Advancements in Autologous Stem Cell Transplantation for Parkinson’s Disease


Дәйексөз келтіру

Толық мәтін

Аннотация

:Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation(DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.

Авторлар туралы

Jia-Xin Shi

Department of Neurology, The First Affiliated Hospital of Nanjing Medical University

Email: info@benthamscience.net

Ke-Zhong Zhang

Department of Neurology, The First Affiliated Hospital of Nanjing Medical University,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. McGregor, M.M.; Nelson, A.B. Circuit mechanisms of parkinson’s disease. Neuron, 2019, 101(6), 1042-1056. doi: 10.1016/j.neuron.2019.03.004 PMID: 30897356
  2. Antonini, A.; Moro, E.; Godeiro, C.; Reichmann, H. Medical and surgical management of advanced Parkinson’s disease. Mov. Disord., 2018, 33(6), 900-908. doi: 10.1002/mds.27340 PMID: 29570862
  3. Cury, R.G.; Pavese, N.; Aziz, T.Z.; Krauss, J.K.; Moro, E. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 8. doi: 10.1038/s41531-021-00276-6 PMID: 35017551
  4. Hidding, U.; Gulberti, A.; Pflug, C. Modulation of specific components of sleep disturbances by simultaneous subthalamic and nigral stimulation in Parkinson’s disease. Parkinsonism Relat. Disord., 2019, 62, 141-147. doi: 10.1016/j.parkreldis.2018.12.026 PMID: 30616868
  5. Tsui, A.; Isacson, O. Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson’s disease. J. Neurol., 2011, 258(8), 1393-1405. doi: 10.1007/s00415-011-6061-6 PMID: 21544566
  6. Parmar, M.; Grealish, S.; Henchcliffe, C. The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci., 2020, 21(2), 103-115. doi: 10.1038/s41583-019-0257-7 PMID: 31907406
  7. Osborn, T.M.; Hallett, P.J.; Schumacher, J.M.; Isacson, O. Advantages and recent developments of autologous cell therapy for parkinson’s disease patients. Front. Cell. Neurosci., 2020, 14, 58. doi: 10.3389/fncel.2020.00058 PMID: 32317934
  8. Tao, Y.; Vermilyea, S.C.; Zammit, M. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med., 2021, 27(4), 632-639. doi: 10.1038/s41591-021-01257-1 PMID: 33649496
  9. Piao, J.; Zabierowski, S.; Dubose, B.N. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell, 2021, 28(2), 217-229.e7. doi: 10.1016/j.stem.2021.01.004 PMID: 33545080
  10. Morizane, A.; Takahashi, J. Evading the immune system: Immune modulation and immune matching in cell replacement therapies for parkinson’s disease. J. Parkinsons Dis., 2021, 11(s2), S167-S172. doi: 10.3233/JPD-212608 PMID: 34024783
  11. Yousefi, N.; Abdollahii, S.; Kouhbanani, M.A.J.; Hassanzadeh, A. Induced pluripotent stem cells (iPSCs) as game‐changing tools in the treatment of neurodegenerative disease: Mirage or reality? J. Cell. Physiol., 2020, 235(12), 9166-9184. doi: 10.1002/jcp.29800 PMID: 32437029
  12. Fan, Y. Winanto, Ng SY. Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl. Neurodegener., 2020, 9(1), 2. doi: 10.1186/s40035-019-0180-x PMID: 31911835
  13. Shrigley, S.; Nilsson, F.; Mattsson, B. Grafts derived from an α-Synuclein triplication patient mediate functional recovery but develop disease-associated pathology in the 6-OHDA model of parkinson’s disease. J. Parkinsons Dis., 2021, 11(2), 515-528. doi: 10.3233/JPD-202366 PMID: 33361611
  14. Schweitzer, J.S.; Song, B.; Herrington, T.M. Personalized iPSC-derived dopamine progenitor cells for parkinson’s disease. N. Engl. J. Med., 2020, 382(20), 1926-1932. doi: 10.1056/NEJMoa1915872 PMID: 32402162
  15. Lanza, R.; Russell, D.W.; Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol., 2019, 19(12), 723-733. doi: 10.1038/s41577-019-0200-1 PMID: 31417198
  16. Giehrl-Schwab, J.; Giesert, F.; Rauser, B. Parkinson’s disease motor symptoms rescue by CRISPRa‐reprogramming astrocytes into GABAergic neurons. EMBO Mol. Med., 2022, 14(5), e14797. doi: 10.15252/emmm.202114797 PMID: 35373464
  17. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  18. Wang, H.; Yang, Y.; Liu, J.; Qian, L. Direct cell reprogramming: Approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 410-424. doi: 10.1038/s41580-021-00335-z PMID: 33619373
  19. Zheng, W; Chen, Z Generation of induced neural stem cells from peripheral mononuclear cells and differentiation toward dopaminergic neuron precursors for transplantation studies. J Vis Exp, 2019, (149) doi: 10.3791/59690 PMID: 31355797
  20. Gugliandolo, A.; Bramanti, P.; Mazzon, E. Mesenchymal stem cell therapy in Parkinson’s disease animal models. Curr. Res. Transl. Med., 2017, 65(2), 51-60. doi: 10.1016/j.retram.2016.10.007 PMID: 28466824
  21. Alizadeh, R.; Ramezanpour, F.; Mohammadi, A. Differentiation of human olfactory system‐derived stem cells into dopaminergic neuron‐like cells: A comparison between olfactory bulb and mucosa as two sources of stem cells. J. Cell. Biochem., 2019, 120(12), 19712-19720. doi: 10.1002/jcb.29277 PMID: 31297865
  22. Alizadeh, R.; Kamrava, S.K.; Bagher, Z. Human olfactory stem cells: As a promising source of dopaminergic neuron-like cells for treatment of Parkinson’s disease. Neurosci. Lett., 2019, 696, 52-59. doi: 10.1016/j.neulet.2018.12.011 PMID: 30552942
  23. Alizadeh, R.; Bagher, Z.; Kamrava, S.K. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. J. Chem. Neuroanat., 2019, 96, 126-133. doi: 10.1016/j.jchemneu.2019.01.003 PMID: 30639339
  24. Staff, N.P.; Jones, D.T.; Singer, W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin. Proc., 2019, 94(5), 892-905. doi: 10.1016/j.mayocp.2019.01.001 PMID: 31054608
  25. Venkataramana, N.K.; Kumar, S.K.V.; Balaraju, S. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res., 2010, 155(2), 62-70. doi: 10.1016/j.trsl.2009.07.006 PMID: 20129486
  26. Zakerinia, M.; Kamgarpour, A.; Nemati, H. Intrathecal autologous bone marrow-derived hematopoietic stem cell therapy in neurological diseases. Int. J. Organ Transplant. Med., 2018, 9(4), 157-167. PMID: 30863518
  27. Boika, A.; Aleinikava, N.; Chyzhyk, V.; Zafranskaya, M.; Nizheharodava, D.; Ponomarev, V. Mesenchymal stem cells in Parkinson’s disease: Motor and nonmotor symptoms in the early posttransplant period. Surg. Neurol. Int., 2020, 11, 380. doi: 10.25259/SNI_233_2020 PMID: 33408914
  28. Duma, C.; Kopyov, O.; Kopyov, A. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: Results of a 3-year phase 1 study of 113 injections in 31 patients. Mol. Biol. Rep., 2019, 46(5), 5257-5272. doi: 10.1007/s11033-019-04983-5
  29. Carstens, M.; Haq, I.; Martinez-Cerrato, J.; Dos-Anjos, S.; Bertram, K.; Correa, D. Sustained clinical improvement of Parkinson’s disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J. Clin. Neurosci., 2020, 81, 47-51. doi: 10.1016/j.jocn.2020.09.001 PMID: 33222965
  30. Shigematsu, K.; Komori, N.; Tahara, K.; Yamagishi, H. Repeated infusion of autologous adipose tissue‐derived stem cells for Parkinson’s disease. Acta Neurol. Scand., 2022, 145(1), 119-122. doi: 10.1111/ane.13547 PMID: 34716582
  31. Henchcliffe, C.; Sarva, H. Restoring function to dopaminergic neurons: Progress in the development of cell-based therapies for parkinson’s disease. CNS Drugs, 2020, 34(6), 559-577. doi: 10.1007/s40263-020-00727-3 PMID: 32472450
  32. Malat, G.; Culkin, C. The ABCs of immunosuppression. Med. Clin. North Am., 2016, 100(3), 505-518. doi: 10.1016/j.mcna.2016.01.003 PMID: 27095642
  33. Takahashi, J. Preclinical evaluation of patient-derived cells shows promise for Parkinson’s disease. J. Clin. Invest., 2020, 130(2), 601-603. doi: 10.1172/JCI134031 PMID: 31929191
  34. Kikuchi, T.; Morizane, A.; Doi, D. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 2017, 548(7669), 592-596. doi: 10.1038/nature23664 PMID: 28858313
  35. Desgres, M.; Menasché, P. Clinical translation of pluripotent stem cell therapies: Challenges and considerations. Cell Stem Cell, 2019, 25(5), 594-606. doi: 10.1016/j.stem.2019.10.001 PMID: 31703770
  36. Majhail, N.S.; Mau, L.W.; Denzen, E.M.; Arneson, T.J. Costs of autologous and allogeneic hematopoietic cell transplantation in the United States: A study using a large National Private Claims Database. Bone Marrow Transplant., 2013, 48(2), 294-300. doi: 10.1038/bmt.2012.133 PMID: 22773126
  37. Fričová, D.; Korchak, J.A.; Zubair, A.C. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regen. Med., 2020, 5(1), 20. doi: 10.1038/s41536-020-00106-y PMID: 33298940
  38. Yamanaka, S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 2012, 10(6), 678-684. doi: 10.1016/j.stem.2012.05.005 PMID: 22704507
  39. Tiklová, K.; Björklund, Å.K.; Lahti, L. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun., 2019, 10(1), 581. doi: 10.1038/s41467-019-08453-1 PMID: 30718509
  40. Liu, K.; Ji, K.; Guo, L. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res., 2014, 92, 10-18. doi: 10.1016/j.mvr.2014.01.008 PMID: 24486322
  41. Guo, X.; Tang, L.; Tang, X. Current developments in cell replacement therapy for parkinson’s disease. Neuroscience, 2021, 463, 370-382. doi: 10.1016/j.neuroscience.2021.03.022 PMID: 33774124

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024