1186/s13287-020-02128-1 PMID: 33494834
- Lin, Y.T.; Zheng, X.Y.; Yao, Y.F.; Zhang, Y.Y.; Huang, T.T.; Zhu, Y.L.; Pei, J.; Wang, J.; Chu, M.; Wang, Y.D. Therapeutic effect of spleen low molecular weight extracts on leukopenia caused by epirubicin in mice and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2021, 29(3), 969-974. doi: 10.19746/j.cnki.issn.1009-2137.2021.03.050 PMID: 34105502
- de la Hoz-Camacho, R.; Rivera-Lazarín, A.L.; Vázquez-Guillen, J.M.; Caballero-Hernández, D.; Mendoza-Gamboa, E.; Martínez-Torres, A.C.; Rodríguez-Padilla, C. Cyclophosphamide and epirubicin induce high apoptosis in microglia cells while epirubicin provokes DNA damage and microglial activation at sub-lethal concentrations. EXCLI J., 2022, 21(21), 197-212. doi: 10.17179/excli2021-4160 PMID: 35145370
- Haroon, H.B.; Hunter, A.C.; Farhangrazi, Z.S.; Moghimi, S.M. A brief history of long circulating nanoparticles. Adv. Drug Deliv. Rev., 2022, 188, 114396. doi: 10.1016/j.addr.2022.114396 PMID: 35798129
- Niu, Y.D.; Zhang, Y.W.; Zhu, R.J.; Chu, T.; Wang, L.; Wang, S.; Li, Y.Y.; Dong, Y. The influence of various myelosuppression degrees during neoadjuvant chemotherapy on the curative effect and prognosis of triple-negative breast cancer. Zhonghua Yi Xue Za Zhi, 2022, 102(29), 2290-2294. PMID: 35927061
- Luan, X.D.; Zhao, K.H.; Hou, H.; Gai, Y.H.; Wang, Q.T.; Mu, Q.; Wan, Y. Changes in ischemia-modified albumin in myocardial toxicity induced by anthracycline and docetaxel chemotherapy. Medicine, 2017, 96(32), e7681. doi: 10.1097/MD.0000000000007681 PMID: 28796051
- Roberts, R.; Hanna, L.; Borley, A.; Dolan, G.; Williams, E.M. Epirubicin chemotherapy in women with breast cancer: Alternating arms for intravenous administration to reduce chemical phlebitis. Eur. J. Cancer Care, 2019, 28(5), e13114. doi: 10.1111/ecc.13114 PMID: 31148328
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci., 2020, 41(9), 653-664. doi: 10.1016/j.tips.2020.06.009 PMID: 32709406
- Hu, C.; Li, L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J. Transl. Med., 2019, 17(1), 412. doi: 10.1186/s12967-019-02167-0 PMID: 31823784
- de Wolf, C.; van de Bovenkamp, M.; Hoefnagel, M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy, 2017, 19(7), 784-797. doi: 10.1016/j.jcyt.2017.03.076 PMID: 28457740
- Huang, Y.; Wu, Q.; Tam, P.K.H. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int. J. Mol. Sci., 2022, 23(17), 10023. doi: 10.3390/ijms231710023 PMID: 36077421
Supplementary files
